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Abstract

Background: Alanine scanning mutagenesis is a powerful experimental methodology for
investigating the structural and energetic characteristics of protein complexes. Individual amino-
acids are systematically mutated to alanine and changes in free energy of binding (AAG) measured.
Several experiments have shown that protein-protein interactions are critically dependent on just
a few residues ("hot spots") at the interface. Hot spots make a dominant contribution to the free
energy of binding and if mutated they can disrupt the interaction. As mutagenesis studies require
significant experimental efforts, there is a need for accurate and reliable computational methods.
Such methods would also add to our understanding of the determinants of affinity and specificity
in protein-protein recognition.

Results: We present a novel computational strategy to identify hot spot residues, given the
structure of a complex. We consider the basic energetic terms that contribute to hot spot
interactions, i.e. van der Waals potentials, solvation energy, hydrogen bonds and Coulomb
electrostatics. We treat them as input features and use machine learning algorithms such as
Support Vector Machines and Gaussian Processes to optimally combine and integrate them, based
on a set of training examples of alanine mutations. We show that our approach is effective in
predicting hot spots and it compares favourably to other available methods. In particular we find
the best performances using Transductive Support Vector Machines, a semi-supervised learning
scheme. When hot spots are defined as those residues for which AAG > 2 kcal/mol, our method
achieves a precision and a recall respectively of 56% and 65%.

Conclusion: We have developed an hybrid scheme in which energy terms are used as input
features of machine learning models. This strategy combines the strengths of machine learning and
energy-based methods. Although so far these two types of approaches have mainly been applied
separately to biomolecular problems, the results of our investigation indicate that there are
substantial benefits to be gained by their integration.

Background gene regulation, and immune response [1]. The complex-
Protein-protein interactions are central to most biological ity of these processes, coupled with the intricate interac-
processes including for example cellular communication,  tion networks that biomolecules form in a cell, requires
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proteins to be able to selectively bind to other proteins.
Indeed, erroneous or disrupted protein interactions can
be the causes of a number of diseases [2]. Elucidating the
fundamental biophysical principles that govern molecu-
lar recognition and drive protein association is therefore a
topic of primary importance in biomedical research.
However, at present the energetic determinants of affinity
and specificity in protein interfaces are still poorly under-
stood and fundamental problems relating to the recogni-
tion process are yet to be solved.

Knowledge of the three-dimensional (3D) structure of the
complex provides much valuable information on the
architecture and chemistry of a protein-protein interface,
including the identity of residues in contact, the size and
shape of the interface, the number of hydrogen bonds,
and the presence of bound water molecules. On its own,
however, the structure does not fully clarify the details of
the energetics of binding, nor does it determine to what
extent each residue modulates complex formation and
contributes to the overall affinity and specificity. For
example, understanding how particular amino-acid muta-
tions affect binding would help explaining the causes of
some diseases and possibly suggest a strategy to treat them
[3,4]. For a more accurate description of protein-protein
interaction and its effects, e.g., on a pathway or on a whole
biological system, structural and thermodynamic analysis
provide complementary information and both are neces-

sary [1].

The thermodynamics of protein-protein interactions can
be probed experimentally by alanine scanning mutagene-
sis [5]. Interface amino-acids are systematically replaced
with alanine and the induced changes in binding free
energy measured. As alanine amino acids do not have a
side-chain beyond the f-carbon, this procedure in effect
tests the importance of individual side-chain groups for
complex formation, providing a map of the so-called
functional epitope (to be distinguished from the struc-
tural epitope defined instead by all residues at the inter-
face [6]). Results from a number of experiments indicate
that only a small subset of contact residues contribute sig-
nificantly to the binding free energy. These residues have
been termed "hot spots" and if mutated they can disrupt
the interaction. For the majority of interface residues
instead, the effect of an alanine mutation is minimal (for
a review on hot spots and their properties see, e.g., [7,8]).

In recent years, several computational approaches have
been developed to predict hot spot residues in a protein
complex structure (see, e.g., discussion in [4]). Accurate
predictive models provide a valuable complement to
experimental studies and add to our understanding of the
factors that influence affinity and specificity in protein-
protein interfaces. In addition, they potentially have
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important applications in the field of drug discovery. Pro-
tein-protein interfaces are in fact emerging as a prospec-
tive new class of therapeutic targets. Although dealing
with protein binding epitopes is more challenging com-
pared to, e.g., enzyme binding pockets, a number of stud-
ies have been successful in developing (drug-like) small
molecules that bind at hot spots and inhibit complex for-
mation. Reliable hot spots predictions can therefore rep-
resent the first step in rational drug design projects [3,4].

Most computational methods predict hot spots by simu-
lating an alanine substitution and estimating the induced
changes in binding free energy (AAG). One class of meth-
ods is based on molecular dynamics (MD) simulations
[9,10], which makes them computationally rather expen-
sive and difficult to apply on a large scale. A second class
instead relies on empirically calibrated free energy func-
tions [11,12], which include terms such as van der Waals
and electrostatic interactions, hydrogen bonds and solva-
tion energy. These terms are then combined linearly, with
weights adjusted in order to best fit experimental muta-
genesis data. As energies are evaluated on static structural
configurations (as opposed to MD simulations, where free
energies are ensemble averages), these latter methods are
computationally much faster and reported results appear
comparable to those from MD simulations [11]. More
recently, machine learning approaches have also been
applied to the problem of detecting hot spot residues
[13,14].

In this paper, we propose a novel computational strategy
to predict hot spot residues at protein-protein interfaces.
Similarly to other energy-based methods, we consider the
basic terms that contribute to hot spot interactions (van
der Waals potentials, hydrogen bonding, electrostatic
interactions and solvation energies). Rather than writing
an explicit energy function from which we can then calcu-
late AAG, we treat them as input features of a machine
learning algorithm. The rationale beyond our approach is
that the exact functional form for AAG is not known but it
is reasonable to assume that it would incorporate these
terms. Given a set of training examples of alanine muta-
tion data, we use machine learning methods to deduce the
functional properties of AAG.

We consider two conceptually different machine learning
methods, Support Vector Machines (SVMs) [15] and
Gaussian Processes (GPs) [16]. We compare our results to
previous methods and in particular to the predictions of
the Robetta server [11] for the same set of mutations.
Robetta is a well established energy-based method which
has become the de facto standard of comparison in the
field. We show that our approach is significantly more
accurate in identifying hot spots (here defined as those
residues for which AAG > 2 kcal/mol). Among the tested
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methods, we find the best performances using Transduc-
tive Support Vector Machines (TSVMs), a semi-supervised
learning version of SVMs. We investigate also the problem
of estimating the actual value of AAG induced by an
alanine mutation. This proves to be a rather challenging
problem. Results from both SVM regression and GP mod-
els are comparable and in some aspects superior to those
from the Robetta server. However they are also compara-
ble to those obtained by simple models built by ordinary
linear least squares fitting (LLSF). We point out shortcom-
ings and limitations of our as well as other energy-based
models.

Results and Discussion

The problem we have investigated is the prediction of hot
spot residues at a protein-protein interface, given the
structure of the complex. Basic thermodynamic consider-
ations show that in order to correctly estimate the binding
free energy change AAG upon alanine substitution one
should in principle consider its effects on the unbound
state as well. Let A and B denote the unbound monomers
and AB the complex. For convenience, we assume that the
alanine mutation occurs on protein A. We further denote
with (wt) the wild-type molecules and with (mut) the
mutated molecules. We can then write

Al = G - G4 - G 1)
AG%?;;) — Ggrgut) _ Ggmut) _ G%wt) (2)

from which follows

36 = a6 - acld = el - a8 -[ e - o |

(3)
Equation (3) highlights the dependence of AAG on both
the bound and unbound states. In general, it is therefore
not possible to explain binding free energy differences
entirely in terms of changes or deletions of atomic con-
tacts across the interface as mutations can destabilise the
unbound state as well [4,7].

