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Abstract
Background: Knowledge of subcellular localization of proteins is crucial to proteomics, drug
target discovery and systems biology since localization and biological function are highly correlated.
In recent years, numerous computational prediction methods have been developed. Nevertheless,
there is still a need for prediction methods that show more robustness and higher accuracy.

Results: We extended our previous MultiLoc predictor by incorporating phylogenetic profiles and
Gene Ontology terms. Two different datasets were used for training the system, resulting in two
versions of this high-accuracy prediction method. One version is specialized for globular proteins
and predicts up to five localizations, whereas a second version covers all eleven main eukaryotic
subcellular localizations. In a benchmark study with five localizations, MultiLoc2 performs
considerably better than other methods for animal and plant proteins and comparably for fungal
proteins. Furthermore, MultiLoc2 performs clearly better when using a second dataset that
extends the benchmark study to all eleven main eukaryotic subcellular localizations.

Conclusion: MultiLoc2 is an extensive high-performance subcellular protein localization
prediction system. By incorporating phylogenetic profiles and Gene Ontology terms MultiLoc2
yields higher accuracies compared to its previous version. Moreover, it outperforms other
prediction systems in two benchmarks studies. MultiLoc2 is available as user-friendly and free web-
service, available at: http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc2.

Background
A eukaryotic cell is organized into different membrane-
surrounded compartments which are specialized for dif-
ferent cellular functions. However, most cellular proteins
are synthesized in the cytoplasm and need to be trans-
ported to their final location to fulfill their biological
function. The whole protein sorting process is not com-
pletely understood but, in principle, it depends on signals

in the amino acid sequence or signal patches on the pro-
tein surface.

There are diverse applications for the knowledge of the
localization of the complete proteome, the localizome, in
the fields of proteomics, drug target discovery and systems
biology. Since subcellular localization is highly correlated
with biological function, it is possible to draw conclu-
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sions from the knowledge of a protein's localization
regarding its cellular role. Hence, subcellular localization
is a key functional characteristic of proteins. Proteins des-
tined for the extracellular space or the cell surface are espe-
cially of pharmaceutical interest as they are easily
accessible drug targets. The integration of large-scale local-
ization data with diverse omics data, produced by high-
throughput techniques, will help in understanding cellu-
lar function. Localization data can be used to validate or
analyze protein-protein interactions inferred from two-
hybrid experiments or biochemical pathways inferred
from microarray expression data.

In recent years large-scale sequencing projects have caused
a rapid growth of sequence information and increased the
number of proteins but without any further annotation in
public databases. Determining the localization of proteins
using experimental methods alone is expensive and time-
consuming.

Fast and accurate computational prediction methods pro-
vide an attractive complement to experimental methods.
In the last decade numerous computational methods,
which can be roughly divided into sequence-based and
annotation-based methods [1,2], have been developed.
Sequence-based predictors only use the amino acid
sequence of the query protein as input. They are based
either on the detection of sequence-coded sorting signals
like N-terminal targeting peptides [3-11] and nuclear
localization signals (NLS) [11] or use the fact that the
amino acid composition of a protein is correlated with its
localization [12]. The latter methods [2,13-21] use differ-
ent kinds of composition information like the overall,
paired, gapped-paired, surface or pseudo amino acid com-
position from the protein sequence or sequence profiles.
More recent and advanced methods combine composi-
tion information with the detection of sorting signals
[22,23]. Annotation-based predictors search the sequence
for functional domains and motifs [24,25] or use textual
information like Swiss-Prot keywords [26,27], Gene
Ontology (GO) terms [28,29] or PubMed abstracts
[30,31]. If such information is not available for the query
protein most of these methods transfer annotation from
close homologs. Nair and Rost [32] quantitatively showed
that proteins with sufficiently similar sequences usually
are close homologs that function at the same localization
site. Annotation-based predictors often report higher per-
formance than sequence-based predictors which, how-
ever, are more general and robust and can also be used for
novel proteins for which no additional information is
present and no annotated close homologs can be found.
In addition to the predictors of the two categories, there
are also hybrid approaches which combine sequence-
based and annotation-based information [33-37] and can
therefore profit from the advantages of both worlds. A fur-

ther category are meta predictors, which integrate the pre-
diction results of multiple tools [38,39].

Although there already exist a lot of computational pre-
diction methods, there is still room for improvement. This
is due to the fact that the protein sorting process is very
complex and not yet well understood. Only a small por-
tion of proteins have clearly identifiable sorting signals in
their primary sequence. As a consequence, available pre-
diction methods are often either specialized for the pre-
diction of very few localizations with higher accuracy or
for the prediction of a wide range of localizations with
reduced accuracy. A further challenge is how to deal with
proteins present in multiple locations [40,41].

