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Abstract
Background: Protein subcellular localization is concerned with predicting the location of a
protein within a cell using computational method. The location information can indicate key
functionalities of proteins. Accurate predictions of subcellular localizations of protein can aid the
prediction of protein function and genome annotation, as well as the identification of drug targets.
Computational methods based on machine learning, such as support vector machine approaches,
have already been widely used in the prediction of protein subcellular localization. However, a
major drawback of these machine learning-based approaches is that a large amount of data should
be labeled in order to let the prediction system learn a classifier of good generalization ability.
However, in real world cases, it is laborious, expensive and time-consuming to experimentally
determine the subcellular localization of a protein and prepare instances of labeled data.

Results: In this paper, we present an approach based on a new learning framework, semi-
supervised learning, which can use much fewer labeled instances to construct a high quality
prediction model. We construct an initial classifier using a small set of labeled examples first, and
then use unlabeled instances to refine the classifier for future predictions.

Conclusion: Experimental results show that our methods can effectively reduce the workload for
labeling data using the unlabeled data. Our method is shown to enhance the state-of-the-art
prediction results of SVM classifiers by more than 10%.

Background
Organelles with different functions are the specialized
subunits in a cell. (See Figure 1.) Most organelles are
closed compartments separated by lipid membranes, such
as mitochondria, chloroplasts, peroxisomes, lysosomes,

endoplasmic reticulum, cell nucleus and Golgi apparatus.
These compartments play different roles, for instance,
mitochondria supply chemical energy ATP for cell survive;
chloroplasts transform light energy to chemical energy
using photosynthesis; peroxisomes participate metabo-
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lism process; lysosomes degrade engulfed viruses or bac-
teria, and destroyed organelles; cell nucleus contains
almost genetic information, carried by DNA together with
variable proteins to form chromosomes; Golgi apparatus
is responsible to package proteins and lipids and modify
chemicals to make them functional [1].

Protein subcellular localization is crucial for genome
annotation, protein function prediction, and drug discov-
ery [2]. Proteins perform their appropriate functions as,
and only when, they localize in the correct subcellular
compartments. Take prokaryotic and eukaryotic proteins
as examples, for prokaryotes, many proteins that are syn-
thesized in the cytoplasm are ultimately found noncyto-
plasmic locations [3], such as to a cell membrane or the
extracellular environment, while most eukaryotic proteins
are encoded in the nuclear and transported to the cytosol
for further synthesis.

The annotations of protein subcellular localization can be
detected by various wet-lab experiments. Cell fractiona-
tion, electron microscopy and fluorescence microscopy
are three major experimental methods for the study of

protein subcellular localization. However, the experimen-
tal approaches are time-consuming and expensive, so that
there is a wide gap between the number of known protein
subcellular localizations and the number of uncovered
ones. For instance, according to the Swiss-Prot database
version 50.0 related on 30-May-2006 the number of pro-
tein sequences with localization annotations is just about
14% of total eukaryotic protein entries [1]. This means
that there are about 86% of eukaryotic protein entries
without localization labels, which motivates us to find
computational methods to predict the protein subcellular
localization automatically and accurately.

Many methods have been developed and applied in an
attempt to predict protein subcellular localization. Meth-
ods in [4-17] are based on amino acid composition to pre-
dict localization. Furthermore, scientists took account of
sequence order together with amino acid composition to
overcome information missing problem [18-21]. In addi-
tion, supervised learning algorithms such neural networks
[22], K-NN algorithm [23], SVM [7,24,25] are widely
applied to solve this problem. Among these learning-
based approaches, SVM is popularly adopted in bioinfor-

Organelles with different functions in a cellFigure 1
Organelles with different functions in a cell. This figure shows the organelles with different functions are the specialized 
subunits in a cell. Most organelles are closed compartments separated by lipid membranes, such as mitochondria, chloroplasts, 
peroxisomes, lysosomes, endoplasmic reticulum, cell nucleus and Golgi apparatus. Protein subcellular located within different 
organelles plays different role.
Page 2 of 10
(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 1):S47 http://www.biomedcentral.com/1471-2105/10/S1/S47
matics and is shown to perform relatively better compared
to many others. There are also a large number of special-
ized databases are exploited such as DBSubLoc [26], ESL-
Pred [27], HSLpred [28], LOCSVMPSI [29], LOC3d [30],
PSORTb [31], PSORT [32], LOCtree [33], BaCelLo [34],
TargetP [35], SecretomeP [36], PredictNLS [37], WoLF
PSORT [38], Proteome Analyst [39], and CELLO [40].