Previous computational methods evaluate the free ener-
gies for the wild type and mutated proteins on both
bound and unbound structures and deduce AAG from
these through eq (3). In principle four distinct free energy
calculations are required which can be computationally
demanding (and as a consequence approximations are
often introduced). In our approach we aim instead to esti-
mate directly AAG without calculating the free energy G in
the four different states. We consider only the complex
structure and make no attempt to model the unbound
and/or mutated structures. The input variables to the
machine learning algorithms are basic energy terms (van
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der Waals, hydrogen bond, electrostatic and desolvation
potentials) calculated from the complex structure.

We distinguish contributions from different structural
regions in the protein complex (see Figure 1) and we asso-
ciate to each of them 4 input features, corresponding to
the basic energy terms mentioned above. It can be
expected that side-chain atoms of the mutated residue
contribute significantly to AAG as these are the atoms that
are "cancelled" by an alanine mutation. In fact it can be
shown (see discussion in Additional file 1) that if struc-
tural changes due to binding and to mutations are
neglected, side-chain inter-molecular energies are the only
contributions to AAG. The latter hypothesis however can
not be expected to hold in general and therefore we have
included other energy contributions as well.

The environment energy describes the (inter-molecular)
interactions of those atoms that are located nearby the
mutated residue. It aims to represent implicitly the plastic-
ity of the local environment and its ability to rearrange.
Local sequence and structure information are typically
included as input features in a related problem, the pre-
diction of stability changes upon mutations in mono-
meric proteins [17,18]. In the hot spot prediction
problem, the inclusion of these terms describing the local
environment possibly finds further justification in the O-

(b)

\
(a)

Figure |

Schematic overview of protein structural regions
which define the different energy contributions. The
red filled area, (a), corresponds to side-chain atoms of the
mutated residue; the red and blue striped regions, (b) and (c)
respectively, correspond to atoms within 10 A of the Cyof
the mutated residue. We distinguish 3 types of interactions:
side-chain inter-molecular between (a) and (c), environment
inter-molecular between (b) and (c), side-chain intra-molecular
between (a) and (b).
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ring hypothesis [19]. By analysing a large set of data it has
been suggested that one important characteristic of hot
spots is that they are surrounded by a set of residues (the
O-ring) whose role is to shield them from the solvent. The
environment energy might therefore capture this effect.

Prediction of hot spot residues

We discuss first the binary classification problem, i.e. the
problem of predicting if a residue is a hot spot (AAG > 2
kcal/mol) or not (AAG < 2 kcal/mol). Support Vector
Machines (SVMs) are widely used tools in computational
biology and well suited for the task (see [20,21] and refer-
ences therein). As input features we consider the 8 terms
associated with side-chain inter-molecular and environment
inter-molecular energies (the addition of side-chain intra-
molecular energies in this case does not improve the predic-
tion accuracy). A summary of the results is reported in
Table 1a according to various performance measures. The
precision P is the fraction of true hot spots among the set
of residues predicted to be hot spots; the recall R is the
fraction of correctly identified hot spots relative to all
those present in the data set; the F1 score is a weighted
average of the precision and recall; the Matthews Correla-
tion Coefficient (MCC) is a commonly used measure of
the quality of binary classifications (see Methods section
for more details).

The results are significantly better than the ones expected
for a random model. For example, the SVM classifier pre-
dicts a total of 96 hot spots of which 51 are true positives.
Our data set consists of 349 alanine mutations of which
81 are hot spots. Choosing randomly 96 residues would
therefore return 22 + 4 true positives as can be estimated
from a binomial distribution. The F1 score for a random
predictor is F1,,,< 0.37 and F1,,, = 0.23 if the Recall is

ran—
equal to the fraction of hot spots in the data set, i.e. R, =

Table I: Summary of results for the binary classification problem
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0.23 (see discussion in Methods section). For the SVM
classifier we obtain F1 = 0.58 + 0.02. Similarly, the Mat-
thews correlation coefficient MCC = 0.44 + 0.03 is signif-
icantly greater than zero, which is the random baseline. A
simple chi-square test, 2= N x MCC2 = 67.6 (where N =
349 is the number of entries in the data set) [22], returns
a highly significant result (chance probability < 10-5).

Results quoted in Table 1a have been obtained through a
16-fold cross-validation strategy. We have verified that
they are robust with respect to the cross-validation scheme
employed, i.e. by using a more stringent 12-fold cross-val-
idation the results do no change appreciably (see Addi-
tional file 2: Supplemental Table S1). As can be expected
they tend to be slightly worse but the difference does not
appear to be significant. A further control is to apply the
models on their training sets and check if statistically the
predictions are much better than on the test set. We have
verified that the performances on the training sets are only
marginally more accurate but still comparable to those on
the test set (see Additional file 2: Supplemental Table S1).
These considerations about the 12-fold cross-validation
and the performances on the training sets suggest that
there is no over-fitting of the data in our analysis and that
the SVM model generalises to unseen data as quoted in
Table 1a.

One concern related to the data set is that it contains a
large number of immunoglobin domains and this might
introduce a bias in the predictions. Ideally, to verify the
extent of this problem, one should group all the immu-
noglobin domains in the same fold family when perform-
ing cross-validation and check if this affects significantly
the performances. In practice this is not feasible, as the
data set is relatively small and clustering the immu-
noglobins together would result in one fold dominating

Model Precision Recall Fl score MCC
(@) SVM 0.53 + 0.03 0.63 + 0.04 0.58 £ 0.02 0.44 £ 0.03
TSVM 0.56 + 0.03 0.65 + 0.03 0.60 £ 0.02 0.47 £ 0.02
GP 0.59 0.32 0.41 0.33
Robetta, 0.52 0.47 0.49 0.35
Robetta, g 0.53 0.52 0.52 0.38
Robetta, 0.39 0.75 0.52 0.34
(b) SVM 0.64 + 0.03 0.79 + 0.05 0.71 £0.01 0.40 + 0.03
Robetta, 0.69 0.65 0.67 0.38

In (a) experimental hot spots are defined as those residues for which AAG > 2 kcal/mol, in (b) a threshold of | kcal/mol is used. SVM: Support

Vector Machine, TSVM: Transductive SVM, GP: Gaussian Processes, Robettax[h : Robetta scores (estimated AAG values) which are greater than

Xy, are considered as predicted hot spots. MCC is the Matthews correlation coefficient (see Methods section for definition of the various

performance measures). Results for SYM, TSVM and GP have been obtained with a 16-fold cross-validation scheme. Results for Robetta have been

retrieved from the server at http://robetta.bakerlab.org/.
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the database. However a first indication that there is no
such bias towards predicting mutations on immunoglob-
ins more accurately comes from the results of the 12-fold
cross-validation. In this case, most (but not all) of the
immunoglobin containing complexes are clustered
together and the results do not change significantly. A sec-
ond, a posteriori check is to analyse classification predic-
tions separately for complexes containing an
immunoglobin domain and those without. If there were a
bias, we would expect a better performance on the former
compared to the latter class but instead we obtain P=0.55
+ 0.03, R = 0.60 + 0.05, F1 = 0.57 + 0.03, MCC = 0.40 +
0.05and P=0.52 +0.03,R=0.66 +0.02, F1 =0.58 + 0.02,
MCC = 0.46 + 0.03 respectively.

