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Abstract

Background: Mathematical optimization aims to make a system or design as effective or functional
as possible, computing the quality of the different alternatives using a mathematical model. Most
models in systems biology have a dynamic nature, usually described by sets of differential equations.
Dynamic optimization addresses this class of systems, seeking the computation of the optimal time-
varying conditions (control variables) to minimize or maximize a certain performance index.
Dynamic optimization can solve many important problems in systems biology, including optimal
control for obtaining a desired biological performance, the analysis of network designs and
computer aided design of biological units.

Results: Here, we present a software toolbox, DOTcvpSB, which uses a rich ensemble of state-
of-the-art numerical methods for solving continuous and mixed-integer dynamic optimization
(MIDO) problems. The toolbox has been written in MATLAB and provides an easy and user
friendly environment, including a graphical user interface, while ensuring a good numerical
performance. Problems are easily stated thanks to the compact input definition. The toolbox also
offers the possibility of importing SBML models, thus enabling it as a powerful optimization
companion to modelling packages in systems biology. It serves as a means of handling generic black-
box models as well.

Conclusion: Here we illustrate the capabilities and performance of DOTcvpSB by solving several
challenging optimization problems related with bioreactor optimization, optimal drug infusion to a
patient and the minimization of intracellular oscillations. The results illustrate how the suite of
solvers available allows the efficient solution of a wide class of dynamic optimization problems,
including challenging multimodal ones. The toolbox is freely available for academic use.

Background

Optimization plays a key role in computational biology
and bioinformatics [1,2]. Dynamic optimization, also
known as open-loop optimal control, seeks the maximi-
zation or minimization of a suitable performance index
(which characterizes the solution quality) of a dynamic

system taking into account possible equality or inequality
constraints. The solution is represented by the optimal
decision variables, which can be continuous (real num-
bers), discrete (integer numbers), or both. Continuous
variables can be used to encode time-varying stimuli,
while discrete variables usually represent events (like an
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on/off switch) or configurations. An overview of optimi-
zation in the context of computational systems biology
was given by [3] and more recently by [4], the latter high-
lighting the need of robust and efficient dynamic optimi-
zation methods. Examples of relevant problems covered
there include optimal control for modification of self-
organized dynamics, optimal experimental design,
dynamic flux balance analysis, the discovery of biological
network design strategies and computational design of
integrated biological circuits (synthetic biology).

A popular numerical approach for solving dynamic opti-
mization problems is the control vector parameterization
(CVP) method [5], which transforms the original problem
into an outer non-linear programming (NLP) or mixed-
integer non-linear programming (MINLP) problem, with
an inner initial value problem (IVP). Solving the outer
problem requires a suitable (MI)NLP solver. Since most
biological systems are non-linear, the resulting optimiza-
tion problems are frequently multimodal and very chal-
lenging to solve, so it is necessary to use proper global
optimization methods [6].

This work presents DOTcvpSB, a user friendly MATLAB
dynamic optimization toolbox based on the CVP method,
which provides an easy to use environment while ensur-
ing a good numerical performance. Users only need to
define their dynamic optimization problems via a simple
and compact input file which is close to the standard
mathematical notation. Advanced users can tweak many
configuration options for the different solvers in order to
fine-tune the solution process. Although other existing
toolboxes and software packages allow the definition and
solution of optimization problems in systems biology
(e.g. COPASI [7], PottersWheel [8] or SBtoolbox2 [9], to
name a few), they are restricted to problems where the
decision variables are static (time-independent).
DOTcvpSB allows the definition and solution of dynamic
optimization problems where decision variables are time-
dependent, thus reaching a much broader class of optimi-
zation problems.

Implementation

In this section, we first describe the class of problems con-
sidered and the framework chosen for its numerical solu-
tion. Next, we describe the organization and capabilities
of the toolbox, highlighting its key features and modules.

Mixed-integer Optimal Control Problem

The mixed-integer optimal control problem, also called
mixed-integer dynamic optimization (MIDO) problem,
considers the computation of time dependent operating
conditions (controls), discrete — binary or integer- deci-
sions and time-independent parameters so as to minimize
(or maximize) a performance index (or cost function)
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while keeping a set of constraints coming from safety and/
or quality demands and environmental regulations.
Mathematically this is formulated as follows:

Find u(?), i(t), p and {;s0 as to minimize (or maximize):

IZQAxu@pJﬂ+LWHﬂﬂmULMLQQm
(1)

subject to:

f(x(0), x(1), u(t),i(1), p,1) =0, x(t) =%,  (2)

gi(x(0),u(e), i), p.t) <0, I=1m,+m;  (3)
u; <u(t) <uy, (4)
i, <i(t) <ig, (5)
p. <i(t) < py, (©)

where x(f)e X cR"* is the vector of state variables,
u(t)e U c R™ is the vector of real valued control varia-
bles, i(t)e I = Z" is the vector of integer control varia-

bles, pe PcR™ is the vector of time-independent
parameters, {is the final time of the process, m,, m; repre-
sent the number of equality and inequality constraints,
respectively and g collects all state constraints, pathway,
pointwise and final time constraints and u,, i;, p;, uy, iy

py correspond to the lower and upper bounds for the con-
trol variables and the time-independent parameters.