The aim of this work was not to develop a completely
novel algorithm or protein coding but to create a reliable
and efficient predictor with maximum prediction accu-
racy. Especially, in the context of large-scale genome
annotations scientific users rely on high-accuracy subcel-
lular localization predictions. A difference of a few percent
points in performance can mean hundreds of correctly or
incorrectly classified proteins in genome annotation.
Hence, well-tuned predictors can make a significant differ-
ence in this area. To this end, we extend our previously
published support vector machine (SVM) based predictor
MultiLoc [23], which utilizes overall amino acid compo-
sition and the presence of known sorting signals. We show
that the performance of MultiLoc can be clearly improved
by incorporating phylogenetic profiles and GO terms
inferred from the primary sequence leading to a high-
accuracy prediction system that covers all main eukaryotic
subcellular localizations. Phylogenetic profiles encode
evolutionary information in the form of patterns of pro-
tein inheritance among the species. Marcotte et al. [42]
originally applied this approach to distinguish mitochon-
drial and non-mitochondrial proteins. GO terms were
previously combined with sequence-based information in
the form of pseudo amino acid composition in a group of
predictors [36,37].

The GO terms are used as primary prediction criteria and
pseudo amino acid composition is used if no GO term can
be found. Our extensive MultiLoc2 prediction system
integrates composition and sorting signal information
with phylogenetic profiles and GO terms towards a com-
mon localization prediction. The extended MultiLoc sys-
tem is trained on two different datasets resulting in two
versions with different resolutions. MultiLoc2-LowRes is a
low resolution predictor that is specialized for globular
proteins and predicts up to five localizations for animals,
fungi and plants. MultiLoc2-HighRes is a high resolution
predictor that covers all 11 main eukaryotic subcellular
localizations. The main reason for creating MultiLoc2-
LowRes additionally to MultiLoc2-HighRes is to provide a
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predictor with superior prediction accuracy for globular
proteins. For certain applications it is sufficient to discrim-
inate between secreted proteins and the localizations of
globular proteins.

The MultiLoc2 approach was compared with current state-
of-the-art tools (BaCelLo [19], LOCtree [2], Protein
Prowler [9], TargetP [5] and WoLF PSORT [22]) using
independent datasets sharing very low sequence identity
with the training datasets of all compared tools. We found
MultiLoc2 to perform considerably better than related
tools for animals and plants and comparable for fungal
proteins in a benchmark study with five localizations.
Since GO terms are not always available, we evaluate
MultiLoc2 as purely sequence-based and found the per-
formance only slightly reduced but still better or compa-
rable with other tools. Furthermore, MultiLoc2-HighRes
performs clearly better compared with WoLF PSORT using
a second independent dataset that extends the benchmark
study to all main eukaryotic subcellular localizations. The
second benchmark study was performed only between
these two predictors since the remaining methods are spe-
cialized for a smaller amount of localizations. Both ver-
sions of MultiLoc2 are available online as web interface at
http://www-bs.informatik.uni-tuebingen.de/Services/
MultiLoc2. The online version provides fast access to
MultiLoc2 for a limited number of query sequences. Fur-
thermore, a stand-alone version (including the source
code of the method) is available from the website. The
stand-alone version is suitable for large-scale offline pre-
diction jobs.

In the following sections the MultiLoc2 system is
described in detail together with the training and test data-
sets used, followed by the performance evaluation and the
results of the benchmark studies.

Implementation
MultiLoc2 architecture
The MultiLoc prediction system described earlier [23] is
based on the integration of the output of four sequence-
based subclassifiers (SVMTarget, SVMSA, SVMaac and
MotifSearch) into a protein profile vector. The subclassifi-
ers utilize the overall amino acid composition or search
for specific sorting signals. MultiLoc2 extends the original
architecture with two new classifiers based on phyloge-
netic profiles (PhyloLoc) and GO terms (GOLoc). As
stated in the introduction, there are two versions of
MultiLoc2 which differ in the number of predictable
localizations. MultiLoc2-HighRes can deal with nuclear
(nu), cytoplasmic (cy), mitochondrial (mi), chloroplast
(ch), extracellular (ex), plasma membrane (pm), peroxi-
somal (pe), endoplasmic reticulum (er), Golgi apparatus
(go), lysosomal (ly) and vacuolar (va) proteins.
MultiLoc2-LowRes is specialized for globular proteins and
predicts secretory pathway (SP) proteins (separated into
the six classes ex, pm, er, go, ly, va in MultiLoc2-HighRes)
as well as nu, cy, mi and ch. Similar to its previous version,
MultiLoc2 is available for plant, animal and fungal pro-
tein localization prediction. A scheme of the overall archi-
tecture of MultiLoc2 is shown in Fig. 1. A query sequence
is processed by a first layer of six subprediction methods.
The results from these methods are collected in the pro-