It is instructive to analyse in more detail what are the
major contributions to the prediction accuracy of the SVM
model. For example we have trained the SVM separately
with the side-chain and the environment features,
denoted respectively SVM-sc and SVM-env. The results are
reported in Table 2. Although both models individually
perform reasonably well, it is clear that their combination
is superior. In particular, it seems that adding the environ-
ment terms to the side-chain terms improves the precision
P, reducing the number of false positive (the recall R is
substantially unchanged).

As our SVM models are based on a linear kernel, the scor-
ing function that discriminates hot spots from neutral res-
idues is a simple linear combination of the energy terms.
The associated weights can be computed based on the
SVM models and are reported in Table 3. The weights
roughly reflect the level of correlation that exists between
the observed AAG values and each energy term (see Addi-
tional file 2: Supplemental Table S2). They provide a first
indication about the relative importance of each of the 8
features. For example, the side-chain van der Waals term
emerges as the most important one, whereas electrostatic
terms appear to contribute only marginally.

To further validate these insights, we have trained the
SVMs excluding one energy term at a time. Omission of
the side-chain van der Waals potential leads to a consist-
ent drop in accuracy, confirming the importance of this
term. Similar outcomes are also observed when side-chain
hydrogen bond, side-chain desolvation or environment

Table 2: Results for SVMs trained on a subset of features

Method Precision Recall FIl score MCC
SVM-sc 047 +0.02 064003 054+002 0.38%0.02
SVM-env 043 +£003 0.72+005 054+003 037004

SVM-sc: only side chains terms included; SVM-env: only environment
terms included.
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desolvation potentials are excluded (see Table 4), suggest-
ing a critical role of these 4 energy terms in determining
hot spot residues. On the contrary, the two electrostatic
terms, environment van der Waals and environment
hydrogen bond potentials do not appear to be strictly nec-
essary and their omission does not significantly affect the
quality of the predictions (see Additional file 2: Supple-
mental Table S3).

The limited contributions from the electrostatic terms can
be ascribed to their weak correlations to the target out-
puts, i.e. to the observed AAG values (see Additional file 2:
Supplemental Table S2). The non essentiality of the envi-
ronment van der Waals and hydrogen bond potentials
seems instead to derive from the fairly high correlation
existing between these two terms and the environment
desolvation potentials (see Additional file 2: Supplemen-
tal Table S2). It suggests that if one of these two terms is
missing the latter can effectively substitute for it (possibly
with some readjustment from the other remaining terms
as well). It is important to underline that these results do
not imply that the mentioned 4 terms play no role and
can be altogether ignored. Indeed omission of pairs of fea-
tures can lead to a significant decrease in the performance.

The importance of the side-chain van der Waals term
agrees with the observation that hot spot atoms form
good packing interactions with the partner proteins [23-
25]. The side-chain hydrogen bond term was found to
provide a major contribution also in [11]. The role of the
desolvation potential seems to support the O-ring
hypothesis and the importance of shielding the interac-
tions from the solvent. Exclusion of the solvent leads to a
lower effective dielectric thereby increasing the strength of
an interaction. In this respect it is somewhat surprising
that electrostatics does not emerge as a key component in
our model. Although a similar result was found in ref
[11], it is possible that a better description of electrostatic
effects is required, for example either by solving the Pois-
son-Boltzmann equation or through the generalised Born
model.

The above considerations indicate that although some
terms are more important than others there is no single
feature that makes a dominant contribution. Rather, it
seems it is the balanced combination of terms in the SVM
model that allows the detection of hot spots. This possibly
provides a justification of why this prediction problem is
hard. It also support the claim that there is no simple pat-
terns of hydrophobicity, shape or charge that can be used
to identify hot spots [7].

To further examine the reliability and usefulness of our
approach, we have compared our predictions with the
predictions of the Robetta server on the same set of muta-
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Table 3: Weight of energy terms in the scoring function
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Feature (energy term)

Weight in SVM Weight in TSVM

Side-chain van der Waals
Side-chain hydrogen bond
Side-chain electrostatics
Side-chain desolvation
Environment van der Waals
Environment hydrogen bond
Environment electrostatics
Environment desolvation
Threshold

0.29 + 0.05 0.37 £ 0.08
0.15+ 0.0l 0.24 £ 0.03
0.07 + 0.03 0.08 + 0.02
0.22 £ 0.01 0.19 £ 0.05
0.17 £ 0.01 0.12 £ 0.04
0.22 + 0.04 0.24 £ 0.03
0.07 + 0.02 0.02 £ 0.03
0.12 £ 0.04 0.16 £ 0.04
0.31 £0.07 0.90 + 0.06

We report the absolute value of the weight associated to each feature in the scoring function as determined by SVM and TSVM, together with the

threshold that defines the decision boundary.

tions. The server returns an estimated value for AAG based
on an all-atom free energy function. It can then be turned
into a binary classifier by labelling a residue as a predicted

hot spot if AAG,,;. > x,;, kcal/mol, where x,;, is some thresh-

old value. In the following we denote with Robetta,

such a classifier. Given our definition of hot spots, a natu-
ral choice is x,;, = 2. We have however also explored other

values for x,, because Robetta in its original implementa-

tion defines hot spots using a threshold of 1 kcal/mol and
is therefore not optimised for our hot spot definition. We
find indeed that more accurate predictions are obtained
by setting x,, = 1.8. Results are reported in Table 1a. By

comparing them to those for our SVM approach, it can be
deduced that the latter yields a substantial improvement.
We emphasise though that the comparison is not entirely
fair: the Robetta method has been designed to predict the
actual value of AAG and as we will discuss below this a
considerably more difficult problem than binary classifi-
cation.

As mentioned above, in the original Robetta paper [11] a
threshold of 1 kcal/mol was used to define experimental
and predicted hot spots. With this definition, our data set
is more balanced with respect to the number of positive
and negative examples, respectively 165 (hot spots) and
184 (non hot spots). We have trained and tested our
method with this hot spot definition as well and we report
a summary of the results in Table 1b. Interestingly, in this

Table 4: Results for SVMs trained excluding one feature

case we obtain the best predictions by including the side-
chain intra-molecular energy terms as well. Compared to the
Robetta server (i.e. Robetta; in our notation), our method
appears to perform marginally better but the difference
might not be statistically significant and it is certainly less
pronounced than in the case of a 2 kcal/mol threshold
(see Table 1).

Recently, a machine learning approach to predict hot spot
residues has been presented [13]. It is based on decision
trees and trained on features such as geometrical shape
and biochemical properties (e.g. atomic contacts, hydro-
gen bonds and salt bridges). The predictive performance
of the method has been estimated to be P = 0.49, R =0.58
and F1 = 0.53 (F1 = 0.55 if the method is combined with
the Robetta server). Comparing methods on the basis of
quoted results is problematic as data sets and cross valida-
tion strategies differ. The data sets of alanine mutations
used in [13] and in our investigation are not identical but
they do overlap substantially (indeed very similar per-
formance scores are obtained by applying Robetta, to the
two data sets, see Table 3 in [13] and Table 1a in this
paper). The higher performance scores we obtain might
therefore reflect a genuine improvement in hot spots pre-
diction accuracy. The reason behind this improvement
possibly lies in the inclusion of the environment energy
terms in our method. Indeed results for SVM-sc in Table 2
appear comparable to those reported in [13]. Besides
SVMs, we have also tested Gaussian Processes (GP) mod-

Excluded feature Precision Recall Fl score MCC

Side-chain van der Waals 0.49 + 0.04 0.62 + 0.03 0.54 £ 0.02 0.39 £ 0.02
Side-chain hydrogen bond 0.50 + 0.04 0.58 + 0.05 0.54 + 0.02 0.39 £ 0.03
Side-chain desolvation 0.49 £ 0.03 0.63 £ 0.04 0.55 + 0.02 0.40 £ 0.03
Environment desolvation 0.50 + 0.05 0.59 + 0.05 0.54 + 0.04 0.39 + 0.04

Here, only features that if omitted lead to a decrease in performance are reported (see Additional file 2: Supplemental Table S3 for all features).
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els for the classification task but found results with overall
lower accuracy (see Table 1a).