In this paper, we present a novel approach to exploit the
use of unlabeled data to aid the overall accuracy of protein
subcellular localization and reduce the labeling effort. The
existence of the relative large amount of unlabeled data
provides us with a chance to mine useful information
about the statistical distributions. We resort to two classi-
cal machine learning approaches, namely semi-supervised
learning and ensemble learning. Experimental results on
real biological data sets demonstrate that our efforts can
effectively improve the accuracy of the state-of-the-art
SVM classifiers with fewer labeled instances.

Results and discussion
Materials
This protein dataset includes 7,579 eukaryotic proteins
with determined subcellular localizations, which were
extracted from SWISS-PROT release 39.0 by Park and
Kanehisa [41] and 34,521 eukaryotic proteins without
subcellular localization information also extracted from
SWISS-PROT. Within 7,579 proteins, there are 12 locali-
zations: Chloroplast, Cytoplasmic, Cytoskeleton, Endo-
plasmic reticulum, Extracellular, Golgi apparatus,
Lysosomal, Mitochondrial, Nuclear, Peroxisomal, Plasma
membrane, Vacuolar. Detailed statistics of this protein
dataset is shown in the following Table 1.

We adopt the 2-gram protein encoding method to gener-
ate feature of amino acid compositions, which is widely

used in many existing protein subcellular localization
protein systems [42].

Empirical evaluations
We conducted extensive experiments to compare the
CoForest approach with other state-of-the art prediction
algorithms based on evaluation measurement 'accuracy'.
In this paper, accuracy is defined as the proportion of true
results, namely,

TP means: the number of True Positives

TN means: the number of True Negatives

FP means: the number of False Positives

FN means: the number of False Negatives

Can we achieve same or better prediction with fewer labeled data?
We first demonstrate that our semi-supervised learning
approach is indeed useful. In the next method section, we
will demonstrate that two parameters will affect the over-
all performance of CoForest. We have chosen different
values of F and N and also different numbers of labeled
instances. The labeled instances are drawn randomly from
the 12 localization classes in the labeled dataset. We sam-
ple the number of labeled instances from 1,000 to 3,000
and also change the number of classifiers from 60 to 200.
As a result, the corresponding prediction accuracy on the
whole set of 7,579 labeled instances are computed. The
results in terms of prediction accuracy are described in
Table 2, Table 3 and Table 4.

From the results, we can see that by using only about 20%
of the labeled instances, we can achieve a prediction accu-
racy of more than 75%. As a rule of thumb, we can see that
the prediction accuracy increases as F and N increase. This
follows from our intuition of the algorithm description in
the last section.

Comparison with baseline algorithms
We also compared CoForest with a number of machine
learning algorithms, such as Decision Tree, AdaBoost and
SVM. The reason for us to choose these classifiers as base-
line algorithms are as follows: Since the weak learners we
use in CoForest algorithm are in fact decision trees, we
want to demonstrate the effectiveness of ensemble learn-
ing in our approach. Furthermore, since AdaBoost is also
one of the most effective ensemble learning algorithms,
we want to show that by using AdaBoost one could not
achieve the same performance as our classifier does,
where AdaBoost did not use unlabeled data to help refine

Accuracy
TP TN

TP FP FN TN
= +

+ + +
(1)

Table 1: Distribution of protein subcellular localizations

Subcellular Localizations Number of proteins

Chloroplast 671
Cytoplasmic 1241

Cytoskeletion 40
Endoplasmic reticulum 114

Extracellular 861
Golgi apparatus 47

Lysosomal 93
Mitochondrial 727

Nuclear 1932
Peroxisomal 125

Plasma membrane 1674
Vacuolar 54

Total 7579
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the accuracy. A third choice of our baseline classifiers is
the Support Vector Machine (SVM), which is the state-of-
the-art algorithm in protein subcellular localization. We
use this algorithm to show that our algorithm can perform
better by using even fewer labeled instances.