MultiLoc2 architectureFigure 1
MultiLoc2 architecture. The architecture of MultiLoc2-HighRes (animal version). A query sequence is processed by a first 
layer of six subprediction methods (SVMTarget, SVMSA, SVMaac, PhyloLoc, GOLoc and MotifSearch). The two new subpredic-
tion methods, PhyloLoc and GOLoc, are highlighted in bold. The individual output of the methods of the first layer are col-
lected in the protein profile vector (PPV), which enters a second layer of SVMs producing probability estimates for each 
localization.
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tein profile vector, which is used as input for the final
layer of SVMs, which in turn outputs the final localization
prediction. In both layers one-vs-one SVMs are used for
classification. The corresponding figure of MultiLoc2-
LowRes is also available [see Additional file 1]. The origi-
nal four sequence-based classifiers are briefly described in
the next section, followed by details of PhyloLoc and
GOLoc.

Subprediction methods
SVMTarget
SVMTarget is based on the detection of N-terminal target-
ing peptides to predict ch, mi, SP and other (OT) localiza-
tions for plant proteins and only mi, SP and OT for animal
and fungal proteins. A sliding window approach scans the
N-terminal part of a given query sequence. The partial
amino acid composition in the window is used as input
for the SVMs. The output of SVMTarget is a probability for
each localization.

SVMSA
SVMSA scans the sequence for a signal anchor (SA) which
can be present in membrane proteins of the secretory
pathway instead of a signal peptide. Therefore, SVMSA
complements SVMTarget. SAs are also detected using a
sliding window approach based on partial amino acid
composition. SVMSA is specialized for membrane pro-
teins and is therefore not included in MultiLoc2-LowRes.

SVMaac
SVMaac is based on the overall amino acid composition
of the query sequence and outputs a probability for each
localization. In contrast to the original MultiLoc, the
binary one-versus-all classification is replaced by a one-
versus-one procedure since a slightly performance
increase could be achieved.

MotifSearch
MotifSearch outputs five binary features that encode the
presence or absence of sequence motifs relevant to protein
sorting such as nuclear localization signals (NLSs). Two
additional binary features represent the presence or
absence of a DNA-binding domain or a plasma mem-
brane receptor domain.

PhyloLoc
Proteins within the same subcellular localization tend to
share a similar taxonomic distribution of homologous
proteins in other genomes [42]. This kind of information
can be represented as a profile [43] which encodes the pat-
tern of presence or absence of a given protein in a set of
genomes. Marcotte et al. [42] applied phylogenetic pro-
files for the distinction of mitochondrial and non-mito-
chondrial proteins using 31 genomes and a linear
discrimination function. PhyloLoc is based on phyloge-

netic profiles derived from 78 fully sequenced genomes
and SVMs to predict all of the localizations of the
MultiLoc2 predictors. The genomes were retrieved from
the National Center for Biotechnology Information
(NCBI) web site (downloaded between 6th and 9th Feb-
ruary 2008). We used all available eukaryotic (20) and
archaean (33) genomes and a non-redundant set of 25
bacterial genomes [see Additional file 1]. The input of
PhyloLoc (as shown in Fig. 2) is a vector of similarities
between the query sequence and the best sequence match
in each genome using BLAST. The BLAST homology
searches are performed using default settings. The bit
score Bqi of the best sequence match of the query sequence
q in genome i and the self bit score Bqq of q aligned with
itself are used to calculate the similarity Sqi which is
defined as: Sqi = Bqi/Bqq. Due to the fact that Bqi is always
smaller than Bqq, the values of Sqi range from zero to one.
Values close to one indicate presence of the query protein
and values close to zero indicate absence. The calculation
of phylogenetic profiles based on bit scores was also pre-
viously used for the functional annotation of bacterial
genomes [44]. An important point to note is that,
although BLAST is used, creating phylogenetic profiles is
not an annotation-based or homology-based method as
sometimes described in the literature. The reason is that
there is no annotation-transfer from the aligned
sequences. Actually, it is irrelevant whether the proteins of
the genomes are annotated or not. Proteins with similar
phylogenetic profiles are co-inherited and do not have to
be close homologs [45].