After our manuscript was submitted and while still under
review, two new studies on the same problem of hot spot
prediction at protein-protein interfaces have been pub-
lished [26,27]. Tt is not straightforward to assess how our
method performs compared to them. We note for exam-
ple that on data sets assembled from ASEdb the reported
F1 score for the methods in [26] and [27] are respectively
F1 = 0.65 and F1 = 0.57. However, on the same two data
sets Robetta, achieves respectively F1 = 0.55 and F1 =
0.59, which are both substantially higher than the value it
obtains on our data set (F1 = 0.49). This suggests that our
method and those in [26] and [27] can not be compared
on the basis of the quoted results alone.

We have experimented with introducing unlabelled data
in the training set, a problem that is often refereed to as
semi-supervised learning. Unlabelled data can sometimes
improve a classifier by providing a more reliable decision
boundary, for example by requiring that it lies (in the
input features space) in region of low density. Transduc-
tive SVM have been developed to work in a semi-super-
vised learning setting and take advantage of the
information content in unannotated data. In our case
unlabelled data correspond to interface residues for which
AAG is not known. As reported in Table 1a, we find TSVMs
return marginally improved predictions although the dif-
ference might not be entirely significant. One possible
explanation for this improved performance is that the

Table 5: Analysis of hot spot predictions for each amino acid type

http://www.biomedcentral.com/1471-2105/10/365

inclusion of unlabelled data makes the training sets in the
cross-validation procedia more balanced and statistically
more uniform.

We have analysed the hot spot predictions by grouping
mutations according to the amino acid type (see Table 5).
We observe a good accuracy over all amino acid types,
ranging between 0.64 and 0.94 (if we exclude Cys and Met
residues for which not enough data are available). Pre-
dicted hot spots can e.g. be charged residues such Lys and
Asp or hydrophobic, aromatic residues such as Tyr and
Trp. This suggests that our model is not biased toward a
single amino type or property (e.g. hydrophobic or
charged residues) but rather it captures some composite
properties characterising hot spots.

The most accurate predictions are obtained for mutations
involving Lys. This is a positively charged, polar amino
acid capable of forming up to 3 hydrogen bonds with the
amino group at the end of its side-chain; its side chain
contains 4 carbon atoms which confer to it a partial
hydrophobic character. Lys is among the more frequent
amino acids in hot spots (see Table 6). As an "extreme"
example of a mutation involving Lys we show in Figure 2
the trypsin-trypsin inhibitor complex. The residue Lys15
from the inhibitor is a hot spot having the largest meas-
ured AAG in our data set (AAG = 10 kcal/mol). Our correct
positive prediction is driven mainly by the side-chain van
der Waals and hydrogen bond energies. Arginine too is a
positively charged, polar amino acid and its side-chain
can form up to 5 hydrogen bonds. Predictions however

Mutated amino acid N, .. TP TN FP FN P R Fl A

Arg 33 5 16 10 2 0.33 0.71 0.45 0.64
Asn 22 3 I5 I 3 0.75 0.50 0.60 0.82
Asp 29 7 I5 5 2 0.58 0.78 0.67 0.76
Cys | 0 I 0 0 NA NA NA 1.00
Gln 21 | 17 2 | 0.33 0.50 0.40 0.86
Glu 31 | 22 4 4 0.20 0.20 0.20 0.74
His 13 I I I 0 0.50 1.00 0.67 0.92
lle I5 0 Il 0 4 NA 0.00 NA 0.73
Leu 10 0 9 0 | NA 0.00 0.00 0.90
Lys 32 10 20 I I 0.91 0.91 0.91 0.94
Met 2 0 | I 0 0.00 NA NA 0.50
Phe I | 8 I | 0.50 0.50 0.50 0.82
Ser 28 I 22 5 0 0.17 1.00 0.29 0.82
Thr 24 0 21 2 | 0.00 0.00 0.00 0.88
Trp 23 5 13 I 4 0.83 0.56 0.67 0.78
Tyr 44 17 17 7 3 0.71 0.85 0.77 0.77
Val 10 | 7 I | 0.50 0.50 0.50 0.80
All 349 53 226 42 28 0.56 0.65 0.60 0.80

N, number of mutations, TP: true positives, TN: true negatives, FP: false positives, FN = false negatives; P: precision, R: recall, Fl: Fl score, A:

(TP+TN)

accuracy = (Tp+TN+FP+EN) °
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Table 6: Distribution of amino acid types in data set
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Mutated amino acid In data set Hot spots (AAG > 2 kcal/mol) Enrichment in hot spots
(Number) (%) (Number) (%)@ (%)®
Arg 33 9.46 7 21.21 8.64 091
Asn 22 6.30 6 27.27 741 1.18
Asp 29 8.3l 9 31.03 (NNE| 1.34
Cys | 0.29 0 0.00 0.00 0.00
Gln 21 6.02 2 9.52 247 0.41
Glu 31 8.88 5 16.13 6.17 0.69
His 13 3.72 | 7.69 1.23 0.33
lle I5 4.30 4 26.67 4.94 I.15
Leu 10 2.87 | 10.00 1.23 0.43
Lys 32 9.17 I 34.38 13.58 1.48
Met 2 0.57 0 0.00 0.00 0.00
Phe I 3.15 2 18.18 247 0.78
Ser 28 8.02 | 3.57 1.23 0.15
Thr 24 6.88 I 4.17 1.23 0.18
Trp 23 6.59 9 39.13 .11 1.69
Tyr 44 12.61 20 45.45 24.69 1.96
Val 10 2.87 2 20.00 247 0.86

The number and percentage of amino acids in our data set are shown. The number and percentage of hot spots for each amino acid type is also
reported. For a given amino acid type, (%)@ is the percentage of hot spots with respect to the residues of that type in the data set (i.e. entry in
column 4 divided by the corresponding entry in column 2); (%)®) is the percentage of hot spots of that type with respect to all hot spots in the data
set (i.e. entry in column 4 divided by the sum of all entries in column 4). Enrichment in hot spots is calculated as the ratio of the frequency of a given
residue type in hot spots (column 6) over the frequency of the same amino acid type in the whole data set (column 3). This table should be
compared with Table 2 in [19]. Note that proline and glycine are not included in our data set.

are not as accurate as for Lys with a fair number of false
positives. By inspecting these false predictions individu-
ally, it emerges that often the positive scores are driven by
a large favourable side chain hydrogen bond energy. It is
possible that in fact this term is over-estimated as the loss
of some of the hydrogen bonds upon alanine mutation
might be (at least partially) mitigated by, e.g., the inclu-
sion of water molecules at the interface.