For all the three baseline algorithms, we did not use any
unlabeled instance since they are supervised machine
learning algorithms and did not use the information from
unlabeled data. We also ranged the number of training
instances from 1,000 to 7,579 to show different levels of
prediction accuracy as a function of labeled training data.

For decision tree, we used the C4.5 package implemented
in Weka [43] and tested the algorithm accuracy in two set-
tings. One setting is the ten-fold cross validation, where
we randomly split the labeled data into ten folds, where
one is used for testing and the other nine for training. This
process is iterated ten times and the resulting ten classifi-
cation accuracy values are averaged to get the final result
of ten-fold cross validation. Another test setting is to sim-
ply use the whole set of 7,579 labeled instances for testing.
For AdaBoost, we applied the AdaBoost package in Weka,

and used decision stump as weak learners. Again we use
10-fold cross validation and external testing for the two
test settings. Experimental results for these two baseline
algorithms are shown in Table 5. We could see that by
using only the tree-based approach on AdaBoost, the
overall performance is relatively lower than the CoForest
approach.

Comparisons between our proposed and the baseline
algorithms can be visualized directly in the following fig-
ures, figure 2, figure 3 and figure 4. These three figures
indicate performances of different algorithms based on
the same number of labeled training data.

We next compared the prediction accuracy with Support
Vector Machine, which is the state-of-the-art algorithm for
protein subcellular localization. Due to time constraint,
we did not consider different values of labeled instances
when training the SVM classifier, we used the 7,579
labeled instances and did a ten-fold cross validation. We
tuned the γ parameter in RBF kernel, which is a typical set-
ting in protein subcellular localization, and the different
values of γ will undoubtedly affect the overall prediction
accuracy. The experimental results are shown in Table 6.

From the results, we can see that SVM could almost
achieve a 80% accuracy when γ is set to 0.0004, and typi-
cally the prediction accuracy is between 75% and 80%.
However, as shown in our CoForest approach, the predic-
tion accuracy can be increased to 85% when we are using
only 3000 labeled instances for training, thus, by using
about 40% of labeled instances, one can achieve a 10%
performance increase than the state-of-the-art algorithms.
This result is very promising.

Table 2: Performance of Co-Forest Algorithm on the selected 
datasets(F = 20)

N N = 60 N = 100 N = 150 N = 200

Labeled = 1000 0.5863 0.604 0.616 0.6289
Labeled = 1200 0.6285 0.6539 0.6716 0.6936
Labeled = 1400 0.6498 0.674 0.6907 0.7018
Labeled = 1600 0.703 0.7251 0.7352 0.7425
Labeled = 1800 0.7218 0.7441 0.7525 0.7589
Labeled = 2000 0.7416 0.769 0.78 0.7613
Labeled = 2200 0.7703 0.7898 0.7935 0.7627
Labeled = 2400 0.7896 0.8045 0.8125 0.8158
Labeled = 2600 0.8035 0.8181 0.8208 0.8209
Labeled = 2800 0.8162 0.8294 0.8318 0.8307
Labeled = 3000 0.83 0.834 0.847 0.8503

Table 3: Performance of Co-Forest Algorithm on the selected 
datasets(F = 40)

N N = 60 N = 100 N = 150 N = 200

Labeled = 1000 0.5916 0.6114 0.6277 0.631
Labeled = 1200 0.6478 0.6656 0.6707 0.6818
Labeled = 1400 0.667 0.6919 0.6924 0.6962
Labeled = 1600 0.7071 0.726 0.7391 0.7416
Labeled = 1800 0.7215 0.7467 0.7502 0.7638
Labeled = 2000 0.7423 0.7598 0.7613 0.7707
Labeled = 2200 0.7715 0.7849 0.7913 0.8052
Labeled = 2400 0.7952 0.8054 0.8132 0.8208
Labeled = 2600 0.8092 0.8341 0.8244 0.8303
Labeled = 2800 0.8157 0.8312 0.8338 0.8394
Labeled = 3000 0.8298 0.8407 0.8525 0.8595