PhyloLoc and GOLoc architectureFigure 2
PhyloLoc and GOLoc architecture. The architectures of 
PhyloLoc and GOLoc from MultiLoc2-LowRes. The input of 
PhyloLoc is a vector of similarities (phylogenetic profile) 
between the query sequence and the best sequence match in 
each genome inferred from BLAST. The input of GOLoc is a 
binary-coded vector representing the GO terms of the query 
sequence inferred from InterPro using InterProScan. Phy-
loLoc and GOLoc use one-versus-one SVMs to process their 
input and to calculate probability estimates for each localiza-
tion.
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GOLoc
The Gene Ontology (GO) is a controlled vocabulary for
uniformly describing gene products in terms of biological
processes, cellular components and molecular function
across all organisms [46]. It has been shown that GO
terms can be used to improve the performance of subcel-
lular protein localization prediction methods [47,48]. In
the literature to date, there are three possibilities for
obtaining GO annotation terms for a query sequence. If
the UniProt [49] accession number is known, one can
simply extract the GO annotation from the UniProt data-
base [50]. However, this procedure fails for novel proteins
without accession number. Another possibility is to
search for homologous proteins annotated with GO terms
using BLAST [28,29]. This becomes difficult in cases
where proteins have no close homolog or proteins have
many homologs, because no GO term can be obtained or
GO terms might be ambiguous. A further method of infer-
ring GO terms is InterProScan [51] used, for example, by
Chou and Cai [52]. Given a protein sequence, the tool
scans against various pattern and signature data sources
collected by the InterPro project [53]. InterPro also pro-
vides a mapping of the detected protein domains and
functional sites to GO terms.

Our subpredictor GOLoc is based on GO terms calculated
using InterProScan. Since the GO terms are derived
directly from the query sequence, we avoid the drawbacks
of using accession numbers or BLAST. The input of GOLoc
is a binary-coded vector which represents all GO terms of
the training sequences (see Fig. 2). GO terms present in
the query sequence are set to 1 in the vector and to 0 oth-
erwise [see Additional file 1].

Datasets
BaCelLo
The datasets used for training and testing MultiLoc2-
LowRes against comparable predictors were obtained
from the BaCelLo website. The homology-reduced train-
ing dataset was extracted from Swiss-Prot release 48 and
contains 2597 animal, 1198 fungal and 491 plant pro-
teins resulting in three kingdom-specific predictors. By
ignoring proteins annotated as 'membrane' or 'transmem-
brane', only globular proteins were considered.

The animal and fungal proteins represent four localiza-
tions (nu, cy, mi, SP) and the plant proteins five localiza-
tions (with the addition of ch). The independent test
dataset (BaCelLo IDS) was extracted from Swiss-Prot
release 54. Only proteins added to the database starting
from release 49 were considered. Furthermore, proteins
sharing a sequence identity >30% to at least one protein
from release 48 were removed. This ensured that all test
proteins were novel to the predictors in the benchmark
study since all of them were trained using Swiss-Prot pro-
teins up to release 48. In order to avoid a bias towards the

prediction of over-represented protein classes, all
sequences which share the same localization and a
sequence identity >30% were clustered into 432 animal,
418 fungi and 132 plant groups. More information con-
cerning the creation of the BaCelLo data sets can be found
in Pierleoni et al [19] and Casadio et al. [54].

Höglund
For training MultiLoc2-HighRes we applied the original
dataset used to train MultiLoc [23], which contains 5959
eukaryotic proteins extracted from Swiss-Prot release 42.
The data set covers 11 localizations (cy, ch, er, ex, go, ly,
mi, nu, pe, pm, va). To also compare the prediction per-
formance of MultiLoc2 with WoLF PSORT in regard to the
localizations not present in the BaCelLo test dataset, we
created a second independent dataset (Höoglund IDS)
which covers seven localizations (er, ex, go, ly, pe, pm,
va). Therefore, animal, fungal and plant proteins of these
localizations were extracted from Swiss-Prot release 55.3
in the same way as the BaCelLo independent dataset.
However, in the case of the plant proteins, we increased
the allowed sequence identity threshold to 40% in order
to obtain enough data. We used BLASTClust to cluster the
sequences using 30% pairwise sequence identity for the
animal and fungal proteins and 40% for the plant pro-
teins. The whole procedure delivered 158 animal, 106
fungi and 30 plant groups.

For each training dataset (BacelLo and Höglund), a table
that shows the number of protein sequences for each
localization is listed elsewhere [see Additional file 1]. Two
different datasets were used for training since this allows a
more objective performance comparison between
MultLoc2-HighRes and its predecessor MultiLoc on the
one hand and in particular between MultLoc2-LowRes
and further methods on the other hand.

SVM training and performance evaluation
All building blocks (except MotifSearch) of MultiLoc2
were trained using SVMs [55] from the LIBSVM [56] soft-
ware. Throughout, we used the radial basis kernel func-
tion and optimized the c and g parameters by grid search.
Furthermore, we defined weights for each class in order to
reduce the over-prediction effect when using unbalanced
training datasets. To this end, we used built-in functional-
ity of LIBSVM. The weighting scheme assigns weight 1.0 to
the largest class and higher weights to the remaining
classes. The weights of these classes are simply calculated
by dividing the size of the largest class by that of each
smaller class. The probability estimates calculated by LIB-
SVM were used for ranking the final predicted localiza-
tions and choosing the most probable one.