Tryptophan and tyrosine are also common in hot spots
[19] (see Table 6). They are both aromatic, hydrophobic
amino acid (Trp is more hydrophobic than Tyr as the lat-
ter contains a hydroxyl group) and are both capable of
forming one hydrogen bond (see Figure 3 for two exam-
ples of Tyr hot spots). In general, our model appear to pre-
dict fairly accurately Trp and Tyr hot spots (see Table 5).
In this respect it is worth noting that 3 false positive and 3
false negative predictions respectively for Tyr and Trp are
found in the same complex, formed by the Interferon-y
Receptor and Antibody A6 (pdb code 1JRH). As discussed
in [28] this is a difficult case, with the individual mono-
mers likely to undergo significant conformational
changes upon binding. Indeed predictions for this com-
plex are among the less accurate we obtain (see Additional
file 2: Supplemental Table S4). It has previously been
noted that tyrosine is much more likely to be found in hot
spots than phenylalanine, despite the two residues being
similar and with nearly identical volumes. Presumably,

this is due to the ability of tyrosine (and not phenyla-
lanine) to hydrogen bond. It is reassuring that our model
is able to reproduce this empirical observation fairly well
(note that the identity of the mutated amino acid is not an
explicit input feature).

For some amino acid types, our model has some clear lim-
itations. For example, it performs poorly on mutations
involving Glu despite it does reasonably well on Asp
mutations. It has been observed that Asp is found more
frequently in hot spots than Glu and this might be related
to differences in side-chain conformational entropy [19].
This possibly also explains the low accuracy of our predic-
tions, given that our method does not consider any entro-
pic term. Another difficult case is isoleucine. Ile is an
aliphatic, hydrophobic amino acid and similarly to Leu
our method predicts no hot spots for this residue. In fact
whereas Leu is rarely found in hot spots, Ile is actually
enriched. Our model fails to distinguish between these
two residues. In theory, one could think of exploiting the
amino acid identity as input feature too and of building a
model for each different amino acid. In practice, at
present this is not feasible as there are not enough muta-
tional data available.

Prediction of AAG values
We turn now to the more complicated regression prob-
lem, i.e. the prediction of the actual value of AAG induced
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Figure 2

Example of a lysine hot spot. A detail of the interaction
between trypsin (in grey, surface representation) and trypsin
inhibitor (in red) is shown (pdb code 2PTC). The side chain
of the hot spot Lys|5 from the inhibitor (in magenta, AAG =
10 kcal/mol) fits into a hole on the trypsin surface. The ¢-
nitrogen of the Lys side chain forms two hydrogen bonds
(highlighted in green) with the residue Ser190 from trypsin.

by an alanine substitution. We have found beneficial in
this case to include the intra-molecular energy terms as
well. The results are summarised in Table 7. Both SVM
regression and GP models compare favourably to the the
Robetta server, although the difference is probably only
marginal. Figure 4 shows the scatter plot of the predicted
versus the observed AAG, both for SVM regression and for
the Robetta server. SVM regression returns a lower root
mean square error and an higher correlation coefficient.
On the other hand, the regression line in Figure 4 is closer
to the ideal case (i.e. slope and intercept equal to one and
zero respectively) for the Robetta predictions. Notice that
for some choices of hyper-parameters SVMs do return
solutions with slope and intercept of the regression line
closer to the Robetta ones. For these solutions the root

Table 7: Summary of results for the regression problem
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Figure 3

Examples of tyrosine hot spots. A detail of the interac-
tion between colicin E9 immunity protein (in red) and colicin
E9 DNase (in grey, surface representation) is shown (pdb
code 1BXI). The side chain of the hot spots Tyr54 (AAG =
4.83 kcal/mol) and Tyr55 (AAG = 4.63 kcal/mol) are high-
lighted by a stick representation and are coloured in orange
and magenta respectively. They fit into a groove of the E9
DNase surface. The residue Phe86 of E9 DNase is also dis-
played by sticks (dark grey with transparent surface repre-
sentation). The hydroxyl group of Tyr54 is hydrogen bonded
with the main-chain oxygen of Phe86 (green line); the aro-
matic ring of Tyr55 forms a stacking interaction with the aro-
matic ring of Phe86.

mean square error and correlation coefficient are also sim-
ilar to those derived from Robetta.

All tested methods appear limited in the accuracy they can
achieve. For example, if < AAG > is the average outcome of
an alanine mutation simply by predicting AAG = < AAG >
independently of the input features, one would obtain a
RMSE = 1.58 kcal/mol. Of course in this case the correla-

Method RMSE r Precision Recall FI score MCC
SVM 1.34 £ 0.05 0.54 + 0.03 0.62 + 0.05 0.44 £ 0.05 0.52 + 0.03 0.41 + 0.04
GP 1.36 0.52 0.58 0.47 0.52 0.39
Robetta 1.52 0.47 0.52 0.47 0.49 0.35
LLSF 1.36 051 0.54 0.46 0.50 0.36
LLSF( 1.45 0.44 0.54 0.42 0.47 0.34
LLSF®) 1.43 0.47 0.55 0.43 0.48 0.35

SVM: Support Vector Machine, GP: Gaussian Processes, LLSF: Linear Least Squares Fit, LLSF(@): Linear Least Squares Fit with inter-molecular side-
chain van der Waals as only input, LLSF®): Linear Least Squares Fit with inter-molecular side-chain van der Waals and hydrogen bond as inputs.
RMSE stands for root mean squared error, r for correlation coefficient and MCC for Matthews correlation coefficient (see Methods section for
definition of the performance measures).
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Figure 4

Predicted versus observed changes in binding free energy AAG. In blue are the predictions from SVM regression, in
red those from Robetta. The continuous lines correspond to linear fits between AAG_,.and AAG,,, colour coded as the pre-
dictions (the respective equations are reported in the legend box).

tion coefficient would be zero but this simple considera-
tion suggests that root mean square errors of the order of
those both we and other methods obtain are not extraor-
dinary. In fact our results are comparable to those from a
model built with an ordinary linear least squares fit (LLSF)
as reported in Table 7. Compared to LLSF, SVM regression
might still be slightly more accurate possibly because it is
less sensitive to the effect of outlying points.

We have investigated also "minimal" version of the LLSF
models, based on only one or two energy terms as inputs.
This analysis highlights which are the major contributions
to the models and reveals that, similarly to the binary clas-
sification problem, the most important term is the pack-
ing of the mutated side-chain against the partner protein.
A model based on just the side-chain inter-molecular van
der Waals energy achieves results that are worse but still
comparable to the full model (see Table 7). Adding the
hydrogen bond term the accuracy improves only margin-
ally. We suggest therefore that the simple side-chain van
der Waals model could be used in future as a benchmark
to gauge advancements in this regression problem.

Progress in this field will probably require the develop-
ment of novel approaches. Based also on our results, it
seems likely that it will involve modelling of both the
mutated and unbound structures. This indeed might be
the major limiting factor in our strategy. Some improve-

ments might also be expected by a more accurate descrip-
tion of the different energy terms. For example a more
rigorous treatment of solvent effects on electrostatics
might be necessary. Additionally, terms can be introduced
to explicitly account for the structural plasticity and adapt-
ability of hot spot regions, e.g. by means of normal mode
analysis or dynamical simulations. It is also possible that
the addition of evolutionary information can lead to
more reliable predictions. Indeed, in a recent investiga-
tion it has been highlighted that hot spots tend to estab-
lish conserved physico-chemical interactions across
homologous interfaces [29]. However, in order to achieve
major improvements it will be essential to rely on a larger
data set of alanine mutations.