Control Vector Parameterization

DOTcvpSB is based on the control vector parameteriza-
tion (CVP) framework to solve the class of problems
stated above. The CVP methodology proceeds dividing
the control variables (u(t) and i(t)) into a number of ele-
ments and then approximating each element by means of
different basis functions, usually low order polynomials.
In this way the control variables are parameterized using
w, € RPand w; € Z#, which become decision variables.
This parameterization transforms the original infinite
dimensional problem into a finite dimension (mixed-
integer) non-linear programming problem that may be
solved by a suitable (MI)NLP solver. Note that the evalu-
ation of the objective function and constraints requires
the solution of the system dynamics by solving an inner
initial value problem (IVP).
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If the outer (MI)NLP problem is convex, deterministic
(gradient-based) local methods are the best alternative to
efficiently solve it. In this regard, (mixed-integer) sequen-
tial quadratic programming methods, such as MISQP
[10], can be considered the state-of-the-art. Nevertheless,
in presence of non-convexities, local methods usually
present convergence to local minima, thus requiring the
use of global optimization methods.

Global optimization methods can be roughly classified in
two major groups: deterministic and stochastic methods.
Certain deterministic global methods can guarantee glo-
bal optimality for particular classes of problems, although
the computational cost becomes infeasible for problems
of realistic size. They have been recently applied for the
solution of MIDO problems [11,12]. Regarding stochastic
methods, several works, as reviewed by [6], have illus-
trated their potential for dynamic optimization (DO) and,
more recently, for mixed-integer dynamic optimization
(MIDO) [13]. Stochastic methods usually locate the vicin-
ity of global solutions with reasonable efficiency, but the
cost to pay is that global optimality can not be guaranteed.
Alternatives such as global-local hybrid methods have
been presented both for DO [14] and MIDO [15], signifi-
cantly improving the computational efficiency. Thus, we
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could summarize the current state-of-the-art in this
domain by concluding that there is no silver bullet for glo-
bal optimization of arbitrary MIDO problems. And this is
why DOTcvpSB includes a suite of optimization solvers,
following a "Swiss Army knife" approach.

Many of these optimization methods require the compu-
tation of the gradient of the objective and/or constraints
with respect to the decision variables. Vassiliadis [5] pro-
posed the use of first order parametric sensitivities to com-
pute such information. The sensitivity equations result
from a chain rule differentiation applied to the system
defined in Eqns. 2 with respect to the decision variables
and may be solved in combination with the original sys-
tem. For this purpose, the use of Backward Differentiation
Formulas (BDF) methods is very attractive since they are
able to exploit the fact that the original system and the
sensitivities share the same Jacobian.

Toolbox description

DOTcvpSB has been implemented in MATLAB http://
www.mathworks.com following the scheme presented in
Figure 1. The original dynamic optimization or mixed-
integer dynamic optimization problem is solved numeri-
cally by the use of a suitable optimizer (outer iteration)

Problem definition

<«— User input file

System integration

VP

Sensitivities or perturbed
system integration

(MI)NLP

Computation of the
cost function and
constraints

DOTcvpSB
iteration
procedure

Iterative

computations
No

Convergence?

Yes

found

Optimal solution

Figure |

General scheme for the solution of a DO problem in DOTcvpSB. DOTcvpSB: solution scheme based on CVP for

mixed-integer dynamic optimization problems.
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which requires the solution of an IVP (inner iteration)
which will in general consist on a set of ODEs plus a set of
sensitivities to compute gradient information. The solu-
tion of the inner IVP is accomplished by calls to tailored
solvers from the SUite of Nonlinear and Dlfferential/
AlLgebraic equation Solvers (SUNDIALS) [16], more spe-
cifically CVODES. Since these simulations are the most
computationally demanding task in the CVP method, our
toolbox can automatically create compiled dynamically
linked subroutines (known as MEX files in MATLAB) for
the ODEs, Jacobian, and sensitivities, thus ensuring high
performance.