Table 4: Performance of Co-Forest Algorithm on the selected 
dataset (F = 60)

N N = 60 N = 100 N = 150 N = 200

Labeled = 1000 0.5969 0.6226 0.6208 0.632
Labeled = 1200 0.6521 0.6736 0.6745 0.6928
Labeled = 1400 0.6637 0.6832 0.6933 0.7049
Labeled = 1600 0.7075 0.7228 0.7337 0.7483
Labeled = 1800 0.7351 0.7532 0.7591 0.7658
Labeled = 2000 0.7526 0.7618 0.7913 0.7956
Labeled = 2200 0.7736 0.7888 0.7873 0.8027
Labeled = 2400 0.7942 0.8099 0.8174 0.823
Labeled = 2600 0.812 0.8235 0.8252 0.8295
Labeled = 2800 0.8219 0.831 0.834 0.8367
Labeled = 3000 0.836 0.838 0.8493 0.8504
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Table 5: Performance of baseline classifiers

Labeled Data Tree(10-CV) Tree(External) AdaBoost(10-CV) AdaBoost(External)

Labeled = 1000 0.256 0.3167 0.124 0.1124
Labeled = 1200 0.275 0.3628 0.1442 0.1989
Labeled = 1400 0.2485 0.3730 0.1943 0.2697
Labeled = 1600 0.2887 0.4350 0.1913 0.2488
Labeled = 1800 0.2772 0.4465 0.1917 0.2210
Labeled = 2000 0.2985 0.4749 0.2065 0.2702
Labeled = 2200 0.3222 0.5084 0.1868 0.2515
Labeled = 2400 0.2913 0.5296 0.1929 0.3544
Labeled = 2600 0.3173 0.5503 0.1981 0.2697
Labeled = 2800 0.3357 0.5601 0.2204 0.3524
Labeled = 3000 0.3387 0.5842 0.2160 0.3544
Labeled = 7579 0.4521 0.6234 0.3544 0.4041

Accuracy comparison of different approachesFigure 2
Accuracy comparison of different approaches. Accuracy comparison among Co-Forest F = 20, N = 100, Co-Forest F = 
20, N = 150, Co-Forest F = 20, N = 200, decision tree with 10 cross validation, decision tree with external test, AdaBoost with 
10 cross validation and AdaBoost with external test when training classifiers with different sample sizes.
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Conclusion
In this paper, we present a semi-supervised learning
approach to solve protein subcellular localization prob-
lem. One particular feature of protein subcellular localiza-
tion is that a large amount of unlabeled protein sequences
are available but no literature tries to make use of these
unlabeled instances. We used the CoForest algorithm and
the large number of unlabeled protein sequences for pre-
dicting protein subcellular localization. Experimental
results show that we can achieve more than 10% accuracy
increase than SVM and moreover, we used only about
30% labeled instances to achieve this accuracy.

There are several possible directions for future research
into this CoForest framework. The performance of CoFor-
est may be better enhanced when we incorporate the

active learning framework into CoForest, i.e. we could
extract more useful information by selecting some repre-
sentative unlabeled instances, instead of randomly choos-
ing the unlabeled instances. Another possible solution is
to further incorporate the transfer learning framework
into this approach, where the distribution of unlabeled
data may not follow the overall distribution of labeled
data. Using a semi-supervised transfer learning approach
may further improve the prediction accuracy.

Methods
Related work
In this paper, our proposed approach is based on the co-
training paradigm, which is a very important algorithm in
semi-supervised learning. Also, we exploit the ideas from
ensemble learning to help improve the overall accuracy.

Accuracy comparison of different approachesFigure 3
Accuracy comparison of different approaches. Accuracy comparison among Co-Forest F = 40, N = 100, Co-Forest F = 
40, N = 150, Co-Forest F = 20, N = 200, decision tree with 10 cross validation, decision tree with external test, AdaBoost with 
10 cross validation and AdaBoost with external test when training classifiers with different sample sizes.
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In the following, we briefly introduce some related work
in semi-supervised learning and ensemble learning.