We used five-fold cross-validation for training and evalu-
ating the prediction performance. Additionally, inde-
pendent datasets were used for testing MultiLoc2 and
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comparison with other prediction methods. Therefore, all
test proteins share low sequence similarity with proteins
in the training datasets.

Localization-specific performance results were expressed
using sensitivity (SE), specificity (SP) and the Matthews
correlation coefficient (MCC) defined as:

To evaluate the overall prediction performance, we used
average sensitivity (AVG), which is also known as the aver-
age localization-specific accuracy, as primary measure.
The average sensitivity is better suited than the overall
accuracy (ACC), the percentage of correctly predicted pro-
teins of all localizations. The reason is that all prediction
methods are trained on unbalanced datasets with strongly
varying numbers of proteins per localization. This often
biases the prediction towards the localization with the
most representations in the training dataset. Hence an
unbalanced test dataset would also normally lead to a dis-
torted performance evaluation when using the ACC only.
To calculate the performance measures for the independ-
ent datasets, we used the average rates of true and false
predicted proteins within each cluster.

Results and discussion
Cross-validation performance
The impact of the MultiLoc2 extensions on the overall
prediction performance was evaluated using 5-fold cross-
validation. The results are summarized in Table 1. The

average sensitivity and overall accuracy of MultiLoc2-
LowRes (trained on the BaCelLo dataset) and MultiLoc2-
HighRes (trained on the Höglund dataset) are compared
with those of the original MultiLoc architecture and Mul-
tiLoc extended by PhyloLoc as well as GOLoc only. Using
the BaCelLo dataset, MultiLoc2-LowRes yields a clearly
higher AVG (85.0% for animals, 83.9% for fungi and
81.6% for plants) than the original MultiLoc (77.3%,
78.4% and 71.4% respectively). For the Höglund dataset
the AVG is increased from 78.6% to 89.2% for animal,
from 78.0% to 89.2% for fungal and from 78.0% to
89.4% for plant proteins by the MultiLoc2-HighRes sys-
tem compared to the original MultiLoc. Note that the per-
formance results for the original MultiLoc differ from
those previously reported [23] since the SVMaac architec-
ture has slightly changed. Adding PhyloLoc or GOLoc
individually to MultiLoc already increased the perform-
ance considerably, whereas the performance gain caused
by GOLoc is slightly higher compared to PhyloLoc. How-
ever, the best performance is achieved by the addition of
both subpredictors, obtaining MultiLoc2. Similar trends
can be detected regarding the overall accuracies. The
standard deviations of the MultiLoc2-LowRes plant ver-
sion are higher compared to the other versions due to the
fact that the number of training sequences in the dataset
is considerably lower.

Comparison with related tools
In a recently published study [54] five selected top-per-
forming sequence-based prediction methods (BaCelLo,
LOCtree, Protein Prowler, TargetP and WoLF PSORT)
were compared using an independent dataset (see Section
2.3.1). Based on this benchmark study, we compared the
performance of MultiLoc2 against these five methods
using the same test setting. The benchmark study consid-
ered five subcellular localizations (nu, cy, mi, ch, SP). Fur-
thermore, a virtual class nu/cy, containing nu and cy
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Table 1: Cross-validation performance comparison of different MultiLoc architectures trained using the BaCelLo and the Höglund 
datasets

Dataset Method Animals Fungi Plants
AVG ACC AVG ACC AVG ACC

BaCelLo
MultiLoc 77.3 (± 2.9) 75.7 (± 3.1) 78.4 (± 2.7) 71.0 (± 2.6) 71.4 (± 6.8) 67.8 (± 3.8)
+ PhyloLoc 80.1 (± 2.4) 78.2 (± 2.9) 80.0 (± 2.5) 73.6 (± 0.9) 78.6 (± 3.6) 77.4 (± 1.9)
+ GOLoc 84.0 (± 1.7) 82.8 (± 2.0) 81.1 (± 0.5) 75.5 (± 1.1) 80.9 (± 4.4) 77.6 (± 3.5)
MultiLoc2-LowRes 86.1 (± 1.4) 84.0 (± 1.7) 82.8 (± 2.2) 77.9 (± 0.5) 81.9 (± 4.1) 80.2 (± 3.5)