Key Features
The core capabilities of the toolbox can be summarized as
follows:

¢ handling of a wide class of dynamic optimization
problems, including constrained, unconstrained,
fixed, and free terminal time problems described by
ordinary differential equations (ODEs), as well as con-
tinuous and mixed integer decision variables;

e the inner initial value problem (IVP) is solved using
the state-of-the-art methods available in SUNDIALS
[16];

¢ the outer (MI)NLP problem can be solved using a
number of advanced solvers, including local determin-
istic methods, stochastic global optimization methods, and
hybrid metaheuristics;

e in addition to the traditional single optimization
approach, the toolbox also offers more sophisticated
strategies, like multistart, sucessive re-optimization
[17], and hybrid strategies [14];

e a graphical user interface (GUI) which makes the
definition and edition of a problem more easy and
clear;

e possibility of importing SBML models [18];

e many output options for the results, including
detailed figures.

Description of main modules

The toolbox contains a number of modules (imple-
mented as MATLAB functions) which can be grouped in
two categories:

e utility modules: graphical user interface (GUI), sim-
ulation, and SBML-import modules;

¢ optimization modules: offering several optimization
strategies, namely single optimization, multi-start,
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successive re-optimization, and hybrid optimization
modules.

Utility modules

The utility modules offer several facilities for the defini-
tion, checking, and handling of problems. The toolbox
can be operated through two equivalent approaches: by
the use of the GUI, or directly from the command line
(from where scripts with problem definitions can be cre-
ated and executed). It also offers a module to import
dynamic models from SBML files, and the imported mod-
els can be checked by a simulation module.

e Graphical User Interface (GUI) module: this mod-
ule was developed in order to help users in the defini-
tion and execution of problems. With the help of this
module, which follows an intuitive wizard-like
approach, problem definitions and modifications are
guided in an easy and convenient stepwise manner,
especially indicated for entry users.

¢ Simulation module: this module carries out the
dynamic simulation of the user-defined dynamics
(plus assigned initial conditions and controls) gener-
ating the corresponding state trajectories. This module
is especially useful for checking the model correctness
during the definition phase, which is particularly
error-prone. Typical errors like those related with units
inconsistencies can be readily identified with this pro-
cedure.

e SBML to DOTcvpSB module: this module allows
DOTcvpSB to import the systems dynamics from
SBML (Systems Biology Markup Language) models
[18,19]. Once a dynamic model is imported, it is nec-
essary to check the model correctness by simulation
(previous module). If everything works correctly, the
user can proceed with the definition of the other terms
of the dynamic optimization problem (performance
index, constraints) and, finally, with its numerical
solution.

Optimization modules

The optimization modules offers a suite of four different
optimization strategies, each one with different options
for the optimization solvers, following the "Swiss Army
knife" approach mentioned previously. All these modules
are described in more detail below.

¢ Single optimization module: this module makes a
single call to one of the optimization solvers, which
can be either a local deterministic or global stochastic
method (see available solvers below). This procedure
can be sufficient for well conditioned, convex prob-
lems, or non-convex problems which are cheap to
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evaluate. In any case, it is recommended as the first
strategy to try with any new problem.

e Multi-start optimization module: this modules
runs a selected optimization solver (typically a local
one) repeatedly. The set of solutions (performance
index values) obtained can then be analyzed (e.g. plot-
ting a histogram) in order to check the multimodality
of the problem.

e Sucessive re-optimization module: Sucessive re-
optimization can be used to speed up the convergence
for problems where a high discretization level is
desired (e.g. those where the control profiles behave
wildly). This procedure runs several successive single
optimizations automatically increasing the control
discretization, NLP, and IVP tolerances after each run.

¢ Hybrid optimization module: Hybrid optimization
is characterized by the combination of a stochastic glo-
bal method plus a deterministic local method. This
procedures ensures a compromise between the robust-
ness of global methods and the efficiency of local
ones. This module is especially indicated for difficult
multimodal problems. In any case, tweaking the
hybrid method requires a deep knowledge of the solv-
ers, and this approach will be almost always more
costly (in CPU time) than the single optimization pro-
cedures using local methods (the price to pay for the
increased robustness).

Numerical optimization methods (NLP and MINLP
solvers)

The toolbox provides interfaces to several optimization
state-of-the-art solvers:

¢ Jocal deterministic

1. IPOPT [20] implements a primal-dual interior
point method, and uses line searches based on Fil-
ter methods;

2. FMINCON [21] is a part of the MATLAB optimi-
zation toolbox which uses sequential quadratic
programming (SQP);

3. MISQP [10] solves mixed-integer non-linear
programming problems by a modified sequential
quadratic programming method;

e stochastic global

1. DE [22] uses population based approach for
minimizing the performance index;
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2. SRES [23] uses an evolution strategy combined
with an approach to balance objective and penalty
functions;

¢ and hybrid metaheuristics

1. ACOmi [15] is inspired by ants foraging behav-
ior, using MISQP for local searches;

2. MITS [13] is based on extensions of the Tabu
Search metaheuristic, using MISQP for local
searches;

where the deterministic MISQP solver and all hybrid solv-
ers are able to handle mixed-integer problems directly.
Users can change solvers by simply changing an option in
the input data structure, thus requiring no problem refor-
mulation.