Machine learning, or classification in particular, is con-
cerned with fitting a function that maps a pattern to its
corresponding class label based on prior knowledge and a
set of features describing the pattern. For a traditional two-
class classification problem, we are given a set of samples,
i.e. a number of input vectors xi ∈ �d(i = 1, 2,..., N) with
corresponding labels yi ∈ {+1, -1}(i = 1, 2,..., N), where N
is the number of labeled instances and d is the dimension
cardinality of each training instance (that is, the number
of features). The goal of a learning algorithm is to con-
struct a binary classifier or a decision function which takes
a new x as input and derives a corresponding label y ∈
{+1, -1} based on the given labeled data. Typically, fea-

tures are manually chosen to quantitatively describe each
training instance or extract the most important values that
can distinguish one class with another. From the view of
statistical machine learning, experimental results usually
show that the larger the N is, the better the overall predic-
tion accuracy will be. As mentioned in the last section,
manually labeling the data is a time-consuming task.
There exists a large amount of unlabeled proteins, which
traditionally are not taken into account in overall predic-
tion. However, we think this is a mistake.

In traditional classification, all training data should be
labeled before learning and the learned classifiers depend
on these labeled data. When a large portion of unlabeled
data are also available, a new opportunity is presented to
improve the learning performance. An effective approach

Accuracy comparison of different approachesFigure 4
Accuracy comparison of different approaches. Accuracy comparison among Co-Forest F = 60, N = 100, Co-Forest F = 
60, N = 150, Co-Forest F = 60, N = 200, decision tree with 10 cross validation, decision tree with external test, AdaBoost with 
10 cross validation and AdaBoost with external test when training classifiers with different sample sizes.
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that has been used by machine learning researchers is the
semi-supervised learning framework, where an initial
hypothesis is first learned from the labeled data and then
this hypothesis is refined, using the unlabeled data by
some automatic labeling strategies, in several iterations.

There have been many approaches or algorithms that fall
into the semi-supervised framework. Interested readers
can refer to Zhu's survey on semi-supervised learning [44]
for a comprehensive explanation about what semi-super-
vised learning is and some latest results.

Typical semi-supervised algorithms include the EM algo-
rithms to estimate the parameters of the generative model
and the probability of unlabeled examples in each class
[45]; transductive inference for support vector machines
[46,47], and so on.

The co-training paradigm is one of the early proposed
framework that was well studied and developed [48]. In
co-training, two classifiers are trained on two sets of
attributes/features respectively. Each classifier will choose
to label some unlabeled data for which they feel they are
most "confident" with. These newly labeled examples are
then added to the labeled training set of the other classi-
fier. After that, each classifier is retrained using the aug-
mented labeled data set, hoping that the "most confident"
instances labeled by the other classifier will improve the
generalization ability of the classifier learnt in this itera-
tion. This process is repeated till converge is reached, or
the difference in the classifiers learned in previous two
rounds is relatively small. Co-training has been success-
fully applied in many applications, including statistical
parsing [49], visual detection [50], etc.

Therefore, we believe it would be interesting to apply
semi-supervised algorithm based on the co-training
framework to the problem of protein subcellular localiza-
tion. To our best knowledge, there has been no work that
tries to solve the protein subcellular localization problem
via a semi-supervised learning approach.

Ensemble learning is a very important machine learning
framework that was usually explained as "wisdom of the
crowds". In ensemble learning, multiple learners are
trained and then their predictions are combined in order
to make more accurate predictions. Experiments in many
real-world datasets across a large number of domains
show that ensemble learning can effectively improve the
accuracy or generalization ability of many classifiers.

An ensemble learning algorithm usually has two steps, in
which the first is to generate multiple classifiers and the
second is to combine their predictions. Current trends
tend to categorize ensemble learning algorithms in two
categories, considering whether they generate the classifi-
ers in a parallel way or a sequential way.