Conclusion

In this study we have presented a novel computational
approach to identify hot spot residues in protein-protein
interfaces, given the structure of the complex. Basic energy
terms are used as input features of machine learning algo-
rithms such as SVMs. We have shown that we can identify
hot spot residues with reasonable accuracy, substantially
improving over, for example, the Robetta server [11]. The
prediction of the actual value of AAG is instead still prob-
lematic. At present there seems to be no computational
method that is able to predict the consequences of an
alanine mutation to within chemical accuracy (i.e. with an
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error of the order of 1 kcal/mol or lower) and that at the
same time is quick enough to be applied on a large scale.

We have developed an hybrid scheme that attempts to
combines the strengths of machine learning and energy-
based methods. Although so far these two approaches
have mainly been applied separately to biomolecular
problems, the results of our investigation indicate that
there can be substantial benefits to be gained by their inte-
gration. Interestingly, a recent paper has applied some-
what similar concepts to the prediction of stability
changes upon mutation in monomeric proteins [30], by
combining attributes derived from a knowledge-based
potential (rather than physical potentials as in our case)
with machine learning algorithms.

The prediction of hot spot residues is a difficult but
important problem. It represents a test of our understand-
ing of the physical basis of affinity and specificity in pro-
tein-protein interactions. It is conceivable that progress on
these aspects will lead to advancements in the docking
problem as well, i.e. the prediction of the structure of a
complex given the structures of the constituent proteins.
For structural prediction purposes however the goal is to
be able to locate hot spot residues in unbound proteins.
Encouragingly, two recent studies have reported some suc-
cess in predicting hot spots without prior structural
knowledge of the complex [28,31]. It would be interesting
to verify if an approach conceptually similar to the one
presented here could be applied to detect hot spots in
unbound proteins as well. There is evidence that binding
residues are often located in energetic unusual environ-
ments and contribute unfavourably to protein stability
[32-34], suggesting that energy features might indeed
prove effective.

The methodological approach we have outlined here is in
principle rather general and could be applicable to other
problems as well. For example it should be almost imme-
diate to test it on monomeric proteins. The effects of
alanine mutations in this case could be evaluated both in
terms of stability changes and of modifications to the
folding pathway (®-values). More general mutations
could also be assessed although in this case it might be
necessary to model the new amino acid. With regard to
the docking problem mentioned above, in recent years
many efforts have been directed towards the development
of computational methods that can discriminate near-
native structures among decoy sets. A classifier trained on
energy features might be apt to the task. Another interest-
ing and extremely challenging problem is the prediction
of the thermodynamic and kinetic parameters which char-
acterise the interaction between a ligand and a protein
[35]. Combining physical potentials and machine learn-
ing algorithms might provide important insights which
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can then have implications, e.g., for the rational design of
drug compounds.

Methods

Data Sets

The data set consists of protein complexes whose struc-
tures have been solved by X-ray crystallography and for
which alanine mutational data are available. Structures
are obtained from the Protein Data Bank (PDB) [36].
Alanine mutation data are collected from the Alanine
Scanning Energetics database (ASEdb) [37] and from pre-
vious publications [11,13]. We have only considered pro-
tein-protein interactions involving an extended interface.
Mutation data related to protein-peptide complexes have
not been included. For each reported mutation we have
verified the original reference and checked that the residue
mapping from sequence to structure is consistent (few dis-
crepancies have been found). Only mutations occurring at
the complex interface have been retained. Interface resi-
dues are defined as those having at least one heavy atom
within 5 A of an heavy atom in the binding partner. Sim-
ilarly, two residues across the interface are considered in
contact if any of their heavy atoms are within 5 A.

To ensure that the data set is sufficiently diverse and rep-
resentative of protein-protein interfaces in general, we
have analysed the complexes in terms of interacting
domains and of location of the binding interface (i.e.
which residues and residue contacts are at the interface).
Domain structures can be classified according to CATH
[38], which follows a hierarchical scheme. The first five
levels in this hierarchy are Class, Architecture, Topology
(fold), Homologous superfamily and Sequence family
(clustered at a threshold of 35% identity). We have
required that no two pairs of interacting domains have the
same CATH numbers at the S-level. If two domain pairs
have the same CATH numbers, we verify if they use the
same or a different interface to interact. In the latter case,
both structure are included in the data set (in practise this
issue arises for only one pair of structures, PDB codes
3HFM and 1VEB).

The data set contains 20 protein complex structures. Fol-
lowing previous publications [19], we define hot spots as
those alanine mutations for which AAG > 2 kcal/mol
(AAG is the change in binding free energy). In total the
data set comprises 349 mutations, of which 81 corre-
spond to hot spots. Some studies such as for example in
the Robetta paper [11] define hot spots using instead a
threshold of 1 kcal/mol. According to this definition, in
our data set there would be 165 hot spots and 184 non
hot spots. We have tested our approach in this case as well
and report the results in Table 1b.
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The list of the 20 protein structures and their interacting
domains is reported in Additional file 2: Supplemental
Tables S5 and S6. Note that homologous protein com-
plexes are present in our data set but at least one of the
proteins involved has less than 35% sequence similarity
to its homologue. We remark that in these cases only a
limited number of mutations occurs at equivalent
sequence positions, as deduced from the alignment, and
even removing them from the data set does not affect the
overall results. As can be noted, the data set is dominated
by the immunoglobin superfamily (10 structures out of
20 comprise at least one immunoglobin domain). We
have verified a posteriori that this does not introduce a bias
and that mutations on immunoglobins are not predicted
with higher accuracy than on other proteins (see Results
and Discussion section).

A detailed list of the individual mutations with their
respective AAG is reported in Additional file 3: Data set S1.
We have analysed the distribution of amino acid types
that occur in hot spots, in relation to the distribution of
amino acid types in the database (Table 6). A similar anal-
ysis was performed in ref [19] and the results roughly
agree with ours (e.g. tryptophan and tyrosine are among
the most frequent amino acids in hot spots). We find
however some notable differences, e.g. hot spots are not
enriched in arginine (they are instead substantially
enriched in lysine). Whereas the analysis in ref [19] was
based on the whole ASEdb database, we have filtered out
redundant entries and included only mutations located at
a protein-protein interface for which the crystal structure
of the complex is available. This might be the origin of the
observed differences.

In recent publications [13,26,27], mutation data extracted
from the Binding Interface Database (BID) [39] have been
used to test proposed hot spot prediction models. In our
opinion, these data have several problems (e.g. they are
not associated to AAG values) and it is questionable
whether they are useful in assessing the predictive power
of a method. Nonetheless, for completeness we have
extracted from BID our own data set and tested our
method on it. We report the results in Additional file 4
together with a discussion of our concerns about this data
set.

Data clustering for cross-validation

Mutations in the same or homologous binding interfaces
can not in general be expected to be unrelated. This con-
stitutes a problem when estimating the performance of a
model through, e.g., cross-validation as there might be
some 'trivial' similarities between data in the training and
the test sets. In accordance, to avoid any potential bias, we
have grouped together mutations belonging to the same
or homologous complexes and assigned them to the same
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cross-validation fold. For our purposes, we have consid-
ered as homologous two complexes that share at least one
pair of interacting domains similarly classified at the H-
level in CATH, i.e. domain pairs with the same first 4
CATH numbers.

The above protocol produces 16 clusters (see Additional
file 2: Supplemental Table S6) and accordingly a 16-fold
cross-validation strategy is employed to assess the per-
formance of the method (see below for more details on
cross-validation). In order to assess the robustness of the
approach and the presence of a residual redundancy in the
16-fold partition of the data set, we have also tested more
stringent clustering criteria, i.e. complexes are grouped
together if at least one of the two following conditions is
met

¢ Interacting domains pairs are the same at the T-level
(i.e. have the same fold),

¢ Individual domains are the same at the S-level and
use the same binding interface, irrespective of their
interacting partners.