Höglund
MultiLoc 78.6 (± 1.2) 76.4 (± 1.2) 78.0 (± 1.3) 76.6 (± 1.2) 78.0 (± 1.8) 76.4 (± 1.7)
+ PhyloLoc 84.6 (± 0.7) 84.0 (± 0.6) 84.7 (± 1.4) 84.4 (± 0.9) 86.5 (± 1.5) 84.3 (± 0.7)
+ GOLoc 87.3 (± 1.8) 86.7 (± 1.0) 87.1 (± 0.9) 86.9 (± 0.8) 86.9 (± 1.4) 86.3 (± 1.1)
MultiLoc2-HighRes 89.3 (± 1.4) 88.6 (± 1.0) 89.2 (± 1.1) 88.9 (± 1.2) 89.4 (± 0.8) 88.7 (± 0.9)

This table compares the average sensitivities (AVGs) and overall accuracies (ACCs) of MultiLoc2-LowRes and MultiLoc2-HighRes with those of the 
original MultiLoc and the extended architecture based on PhyloLoc as well as GOLoc only. The AVGs and ACCs are given in percent. The standard 
deviations (in parentheses) refer to the differences of the AVGs and ACCs of the different cross-validation models.
Page 6 of 11
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:274 http://www.biomedcentral.com/1471-2105/10/274
proteins, was created in order to ensure a fair comparison
with TargetP and Protein Prowler which do not discrimi-
nate between these two localizations. To deal with WoLF
PSORT and LOCtree, predicted sublocalizations of the
secretory pathway were grouped into the SP class. A simi-
lar approach was followed for the evaluation of

MultiLoc2-HighRes. Depending on the inclusion of the
virtual nu/cy class, the number of tested classes is three or
four for animals and fungi as well as four or five for plants.
We also evaluated the performance of only sequenced-
based predictions of MultiLoc2 by disregarding GO terms
to simulate the case of unavailability of GO terms. Table

Table 2: Comparison of the localization-specific prediction results using BaCalLo independent dataset (BacelLo IDS)

Animals Fungi Plants
Predictor Loc No. SE SP MCC No. SE SP MCC No. SE SP MCC

MultiLoc2-LowRes SP 75 97 97 0.89 9 78 98 0.60 6 83 95 0.58
mi 48 89 97 0.81 77 68 94 0.62 6 67 96 0.51
ch - - - - - - - - 72 77 94 0.72
nu 224 62 93 0.57 152 63 79 0.36 36 91 90 0.77
cy 85 72 82 0.43 180 54 78 0.27 17 41 94 0.38
nu/cy 308 93 96 0.87 332 92 78 0.63 52 94 92 0.84

MultiLoc2-HighRes SP 75 87 95 0.79 9 78 98 0.63 6 83 93 0.50
mi 48 83 96 0.75 77 51 95 0.52 6 67 93 0.40
ch - - - - - - - - 72 53 94 0.51
nu 224 58 93 0.54 152 50 84 0.32 36 86 91 0.74
cy 85 71 80 0.39 180 56 75 0.22 17 37 87 0.20
nu/cy 308 91 91 0.78 332 84 76 0.48 52 93 84 0.74

BaCelLoc SP 75 93 97 0.88 9 100 98 0.74 6 100 95 0.66
mi 48 74 95 0.66 77 79 87 0.58 6 17 100 0.40
ch - - - - - - - - 72 71 83 0.54
nu 224 57 83 0.41 152 72 67 0.38 36 88 78 0.60
cy 85 51 74 0.21 180 32 84 0.19 17 27 98 0.38
nu/cy 308 93 92 0.83 332 85 83 0.61 52 88 84 0.70

LOCtree SP 75 79 91 0.65 9 78 92 0.35 6 83 96 0.60
mi 48 64 92 0.51 77 42 92 0.38 6 58 90 0.30
ch - - - - - - - - 72 77 88 0.66
nu 224 66 73 0.39 152 63 59 0.22 36 72 89 0.61
cy 85 35 86 0.22 180 35 78 0.15 17 33 97 0.39
nu/cy 308 84 83 0.64 332 83 49 0.31 52 75 93 0.70

Protein Prowler SP 75 86 99 0.88 9 93 99 0.20 6 100 92 0.61
mi 48 51 99 0.71 77 33 99 0.51 6 67 86 0.40
ch - - - - - - - - 72 7 95 0.40
nu/cy 308 98 73 0.79 332 98 40 0.52 52 86 77 0.52

TargetP SP 75 88 98 0.88 9 89 97 0.56 6 100 93 0.61
mi 48 82 92 0.63 77 50 92 0.44 6 50 91 0.26
ch - - - - - - - - 72 55 91 0.49
nu/cy 308 89 89 0.75 332 89 59 0.48 52 83 79 0.62

WoLF PSORT SP 75 92 94 0.80 9 89 99 0.73 6 33 95 0.24
mi 48 71 95 0.63 77 53 90 0.44 6 42 99 0.52
ch - - - - - - - - 72 61 81 0.43
nu 224 77 81 0.58 152 93 39 0.35 36 72 83 0.52
cy 85 34 88 0.23 180 11 98 0.19 17 24 83 0.28
nu/cy 308 89 90 0.76 332 89 57 0.46 52 87 74 0.61