Numerical simulation method (IVP solvers)

Forward integration of the ODE, Jacobian, and sensitivi-
ties (when needed) is ensured by CVODES, a part of SUN-
DIALS [16], which is also able to perform simultaneous or
staggered sensitivity analysis. The IVP problem can be
solved with the Newton or Functional iteration module
and with the Adams or BDF linear multistep method
(LMM). The Adams method is recommended for solving
of the non-stiff problems while BDF is recommended for
solving of the stiff problems. Note that the sensitivity
equations are provided analytically and the error control
strategy for the sensitivity variables could be enabled.

Recommended operating procedure

It should be noted that, for a general MIDO formulation,
there is no a priori way to distinguish if the resulting
MINLP will be convex or not inside the search space con-
sidered, so the user has no clue on which optimization
strategy should be using. Thus, we recommend that, for
any new problem, the user follows this protocol:

e Step 1: try solving the problem with the single opti-
mization strategy and a local deterministic method,
such as FMINCON or IPOPT for DO problems, or
MISQP for MIDO problems, using a rather crude con-
trol discretization (e.g. 10 elements). After obtaining a
solution, repeat changing the initial guess for the con-
trol variable. If a rather different solution is obtained,
suspect multimodality and go to step 2 below. If not,
solve the problem again using a finer discretization.
For faster and more satisfactory results regarding con-
trol discretization, use the successive re-optimization
module.

e Step 2: solve the problem using the multi-start opti-

mization module. In general 100 runs is a sensible
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number for this task, but for costly problems the user
might want to reduce this. Plotting an histogram of the
resulting set of solutions will give a good view of the
problem multimodality. For clearly multimodal prob-
lems, go to step 3. If not, stop, or go back to step 1 if
e.g. more refined control levels are desired.

e Step 3: use the single optimization strategy as in step
1, but use a global stochastic method, like DE or SRES
for DO problems, or ACOmi or MITS for MIDO prob-
lems. If satisfactory results are obtained in reasonable
computation times, stop. If the computational cost is
excessive, go to step 4.

e Step 4: use a hybrid global-local strategy. More
advanced users can tweak the different options to
increase efficiency and/or robustness.

This protocol is especially recommended for novel users
who are not familiar with numerical optimization meth-
ods. Advanced users can tweak the hybrid strategy
options, or even create their own strategies combining
calls to the different solvers in a MATLAB script.

http://www.biomedcentral.com/1471-2105/10/199

Results and discussion

This section illustrates the usage and performance of the
different modules of DOTcvpSB considering several illus-
trative examples.

Importing and checking a SBML dynamic model

For illustrative purposes, a dynamic model of the cell cycle
[24] was chosen and imported into the DOTcvpSB tool-
box. The problem is marked as BIOMDO0000000005,
Tyson1991_CellCycle_6var, 1831270 can be downloaded
as an 'xml' file from the Biomodels database web page:
http://www.ebi.ac.uk/biomodels/.

After importing it using function dotcvp_sbml2dotcvpsb,
the user should perform a dynamic simulation using the
simulation module to check the model. Figure 2 shows all
state trajectories of the cdc2-cyclin model simulated with
the constant parameters supplied in the above version.

Single optimization

Here we solve a relatively simple problem to illustrate the
usage of the single optimization strategy with a local
deterministic solver.

Tyson1991-CeliCycle-6var

1.4 T T T
X
X3
X
1.2 i 3
%4
X5
X
1 | )
X7
3 osf i
Q
8
&
>
i)
©
& 06 .
0.4} 1

0 10 20 30 40 50
Time

Figure 2

60 70 80 920 100

Importing a dynamic model from SBML to DOTcvpSB. This figure shows the dynamic behavior of the cdc2-cyclin
model with 6 variables. This model was imported from a SBML file and then checked by simulation in the DOTcvpSB toolbox.
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Drug displacement problem

The problem consists of finding the optimal rate of injec-
tion of a phenylbutazone infusion to minimize the time
needed to reach in a patient's bloodstream a desired level
of two drugs [14]. The system dynamics is described by 2
non-linear differential equations where the state variables
represent the concentration of warfarin (x,) and phenylb-
utazone (x,). These drugs must achieve a desired value at
final time, a requirement which is mathematically formu-
lated as two end-point constraints. Table 1 shows a typical
input script to solve this problem with DOTcvpSB. Alter-
natively, the problem can be defined (or loaded and mod-
ified) using the GUI, as presented in Figure 3.
Mathematically, this is a constrained minimum time
problem stated as:

min J{t} (7)
subject to
X1 = 84(85(0.02 = x;) + 46.4x, (u — 2x,)) (8)