This latter set of criteria results in 12 clusters (see Addi-
tional file 2: Supplemental Table S6) and in a 12-fold
cross-validation strategy.

Input features: energy components

As input features for the machine learning algorithms we
have used basic energy terms that have been found to be
important for the stability of protein complexes. These are
van der Waals potential, hydrogen bonds, Coulomb elec-
trostatics and desolvation energy. For each of the four
energy components we have separately calculated 3 differ-
ent energy contributions (schematised in Figure 1):

e Side-chain inter-molecular energies: interaction ener-
gies between side-chain atoms of the mutated residue
and atoms in the partner protein (respectively atoms
in the red filled area and blue striped area in Figure 1).

e Environment inter-molecular energies: interaction ener-
gies between atoms in the two proteins that are within
10 A of the Cy of the mutated residue (respectively
atoms in the red striped area and blue striped area in
Figure 1). We do not include the contribution from
the mutated side-chain in this term.

e Side-chain intra-molecular energies: interaction ener-
gies between side-chain atoms of the mutated residue
and other atoms in the same protein (respectively
atoms in the red filled area and red striped area in Fig-
ure 1).
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In total therefore there are 12 input features (4 x 3),
although e.g. for Support Vector Machines we have used
only a subset of them as this would give better or equiva-
lent performances to the full set (see below for more
details).

The energy components are calculated from the PDB
structures. Only heavy atoms are considered and hydro-
gen atoms, if present, have been discarded. The computa-
tion of the different energy terms draws on established
force-fields [11,40,41] but it incorporates some adjust-
ments. It is important to remark that all terms are pairwise
additive and therefore their calculation is formally equiv-
alent. Before applying machine learning methods input
features are rescaled so that they vary within similar
numerical ranges. In the classification problem, each fea-
ture is standardised by subtracting its mean and dividing
by its standard deviation. For regression purposes instead
features are rescaled by their respective quadratic means.
The latter normalisation makes it easier to search for solu-
tions with no constant term, i.e. such that AAG = 0 if all
energy terms are zero.

van der Waals energy

The energy of van der Waals interactions between two
atoms i and j is calculated using a "smoothed" 6 - 12 Len-
nard-Jones potential

Viaw (=

Tij
T+10

J

i ]

T+10

1fr<r,»j—rO
ifry—ro<r<r;+rg

1fr>rl-j+rO

(4)

where 1 is the distance between the two atoms and the
parameters 7; and ; are taken from CHARMMI9 force
fields [40]. The parameter r, = 0.5 A has the effect of wid-
ening the region of maximum affinity and to reduce the
potential energy at r = 0 to a finite value. It makes the
potential less sensitive to the precise position of atoms
and to minor coordinate errors and local clashes. A simi-
lar option is available in the AutoDock suite [42]. We have
also introduced a long distance cut-off, i.e. V(1) = 0 if r
> 8 A.

Electrostatics energy

Electrostatic interactions are evaluated with a screened
Coulomb potential, in which the dielectric constant
increases linearly with distance. The atomic partial
charges have been taken from the CHARMM19 parameter
set [40]. In the case of side-chain inter-molecular interac-
tions the charged forms of Arg, Lys, Asp and Glu is used
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[40]. For the environment inter-molecular and side-chain
intra-molecular interactions instead a neutralised form of
the ionic groups in these residues is employed [41]. This
choice reflects the consideration that salt bridges in
deleted side-chains might have a significant impact on
binding free energy changes. In all cases we consider a
neutral form of His (calculated as an average over the two
possible single protonated configurations). As we do not
explicitly include hydrogen atoms, their partial charges
are simply added to those of the heavy atom to which they
are covalently bound (e.g. the partial charge on a back-
bone N atom is taken to be -0.1 = -0.35 + 0.25, where -
0.35 and 0.25 are respectively the partial charges associ-
ated with a bare backbone N atom and its attached hydro-

gen).

Hydrogen bond energy

We have followed the approach outlined in [11]. The
energy of a hydrogen bond is computed as a linear com-
bination of a distance-dependent part and two angular
dependent components. The distance dependent term is
modelled with a 10-12 potential, whereas the angular
dependencies are derived from the probability distribu-
tions observed in high-resolution crystal structures. The
same energy function is used for side-chain/side-chain
and side-chain/backbone hydrogen bonds but they are
weighted differently. Side-chain/side-chain hydrogen
bonds are further divided into three classes, depending on
the extent of burial of participating residues. Weights for
inter-molecular and intra-molecular hydrogen bonds are
also different. Details and parametrisation can be found
in[11].

In our implementation, we have introduced a smoothing
parameter, 7, = 0.25 4, in the distance dependent compo-
nent, similarly to the van der Waals potential described
above. We have not distinguished between sp2 and sp3
hybridised acceptor atoms, rather we have taken an aver-
age of the knowledge-based angular potential in these two
cases. In ref [11] backbone/backbone hydrogen bonds are
not included in the free energy function as alanine scan-
ning does not directly probe them. There is therefore no
reported weight associated to them. In our formulation
instead backbone/backbone hydrogen bonds contribute
to the environment inter-molecular energies. For simplic-
ity we have associated them the same weight as for the
side-chain/backbone hydrogen bonds. We have used the
program HBPLUS [43] to determine the characteristics
(i.e. atomic distances and angles) of hydrogen bonds in
the complexes.

Desolvation energy

The desolvation energy is evaluated using an implicit sol-
vation model [41], which decomposes the solvation free
energy into a sum of pairwise atomic interactions. The cal-
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culation of the input features associated with desolvation
energy is therefore formally equivalent to the other energy
terms. We have used a set of improved solvation parame-
ters described in [44].

Support Vector Machine models

Support Vector Machines (SVMs) are playing an increas-
ingly important role in the field of computational biology
[20,21]. They can be applied both to classification and
regression problems. In the context of our investigation
the former corresponds to predict whether a residue is a
hot spot or not, the latter to estimate the actual value of
AAG. We have used the program package SVMlight [45],
which is available at the website http://svm
light.joachims.org/. The program provides several stand-
ard kernel functions and we have experimented with lin-
ear, polynomial and Gaussian kernels, and with different
combinations of input features. For classification pur-
poses, we find the best results using a linear kernel and a
set of 8 input features corresponding to the side-chain and
environment inter-molecular energies. Using either a pol-
ynomial or a Gaussian kernel and a different (possibly
larger) combination of input features, the performance
would not improve, so we have opted for the simpler
model. In the regression task, the best results are obtained
with a linear kernel and by adding the van der Waals term
from the side-chain intra-molecular energies to the fea-
tures set (9 input features in total). The bias parameter in
the kernel has been set to zero.

Standard SVM classifiers follow a supervised ("inductive")
learning approach, whereby a predictive model is built on
the basis of available positive and negative examples. The
SvMlight package implements also a semi-supervised learn-
ing algorithm, the so-called Transductive SVMs (TSVMs),
in which unlabelled data are exploited in order to develop
a better discriminatory model. In our case, unlabelled
data correspond to interface residues that have not been
mutated to alanine and for which therefore AAG is not
known. The unlabelled data are extracted from the 20 pro-
tein complexes in the data set and used to integrate the
original mutational data (maintaining the 16-fold parti-
tion described above for cross-validation). Optimal per-
formance for TSVM classifier is obtained with a linear
kernel and the same 8 features as for the SVM classifier.