The sensitivity (SE) and specificity (SP), given in percentages, and Matthews correlation coefficient (MCC) are listed for each localization (Loc). The number 
of clusters (No.) per localization is also shown. In Protein Prowler and TargetP, predictions for nu and cy are only available grouped as nu/cy.
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2 shows the localization-specific performance results
using sensitivity, specificity and MCC and Table 3 summa-
rizes the overall performances using AVG and ACC. Note
that the number of SP clusters for fungi (9) and plants (6)
and the mi clusters for plants (6) is quite small compared
to the remaining localizations. Therefore, some care
should be taken when interpreting the prediction results.
Small clusters have only a small influence on the ACC,
however, a large influence on the AVG.

MultiLoc2-LowRes always yields the highest ACCs and
AVGs for animal and plant proteins and hence outper-
forms all other predictors. The reason for this outstanding
result is that MultiLoc2-LowRes is, in general, better suited
to discriminate between nu and cy and between mi and ch
proteins (see Table 2), which is a known challenge in the
prediction of protein subcellular localization. For fungal
proteins the ACCs are the highest and the AVGs are the
second highest after the BaCelLo predictor. One reason
for the reduced AVG performance is that on average only
34% of the fungal proteins are annotated with GO terms
by InterProScan. The annotation-rate is higher for animals
(43%) and plants (79%). Compared to MultiLoc2-
LowRes, the performance of MultiLoc2-HighRes is, not
surprisingly, reduced, since it is a more general predictor
not specialized for globular proteins and covering a wider
range of localizations. However, for animal and plant pro-
teins the AVGs of MultiLoc2-HighRes are equal or higher
compared to the remaining methods. Similar to
MultiLoc2-LowRes, MultiLoc2-HighRes performs worse
for fungal proteins. The AVGs are still better than LOCtree,

however, worse compared with Protein Prowler, TargetP
and WoLF PSORT.

If we simulate the case in which no GO terms are available
for any test proteins, the overall performances of the
MultiLoc2 predictors are slightly reduced but still better
than those of the other methods for animal and plant and
comparable for fungal proteins [see Additional file 1].

In a second benchmark study, MultiLoc2-HighRes and
WoLF PSORT were compared using the Höglund inde-
pendent dataset (see Section 2.3.2). In contrast to the
other predictors, both methods allow the prediction of all
main eukaryotic subcellular localizations. We further note
that WoLF PSORT can also distinguish between the
cytoskeleton within the cytoplasm. In this comparison we
only consider those localizations (ex, pm, pe, er, go, ly,
va) not tested in the previous study. Since it is known that
discriminating between these classes is challenging, we
also evaluated whether the tested proteins could be cor-
rectly predicted within the top three ranked localizations.
The results of this study are summarized in Table 4.
MultiLoc2-HighRes always achieves clearly higher AVGs.
In particular, the AVG within the top three locations of
MultiLoc2 is about twice as high as that of WoLF PSORT.
A similar result is observed regarding the ACCs.
MultiLoc2-HighRes has a much lower bias towards over-
represented localizations and, thus, almost never shows
zero sensitivity for a localization with few representatives.
This again proves high robustness of MultiLoc2, even in
cases of many localizations.

Conclusion
Our new approach for predicting protein subcellular
localization, MultiLoc2, integrates several subpredictors
based on the overall amino acid composition, the detec-
tion of sorting signals, phylogenetic profiles and GO
terms. Compared to the original MultiLoc architecture,
the robustness and prediction performance is clearly
improved. The different resolutions of MultiLoc2 were
compared with current state-of-the-art sequence-based
methods using independent datasets.

MultiLoc2-LowRes is specialized for globular proteins and
offers kingdom-specific prediction of up to five localiza-
tions based on the BaCelLo dataset. On the other hand,
MultiLoc2-HighRes is able to deal with membrane pro-
teins and predicts all of the main eukaryotic localizations
based on a dataset that consists of a mixture of animal,
fungal and plant proteins. In comparison with five other
methods, the MultiLoc2 predictors performed better for
animal and plant proteins whereas MultiLoc2-LowRes
outperforms MultiLoc2-HighRes in general. However, the
performance of MultiLoc2-HighRes is remarkable since it
is able to predict more localizations than the other tools

Table 3: Comparison of the overall performance results using 
BaCelLo independent dataset (BaCelLo IDS)

Predictor Classes Animals Fungi Plants

MultiLoc2-LowRes 3 93 (93) 79 (87) 80 (83)
4 80 (73) 66 (60) 72 (76)