Xy = 8a(g(u—2x,)) +46.4(0.02 — x,) 9)

http://www.biomedcentral.com/1471-2105/10/199

with g;,i= 1,4 defined as follows

g1 =14+0.2(x; +x,) (10)
g, =87 +232+46.4x, (11)
g3 = 8% +232 +46.4x, (12)

2
_ 81 (13)

* 7 983-2152.96x1x9

where the decision variable (control (u)) is constrained
with lower and upper bounds set at values of 0.00 and
8.00. The desired concentrations of the drugs in the blood
at final time should be equal to 0.02 and 2.00, respec-
tively.

The problem was successfully solved with DOTcvpSB
using the single optimization strategy with a control dis-
cretization level p = 5 and IPOPT as the NLP solver. The
optimal solution found corresponds to a minimum time
of 221.24 which is in good agreement with the best pub-
lished result of 221.43 [6]. The optimal control profile

Table I: DOTcvpSB typical input data structure for the drug displacement problem.

% Example of the DOTcvp simple input file for the drug displacement problem

data.name 'DrugDisplacement’;
data.odes.parameters(l) = {'A =232
data.odes.parameters(2) = {'B = 46.4'};
data.odes.parameters(3) = {'C =2152.96';
data.odes.res(l)

% name of the problem
% constant parameters before ODE

= {((1+0.2%(y (1) +y(@D) 2/(((1+0.2%(y (1) +y(2)) "2 +A+B¥y (2)) (1 +0.2%(y(1) +y(2))) "2 +A+B¥y(1))-

CH()Fy @) (((1+0.2%(y(1) +y(2)))2+A+B¥y (1)) %(0.02-y (1) +B¥y(1)*(u(1)-2*y(2)) 1

data.odes.res(2)

= {((1+0.25(y(1)+y(2)) 2/(((1+0-2%(y (1) +y(2)) "2+ A+B¥y (2))*((1 +0.2(y(1)+y(2)))"2+A+B¥y(1))-

CHUY Y@ (((1+0.2%(y(1)+y(2)))"2+A+BHy(2)*(u(1)-2%y(2))+46.4%(0.02-y (1))}

data.odes.res(3) ={1'}
data.odes.ic =[0.02 0.0 0.0];
data.odes.tf = 300.0;
data.nlp.RHO =5

data.nlp.JO ='y3)}
data.nlp.u0 =4.0;
data.nlp.lb =0.0;
data.nlp.ub = 8.0;
data.nlp.solver ="'IPOPT";
data.nlp.FreeTime ='on';
data.nlp.eq.status ='on';
data.nlp.eq.NEC =2
data.nlp.eq.eq(l) = {'y(1)-0.02'};
data.nlp.eq.eq(2) ={'y(2)-2.0'}
data.nlp.eq.time(l) = data.nlp.RHO;
data.nlp.eq.time(2) = data.nlp.RHO;

data.options.trajectories = size(data.odes.res,2)-1;

% vector of initial conditions

% final time

% CVP discretization level

% performance index, min-max(performance index)
% initial guess for control values

% lower bounds for control values

% upper bounds for control values

% [[FMINCON'|'IPOPT'|'SRES'| DE'|' ACOMI'|'MISQP'|'MITS']
% ['on'|'off] set 'on' if free time is considered

% ['on'|'off] switch on/off of the equality constraints
% number of active equality constraints

% first equality constraint

% second equality constraint

% to indicate that it is an end-point constraint

% to indicate that it is an end-point constraint

% how many state trajectories will be displayed

This table shows a typical input file for DOTcvpSB. Many more options can be set, otherwise their values will be taken from defaults (defined in a

file).

Page 7 of 14

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:199 http://www.biomedcentral.com/1471-2105/10/199

| step 2 | ‘ ‘ | Step 4 ‘

NLP Definition Problem Definition

of time intervals [

on] Mimimizaton o 00 T = 5*y(1)+2*y(2)/2 => should be written into the first raw as: 5*y(1)+2*y(2)/2

value for control values [u_il u_i2..] .0 5*U(1) = should be written into the second row as: 15%y(1)+0.5*u(1)

ower bounds for control values [u_il u_i2..] 0o
gethar into the first row asi 5*y(1)#2*y(2)/2; 15*y(1)+0.5*u(1}
pper bounds for control values [u_il u_i2..] g0 - “ B e