Cross-Validation and Model Selection

SVMs have a number of tunable parameters (hyper-
parameters) which should be chosen in order to achieve
good generalisation performance and avoid over-fitting.
For the classification task using a linear kernel, for exam-
ple, two parameters, C and j, have to be set. The parameter
C controls the trade off between the training error and the
square norm of the weights associated to the features; the
cost factor j determines how training errors on positive
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examples outweight errors on negative examples. An addi-
tional parameter is present in TSVMs, the fraction p of
unlabelled examples to be classified into the positive
class. In a regression setting the hyper-parameter controls
the tolerance to errors. The optimal values for the hyper-
parameters are not known in advance. In order to both
evaluate fairly the performance of the methods and do not
introduce biases in the choices of hyper-parameters, we
have implemented a nested-loop cross-validation scheme
[46] (see scheme in Additional file 2: Supplemental Figure
S1) coupled with a grid search. The procedure ensures that
hyper-parameters are selected without ever considering
the performance on the test sets.

In nested-loop cross-validation, the data set is split into n
folds (in our case n = 16 or n = 12). (n - 1) folds are used
as the training set and the remaining fold is used as test
set. The hyper-parameters are optimised on the training
set, by applying a grid search and an internal (n - 1)-fold
cross-validation strategy. The hyper-parameters that give
the best cross-validated performance are selected and the
associated model is then applied to the held-out test set.
This process is repeated n times so that each of the original
n folds is used as the test set once and predictions are
obtained for each entry in data set. The procedure there-
fore consists of two nested cross-validation loops: an
outer one for testing, an inner one for choosing hyper-
parameters. In the inner cycle, we have assessed the model
performance by means of the F1 score and the root-mean-
square error (RMSE) for classification and regression tasks
respectively (see below for more details).

For a given performance measure (e.g. the F1 score), we
estimate its value f by considering the whole data set and
by comparing predictions (obtained as described above)
to the observed AAG. The associated statistical error is
instead evaluated as follows. Let {f;};, _; , be the set of
optimised values obtained on the n training sets, as a
result of the inner loops of cross-validation. We then write

5 sn, (f—f)z 5)

Note that the more standard procedure of calculating the
score and its error from the average and standard devia-
tion on the n test sets is not applicable in our case as indi-
vidual test sets are rather small and of different sizes.

We have verified that our approach does not produce
over-fitting of the data by comparing results obtained
from a 16-fold and from a more stringent 12-fold cross-
validation. A significant better performance for the 16-
fold cross-validation would suggest over-fitting. In addi-
tion we have tested the n models on their own training
sets. Better results can clearly be expected in this case with
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respect to the test set but a large difference would possibly
indicate over-fitting of the data.

Gaussian Process models

Gaussian Processes (GPs) are machine learning methods
rooted in a Bayesian probabilistic framework [16]. They
can be used for both regression and classification tasks.
GPs assume that the data are a finite number of noisy
observations generated by an unknown function. In line
with Bayesian approaches [47], GPs assign a prior proba-
bility to each possible function which is then updated into
a posterior probability in light of the observed data using
Bayes' rule. Predictions on new data are made by a
weighted average over all possible functions (models), the
weights being equal to the posterior probabilities. Notice
the different learning strategy between SVMs and GPs:
SVMs determine one optimal model and make predic-
tions based on it, GPs estimate a probability distribution
over all possible models and predictions are model aver-
ages. One advantage of the latter approach is that it pro-
vides also confidence measures (i.e. error bars) on the
predictions.

A GP is defined by a covariance function, which is the
analogous of the kernel function in SVMs. Learning in GPs
involves selecting a suitable covariance function for the
problem at hand. As for SVMs, standard covariance func-
tions include linear, polynomial and Gaussian functions.
For both regression and classification we find the best
results using a linear kernel and the full set of 12 input fea-
tures. In the regression problem, the bias parameter of the
kernel is set to zero. The data likelihood is assumed to be
isotropic Gaussian. Notice that by using a linear kernel, a
GP regression becomes equivalent to a Bayesian linear
model with a Gaussian prior probability distribution over
the linear coefficients. The GP classifier is computed based
on the Laplace approximation [16] and using a logistic
likelihood function. Intuitively, GP classification can be
viewed as a generalisation of logistic regression (see e.g.
[48]). For the calculations, we have used a software devel-
oped by one of us (CA).

Cross-Validation and Model Selection

Unlike SVMs, GPs do not require cross-validation to select
the kernel hyper-parameters. They are learnt from the data
by maximising a quantity called the log-marginal likeli-
hood, which is obtained by integrating out the latent
function values. This procedure, known as Occam's razor
[49], implicitly penalises overcomplex models and is thus
not prone to over-fitting. In the case of a linear kernel
there are no hyper-parameters to select. The performance
of the GP-based model is estimated using the same test set
as the one used for the SVMs, i.e. the 16 tests correspond-
ing to the 16 partitions used for the outer loop of the
nested cross-validation scheme.

http://www.biomedcentral.com/1471-2105/10/365

Linear regression models

As a baseline regression method to compare results with
we have built a linear model by least squares fitting
(LLSF). The model has no constant term and the best fit is
calculated by minimising the deviation between calcu-
lated and observed AAG values. It includes all 12 energy
features. We have also constructed "minimal" versions of
the model based on only one or two features. Model
parameters are calculated on the training sets and per-
formances evaluated on the test sets, following similar
procedia employed for SVM and GP regressions.

Measures of prediction performance

For classification, we primarily assess the prediction per-
formances of our and related methods using the F1 score.
Let TP, FP, FN refer to the number of true positives, false
positives and false negative respectively. Precision (P, also
called specificity) and recall (R, also called sensitivity) are
defined as

P R P

TP+FP TP+FEN

The F1 score is the harmonic mean of precision and recall

F1= 2R 7)
P+R

Precision, recall and the F1 score are comprised between 0

and 1, the larger the value the better the performance. A

random predictor on our data set would score P,,, = 0.23,

_2q0.23

= 44023’ where 0.23 is the fraction of

Rmn =q and Flmn

hot spots in our database and 0 < ¢ <1 is the fraction of
presumed hot spots in the predicted set. It follows that 0
<F1,,,<0.37 and if the expected frequency is equal to the
observed frequency of hot spots (i.e. R,,, = g = 0.23), then
F1,,,= 0.23. For each prediction set, we have also calcu-
lated the Matthew's correlation coefficient (MCC) given
by

TPxXTN—FPxFEN

MCC =
J(TP+FN)(TP+FP)(TN+FN)(TN+FP)

(8)

where TN is the number of true negative and TP, FP and
FN are as above. The MCC value is between -1 and 1: a
perfect predictor has MCC = 1 whereas for a random pre-
dictor MCC = 0 (MCC = -1 for a perfect inverted predictor)

The performance of the regression models is evaluated
using the root-mean-square error (RMSE) and the correla-
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tion coefficient (r) between the predicted (calc) and the
observed (obs) AAG

2
2 (AAGCQZC,i_AAGObS,i) 9)
N

RMSE =

. 2 (AAGglc,i—<AAGqlc >) (AAG pps, i —<AAG pps >)

http://www.biomedcentral.com/1471-2105/10/365

Additional file 4

The BID database. Some considerations on the BID database, data set of
alanine mutations extracted from it and summary of results obtained with
our method.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-365-S4.doc]

NGAAGcachAAGobs
(10)

where sums are over the N entries in the data set and the
symbols () and & denote averages and standard devia-
tions respectively. A regression model can be easily
mapped into a classifier by associating a residue to an
observed or predicted hot spot if AAG > 2 kcal/mol. The
same performance measures used in the classification
problem can then be used to assess the regression models
as well.
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