MultiLoc2-HighRes 3 87 (89) 71 (76) 74 (71)
4 75 (68) 59 (52) 65 (62)

BaCelLo 3 87 (91) 88 (84) 69 (76)
4 69 (64) 71 (57) 61 (69)

LOCtree 3 76 (81) 68 (75) 73 (76)
4 61 (62) 55 (47) 65 (70)

Protein Prowler 3 78 (91) 75 (86) 65 (63)
4 - - -

TargetP 3 86 (88) 76 (82) 72 (67)
4 - - -

WoLF PSORT 3 84 (88) 77 (82) 56 (69)
4 69 (71) 62 (51) 46 (57)

The average sensitivity and the overall accuracy (in parentheses) for 
the prediction of three and four classes for animals and fungi and four 
and five classes for plants are shown. Both measures are given in 
percentages. The top-scoring average sensitivity and average accuracy 
are highlighted in bold. Results for Protein Prowler and TargetP 
predictions are only available for a reduced number of classes since 
nu and cy are grouped as nu/cy.
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except for WoLF PSORT. We also simulated the scenario in
which no GO term is available for any test proteins, which
makes the prediction sequence-based only. The resulting
performance of the MultiLoc2 predictors is slightly
reduced but still better for animals and plants and compa-
rable for fungi. Therefore, we conclude that the MultiLoc2
approach is very robust and well suited for novel proteins
without relevant sequence similarity to annotated pro-
teins but can also benefit from the presence of calculated
GO annotation from the sequence using InterProScan.

In a second benchmark study we evaluated the prediction
performance of MultiLoc2-HighRes compared to WoLF
PSORT for proteins localized in the peroxisomes and in
the sublocalizations of the secretory pathway. For all three
eukaryotic kingdoms, MultiLoc2-HighRes performs
clearly better. In particular, MultiLoc2-HighRes shows
much better sensitivity throughout all localizations and
yields high robustness. However, the results indicate that
the classification in all main eukaryotic localizations is
still a challenging task and leaves room for improvement
for future work.

The flexible architecture of MultiLoc2 is based on the eas-
ily extendable protein profile vector. In the future, this
will allow us to integrate more heterogeneous and rele-
vant information to further improve the prediction accu-

racy. In particular, we plan to investigate in further
sequences-based or annotation-based information such
as protein-protein interaction and text-terms from
PubMed abstracts. Moreover, handling of proteins present
in multiple locations is an open challenge.

Availability and requirements
• Project name: MultiLoc2

• Project home page: http://www-bs.informatik.uni-
tuebingen.de/Services/MultiLoc2

• Operating system(s): Linux

• Programming language: Python

• Other requirements: LIBSVM 2.8 or higher, BLAST
2.2.14 or higher, InterProScan 4.3 or higher
(optional)

• License: GNU GPL

• Any restrictions to use by non-academics: None

Authors' contributions
All the authors have read and approved the final manu-
script.

Table 4: Performance comparison of MultiLoc2-HighRes with WoLF PSORT using Höglund independent dataset (Höglund IDS)

Animals Fungi Plants
Predictor Loc No. SE SE3 No. SE SE3 No. SE SE3

MultiLoc2-HighRes ex 78 78 91 7 77 86 1 0 100
pm 34 55 78 29 10 31 6 33 50
pe 3 33 100 5 20 100 2 50 100
er 25 28 70 46 46 83 6 50 83
go 14 7 57 8 25 63 6 33 50
ly 4 25 75 - - - - - -
va - - - 11 0 0 9 11 33

AVG 38 79 30 61 30 69
ACC 57 82 31 59 30 57

WoLF PSORT ex 78 93 97 7 36 79 1 0 0
pm 34 41 59 29 59 79 6 83 83
pe 3 0 0 5 0 0 2 0 0
er 25 8 40 46 9 54 6 0 50
go 14 0 7 8 0 0 6 17 17
ly 4 0 25 - - - - - -
va - - - 11 0 0 9 0 33

AVG 24 38 17 35 17 31
ACC 58 68 22 51 20 40

The sensitivity (SE) and top three sensitivity (SE3) for each localization are shown. SE3 measures the fraction of correctly predicted proteins within 
the top three ranked localizations. The corresponding average sensitivity and overall accuracy are listed also, with the top-scoring highlighted in 
bold. Values based on very few proteins (less than six) are drawn in gray. All measures are given as percentages.
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Supplementary Materials. Supplementary Materials (PDF file) include 
description of some methodology details such as the NCBI genomes used 
in PhyloLoc, the number of GO terms used in GOLoc, and an overview of 
the MultiLoc2-LowRes architecture. In addition, result details are pro-
vided including the performance evaluation on the independent datasets 
without GO terms.
Click here for file
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