F({{14+0.2* (y (1) +7(2))) " 2+232+46.4* y( 2}V *({1+0.;

((1+0.2 2/ B 2 ¥y (1) +y(2]))~2+232 446 4%
((1+0.2*(r (1+y (2D 2/ (((14+0.2¥ (y (1) +3(2))) " Z+232+46 41 p(2)) ((14+0.2% (y(1)+¥(2
1

= Uy
) 2+zi2+abavy(l) P

Add

Edit

Clear

Clear all

- 11 Down
1e-005 12, |4 m »

0.02000.0

Code before MATLAB [if(tt>=0.5) d1=1.0; else

A Previous B Previous | Hext

Figure 3

Problem definition with the help of Graphical User Interface. The Graphical User Interface (GUI) guides the user dur-
ing problem definition or modification. The user must provide the different terms regarding the problem and the desired solu-
tion approach. Figure (A) on the left shows an screen where the optimization options are set (with NLP settings, gradient
method, performance index, and bounds on the control variables and on time-independent parameters). Figure (B) illustrates
how the user can introduce the systems dynamics and related options, such as initial conditions, fixed parameters.

and the corresponding state trajectories are shown in the

Figure 4. . X3 0.22x7 up+up
X, = Xg + X, — x
14.35+x3(1+x3/111.5) 0.22+x5 X1

2

Successive re-optimization

Here we show how to use the successive re-optimization (16)
module in order to obtain refined optimal control pro-
files. o, <1000 _wituy _( x3 ][x 0.22x7 ]xfz

x1 x1 3 | 14.35+x3(1+x3/1115) || "¢ 0.22+x5 |0.51
Lee-Ramirez bioreactor (17)
This example considers the optimal control of a fed-batch
bioreactor for induced foreign protein production by o 0.233x3 0.0005+x5 up+uy
recombinant bacteria. This problem was first presented by 4 ( 14.35+x3(1+x3 /111.5) ]( 0.022+x5 ) x *
Lee et al [25], slightly modified by Tholudur et al [26], and
later solved using a second order sensitivities approach (18)
[27]. The objective is to maximize the profitability of the
process using the nutrient (u;) and the inducer feeding i = 4upy  ujtup x (19)
rates (u,) as control variables. Several different values for > X X1
the ratio of the cost of inducer to the value of the protein
production (Q) were published in the literature, but here . 0.09x5
we consider the particular case of Q = 2.5. Mathematically, Xg=— 0.0344xe Xg (20)
the statement is to find the control trajectories that maxi- : 5
mize the performance index at the fixed final time

_0.09x5
7 0.034+x5(1 x7) (21)

10
maX]{xl(tF)x4(tF)_Q (uz)dt} (14)

U 0 where the state variables represent the reactor volume
subject to (%;), the cell density (x,), the nutrient concentration (x;),
the foreign protein concentration (x,), the inducer con-
centration (xs), the inducer shock factor on cell growth

(15) .
rate (x4), and the inducer recovery factor on cell growth
rate (x,). The final time is specified as 10 h. The additional

Xp=U; +uU,y
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Optimal trajectories for the drug displacement problem. Optimal state trajectories (A) and control profile (B) for the
drug displacement problem. The control trajectory infuses the desired amount of drugs into the patient's bloodstream in mini-

mum time.

constrains at the decision variables are lower and upper
bounds set at the value of 0.00 and 1.00.

We successfully solved this problem using the successive
re-optimization strategy from DOTcvpSB and FMINCON
as NLP solver, setting the initial control discretization at p
= 15. The mesh increasing factor and the number of mesh
refinements were set at values of 2 and 4, respectively. The
results for the increasing p values are shown in Figure 5,
which have the following performance index values:
5.64058, 5.72840, 5.75707, and 5.75710. These perform-
ance indexes are in very good agreement with those pub-
lished in the literature.

Hybrid optimization

Here we solve a multimodal problem using the powerful
hybrid strategy, where the adequate combination of an
stochastic global and a deterministic local solver allows
reaching the vicinity of global solution in a reasonable
computation time.