For the first category, where the multiple classifiers are
generated in a parallel way, some representative algo-
rithms include Bagging [51], which generates each classi-
fier based on a training set bootstrapped from the original
training set, this generating process can be done in a par-
allel way since different bootstrapping process do not
affect each other. The predictions of these classifiers are
combined using a majority voting. Other algorithms that
fall into this category include stacking predictors [52], ran-
dom subspace [53], random forest [54], etc.

For the second category, the most important and repre-
sentative algorithm is AdaBoost [55], which sequentially
generates a number of classifiers. The subsequent classifi-
ers are targeted on the misclassified examples by the
former classifiers.

Ensemble learning has been successful in many fields,
including the protein subcellular localization problem.
Recently Shen et al. [1] presents an ensemble learning
algorithm for protein subcellular localization. Our
approach combines semi-supervised learning and ensem-
ble learning in hopes of much better prediction results for
the biological problem.

Proposed approach
In this paper, we use a new co-training style algorithm that
was first proposed by Li and Zhou [56] which extends the
co-training paradigm by an ensemble algorithm named
Random Forest [54].

Table 6: Performance of SVM

γ Prediction Accuracy

0.00001 0.5865
0.00002 0.6162
0.00004 0.7050
0.00008 0.7524
0.0001 0.7661
0.0002 0.7807
0.0004 0.7957
0.0008 0.7887
0.001 0.7772
0.002 0.7279
0.004 0.6048
0.008 0.4185
0.01 0.3666
0.02 0.2827
0.04 0.2577
0.08 0.2560
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We let L and U denote the labeled set and unlabeled set.
In co-training, two classifiers are trained from L and then
each of them selects the most confident examples in U to
label, from their own classifying function or separating
hyperplane, respectively. Thus, an important part of co-
training lies in how to estimate the confidence of predic-
tion, in other words, how to estimate the confidence of an
unlabeled example.

In Li and Zhou's proposed Co-Forest algorithm [56], an
ensemble of N classifiers denoted as H* is used in co-
training instead of two classifiers. In this way, we can esti-
mate the confidence of each classifier efficiently. If we
want to consider the most confidently labeled example by
a certain component classifier of the ensemble hi(i = 1,
2,..., N), we use all other component classifiers except hi,
called the concomitant ensemble of hi and denoted by Hi.
Therefore, the confidence of labeling can be computed as
the degree of agreements on the labeling, i.e. the number
of classifiers that agree on the label assigned by Hi. The
overall idea of CoForest is to firstly train an ensemble of
classifiers from labeled dataset L and then refine each clas-
sifier with unlabeled data by its concomitant ensemble.

More specifically, in each learning iteration round of
CoForest, the concomitant ensemble Hi will test each

example in U. If the number of classifiers that agree on a

particular label exceeds a pre-defined threshold θ, the
unlabeled example, labeled with this newly assigned label

is copied into the newly labeled set  Then for this

round, set L cup  is used for refining hi in this iteration.

Note that the unlabeled examples are not removed from

U, so they might be selected by other Hj(j ≠ i) in the fol-

lowing iterations. One problem that may affect the overall
performance of CoForest is that all the unlabeled data

whose prediction confidence that are above θ will be
added to Li, thus making Li rather large in the future. But

in case the learned classifier cannot represent the underly-
ing distribution, such a huge amount of labeled data will
indeed hurt the performance, instead of helping the pre-
diction accuracy. This phenomenon was discovered in
several semi-supervised learning algorithms. Inspired by
Nigam et al [45], CoForest also assigns a weight to each
unlabeled example. An example is weighted by the predic-
tive confidence of a concomitant ensemble. This approach

makes the influence of θ insensitive, even if θ is small, the
influences of examples with low predictive confidence can
be limited.

In the CoForest algorithm, N random trees are firstly ini-
tiated from the bootstrapped training set from the labeled

set L to create a random forest. Then in each iteration,
each random tree will be refined with the newly labeled
examples by its concomitant ensemble, where the confi-
dence of the labeled example exceeds a certain threshold
θ. This method will reduce the chance of the trees in a ran-
dom forest being biased when we utilize the unlabeled
data.

For detailed descriptions of CoForest algorithm, inter-
ested readers could refer to [56] for details.
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