Drug displacement problem with path constraint
Here we consider a modified formulation of the drug dis-
placement problem (defined above) adding an state path
constraint, which is set to ensure that the warfarin concen-
tration in the patient's blood does not exceed a dangerous
level. The constraint is defined as follows
x,(t) €0.026 (22)
This problem has been reported to be highly multimodal,
therefore its solution must be approached by the use of a
suitable global method. On the other hand, a combina-
tion of a global and a local method (hybrid approach)
should be more efficient. To illustrate this, we solved this
problem using (i) the global DE solver (in single optimi-
zation mode) and (ii) a hybrid combining DE and MISQP
solver. Using p = 10 free time intervals, both approaches
converged to a similar solution, with a performance index
(infusion final time) of 266.09. In addition, the inequal-
ity and all equality constraints were violated less than the
pre-set tolerance of 10-8. But the hybrid approach was
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Optimal control of the Lee-Ramirez bioreactor. The successive re-optimization strategy was applied to the Lee-Ramirez
bioreactor. Figures (A, B, C, D) show the optimal trajectories for the discretization levels 15, 30, 60, and 120, with the per-
formance index values of 5.64058, 5.72840, 5.75707, and 5.75710.

approximately 5 times faster than DE in obtaining equiv-
alent results. It should be mentioned that these results are
again in very close agreement with those presented in the
above cited literature. The optimal trajectories are shown
in Figure 6.

Multistart and single optimization with a global method
The multistart strategy is a good way of checking the pos-
sible non-convexity of problems. When the multimodal-
ity of a problem has been confirmed, users can choose a
global or a hybrid strategy to find a solution in the close
vicinity of the global one. We illustrate all this here con-
sidering a challenging MIDO problem.

Phase resetting of a calcium oscillator problem: a mixed-integer
dynamic optimization problem

We have considered a calcium oscillator model describing
intracellular calcium spiking in hepatocytes induced by an
extracellular increase in adenosine triphosphate (ATP)
concentration, as originally proposed in [28] and later
slightly modified and solved in [29,30]. The aim of the
optimization is to minimize the intracellular oscillations
behavior with the help of two binary control variables (i,
i,). The values of these variables and the time of the
switching from one mode to another, together with the
time-independent parameter (p,), are the decision varia-
bles. The performance index is formulated as the minimi-
zation of the state variables deviations with respect to
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Optimal trajectories for the drug displacement problem with path constraint. Optimal state trajectories (A) and
control profile (B) for the drug displacement problem with path constraint on the warfarin concentration amount. Solution

found with the hybrid global-local strategy.

certain desired values (see Table 2) over a fixed time hori-
zon:

2 &
min J J ij(xj—x;)zﬂ,vSil+w6i2 dt
xip 0o | 4
j=1
(23)
subject to

kaxyxy _ ksxix3 (24)

X, =k, +kyx, —
! ! 21 x1+Kgq4 x1+Kg

. ) kgx)
Xy =(1—iy)kx; ———=— 25
R (25)
iy = KLOY2X3YA g g oo RI6Ys  xa 0 kiaxs g kiavs
x4+Kq1 x3+K17 10 p1x3+K15 x3+K1s5
(26)

. k k

x4=_ 10x2x3x4 + 16x3 _x74 (27)

x4+K11 x3+Ky7 10

and the time-independent parameter: 1 < p, < 1.3, where

state variables represent the concentration of activated G-
protein (x,), active phospholipase C (x,), intracellular cal-
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Table 2: Parameter values for the calcium oscillator problem

http://www.biomedcentral.com/1471-2105/10/199

Model Parameters (Reaction Coefficients)

Weighted Coefficients

Initial Values Desired Values

k, = 0.09 ke = 32.24 Kis=0.16 w, =50
k, = 2.30066 Ky = 29.09 ki = 4.85 w,=5.0
ks = 0.64 ko= 5.0 K,,=0.05 w;y= 15.0
K,=0.19 K =267 t:=220 w,=25.0
ks = 4.88 k;,=07 ws = 50.0
ke=1.18 k3= 1358 w,= 5.0
k= 2.08 kig= 153.0

x,(0) = 0.03966 s
X} = 678677

x,(0) = 1.09799
20) X5 =22.65836

x3(0) = 0.00142
) X} =038431

x4(0) = 1.65431
) xj =0.28977

cium (x;), and intra-ER calcium (x,). The time-fixed

parameters together with the initial concentrations,
desired values of the state variables and weighted coeffi-
cients are described in detail in the Table 2. The control
variables are chosen binaries (i, i,), which refer to the

concentrations of an uncompetitive inhibitor of the
PMCA (plasma membrane Ca2+) ion pump and the inhib-
itor of PLC activation by the G-protein. The influence of
the first inhibitor is modeled according to Michaelis-
Menten kinetics while that of the second inhibitor is mod-
elled with the help of the term (1 - i,), where i, = 1 corre-
sponds with the maximum amount of the inhibitor. An
additional equality constraint was added to fix the final
time at the fixed value (t;). The best performance index

reported in [29] was 1538.00, where this reported cost
. 22 4 12
function corresponds to the term Jo zjzl(xj —xj)7dt.

These authors reported that the system is extremely sensi-
tive to small perturbations in the stimulus.

We first solved this problem using the multistart module
of the DOTcvpSB toolbox, using MISQP as local solver.
The control discretization level was set to a value of p = 5
with free transition times and two binary decision varia-
bles for the controls. The multistart number of runs was
set to 100, with randomly generated initial values for all
the decision variables in each run. The set of solutions
found were spread in a quite wide range, a clear sign of
multimodality. The histogram of these solutions is shown
in Figure 7, where performance index values worse than
2500.00 are not shown. The best value (for the reduced
cost term above) obtained by the multistart was 1641.03,
which is still far from the published solution reported
above.

In a second step, we solved this problem using the MITS
hybrid strategy, while keeping all the other settings as

stated above. The best solution found by MITS was
1542.50, which is very close to the value reported in [29].
The corresponding optimal trajectories are shown in Fig-
ure 8 where it can be seen how the optimal control poli-
cies rapidly cancel the oscillations.

Conclusion

Here we have presented DOTcvpSB, a MATLAB toolbox
for solving dynamic optimization problems from the
domain of systems biology. This toolbox is able to handle
very general mixed-integer dynamic optimization formu-
lations, thus providing the opportunity to state and solve
complex problems, such as e.g. optimal control for
obtaining a desired biological performance, dynamic
analysis of network designs or computer aided design of
biological units. Problems are easily defined via a com-
pact input structure, or optionally using a graphical user
interface.

This toolbox has been developed placing particular care in
providing state-of-the-art solvers in order to ensure a good
compromise between computational robustness and effi-
ciency. DOTcvpSB offers two key and unique advantages:

e It incorporates a suite of local and global optimiza-
tion solvers so as to handle a wide range of problems,
including non-convex (multimodal) ones.

e It offers several optimization strategies, including
single, multistart, sucessive reoptimization and hybrid
methods. These strategies can be effectively used to
enhance the solution of difficult multimodal prob-
lems.

The capabilities and performance of DOTcvpSB were suc-
cessfully tested using several challenging benchmarks
problems taken from the open literature. The results con-
firmed that the toolbox was able to get excellent results in
reasonable computation times, showing a good compro-
mise between robustness and efficiency.
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Optimal trajectories for the calcium oscillator problem. Optimal state trajectories (A, B, C, D) (blue lines), desired
states (dotted red lines), and control profiles (E, F) (green lines) for the calcium oscillator problem with two control variables.

Awvailability and requirements
Project name: DOTcvpSB, a Software Toolbox for
Dynamic Optimization in Systems Biology

Project homepage: The toolbox can be downloaded from
the following website, which also offers documentation
(installation instructions, manual, tutorial and video
demos): http://www.iim.csic.es/~vdotcvpsb/

Operating system(s): Windows. A Linux version is
planned for the near future.

Programming language: MATLAB versions 7.0-7.6
(2008a) is required, and the MATLAB Optimisation Tool-
box and Symbolic Math Toolbox are highly recom-
mended.

Other requirements: The toolbox distribution includes
most of the needed external solvers: IVP solver CVODE

(part of SUNDIALS suite), and (MI)NLP solvers ACOmi,
DE, IPOPT, MISQP, MITS and SRES. The Optimization
Toolbox is needed if the user wants to use FMINCON as a
NLP solver. FORTRAN compilation to speed-up computa-
tions is secured by a combination of gnumex and MinGW,
packages which are distributed with the toolbox as well.
On the other hand, the Symbolic Math Toolbox is needed
if automatic generation of sensitivities and Jacobian are
desired (recommended). Users must install the SBML and
libSMBL toolboxes in order to be able to import SBML
models.

License: The toolbox can be obtained and used for free for
academic purposes, and is under the creative commons
license. The conditions of the license can be found on:
http://creativecommons.org/licenses/by-nc-nd/3.0

Any restrictions to use by non-academics: Following the
previous license.
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Abbreviations

ACOmi: Ant Colony Optimization for Mixed Integer non-
linear programming problems; ATP: Adenosine TriPhos-
phate; BDF: Backward Differentiation Formula; CVP:
Control Vector Parameterization; DE: Differential Evolu-
tion; FMINCON: Find MINimum of CONstrained non-
linear multivariable function; MISQP: Mixed-Integer
Sequential Quadratic Programming; GUI: Graphical User
Interface; IPOPT: Interior Point OPTimizer; IVP: Initial
Value Problem; LMM: Linear Multistep Method; MI:
Mixed-Integer; MIDO: Mixed-Integer Dynamic Optimiza-
tion; MINLP: Mixed-Integer Non-Linear Programming;
MITS: Mixed-Integer Tabu Search algorithm; NLP: Non-
Linear Programming; ODEs: Ordinary Differential Equa-
tions; SBML: Systems Biology Markup Language; SRES:
Stochastic Ranking Evolution Strategy.
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