@,

BiolMed Central

Identifying set-wise differential co-expression in gene expression
microarray data
Sung Bum Cho!?, Jihun Kim! and Ju Han Kim*1.2

BIVIC Bioinformatics

Research article

Address: 'Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine, Seoul 110-799, Korea and
2Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-747, Korea

Email: Sung Bum Cho - c¢sb1749@snu.ac.kr; Jihun Kim - djdoc@snu.ac.kr; Ju Han Kim* - juhan@snu.ac.kr
* Corresponding author

Published: 16 April 2009
BMC Bioinformatics 2009, 10:109  doi:10.1186/1471-2105-10-109

Received: 28 May 2008
Accepted: 16 April 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/109

© 2009 Cho et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Previous differential coexpression analyses focused on identification of differentially
coexpressed gene pairs, revealing many insightful biological hypotheses. However, this method
could not detect coexpression relationships between pairs of gene sets. Considering the success
of many set-wise analysis methods for microarray data, a coexpression analysis based on gene sets
may elucidate underlying biological processes provoked by the conditional changes. Here, we
propose a differentially coexpressed gene sets (dCoxS) algorithm that identifies the differentially
coexpressed gene set pairs between conditions.

Results: dCoxS is a two-step analysis method. In each condition, dCoxS measures the interaction
score (IS), which represents the expression similarity between two gene sets using Renyi relative
entropy. When estimating the relative entropy, multivariate kernel density estimation was used to
model gene-gene correlation structure. Statistical tests for the conditional difference between the
ISs determined the significance of differential coexpression of the gene set pair. Simulation studies
supported that the IS is a representative measure of similarity between gene expression matrices.
Single gene coexpression analysis of two publicly available microarray datasets detected no
significant results. However, the dCoxS analysis of the datasets revealed differentially coexpressed
gene set pairs related to the biological conditions of the datasets.

Conclusion: dCoxS identified differentially coexpressed gene set pairs not found by single gene
analysis. The results indicate that set-wise differential coexpression analysis is useful for
understanding biological processes induced by conditional changes.

Background

Microarray data analysis is important for evaluating glo-
bal gene expression profiles and has been widely applied
to functional genomics. It enables identification of dis-
ease marker genes [1-3] and gene expression regulatory
networks [4-6]. It can also be used to evaluate evolution-
ary conservation of gene coexpression [7].

Among the microarray data analysis methods, coexpres-
sion analysis has provided information about genetic reg-
ulatory relationships [8-10]. Cluster analysis can also be
considered coexpression analysis, determining correlated
groups of genes that are tightly coregulated [11].

In contrast to coexpression analysis that determines the
degree of coexpression of a gene pair or gene set under a
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certain condition, differential coexpression analysis deter-
mines the difference in coexpression under different con-
ditions, which may relate to key biological processes
provoked by changes in environmental conditions [12-
16].

Differential coexpression analysis can be divided into two
types. The first identifies a gene pair that has significant
coexpression differences between conditions. For exam-
ple, Lai et al. identified differentially coexpressed gene
pairs using expected conditional F-statistic (ECF), a mod-
ified F statistic [13]. Choi et al. detected gene pairs with
significant differential coexpression between normal and
cancer samples through a meta-analytic approach [14].
The second type of differential coexpression determines
whether a gene cluster (or set) shows significant condi-
tional differences in the degree of coexpression between
genes in that cluster. To measure the degree of coexpres-
sion under each condition, Kostka and Spang used an
additive model-based scoring system [15], and Watson
used t-statistics [16].

No method, however, determines whether a pair of gene
sets shows significant difference in expression profiles
under different conditions. In single gene pair analysis,
detection of the differentially coexpressed pairs led to var-
ying hypotheses associated with biological or experimen-
tal conditions. Likewise, differentially coexpressed gene
set pairs may be related to biological processes induced by
certain conditions. For example, if p53 signaling and
tumor necrosis factor (TNF) signaling pathways show dif-
ferential coexpression in diseased conditions, the path-
ways are likely to be connected to the pathophysiology of
the disease. Moreover, gene set-wise approaches are
advantageous for microarray data analysis in terms of
being better able to detect subtle changes and create bio-
logically interpretable results than single gene-wise analy-
sis [17]. Thus, to determine whether a gene set pair is
differentially coexpressed under different conditions, we
developed the dCoxS (differential coexpression of gene
sets) algorithm, which has the benefits of both differential
coexpression analysis and gene set-wise analysis.

Here we define the differential coexpression of a gene set
pair as a significant difference in the expression similarity
of two gene sets under different conditions. The two gene
set expression matrices consist of same samples and differ-
ent genes. We used biological pathways as predefined
gene sets and analyzed the differential coexpression of the
biological pathway pairs between conditions. The dCoxS
algorithm identified the differentially coexpressed path-
way pairs through the following steps (See Figure 1). The
expression similarity of two pathways was measured with
an interaction score (IS) using the Renyi relative entropy.
The Renyi relative entropy is equal to the distance
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between two samples. Because the two gene sets have the
same sample sets, we obtained the same number of sam-
ple-wise distances from the two expression matrices. After
the entropies of the two pathway expression matrices were
calculated, the IS was determined by a correlation coeffi-
cient between the entropies of the two pathways. As the IS
uses sample-wise distances, it can be calculated whether
the two pathways contain the same genes or not. Finally,
dCoxS analyzed the change in the ISs between conditions.
The validity of dCoxS was evaluated with simulation data-
sets and two public microarray datasets.

Results

Simulation study

We used simulation data to evaluate whether the IS
reflected the similarity between two expression matrices.
Pathway expression matrices (n =700 = 350 x 2) from two
real datasets were used. For each gene set expression
matrix, we generated six dissimilar expression matrices by
adding random values generated from a normal distribu-
tion with different standard deviations (SDs; see meth-
ods). As the SD increased, the similarity between the
original and the simulation data decreased because larger
random values were added to the original matrices with
the increased SDs. The Mantel statistics computed using
five different metrics (Bray, Canberra, Euclidean, Gower
and Manhattan) indicated that the average similarity
between the original and the simulation data decreased
with the increased SDs (Table 1). Like Mantel statistics
with the five metrics, the mean IS decreased as the SD of
the normal distribution increased. The differences of the
mean ISs between different SD groups were statistically
significant (p value < 0.001).

We used the same simulation data to compare the IS and
the Mantel statistics with the five different metrics. Table
1 shows that the mean IS had the lowest similarity score
at a given SD. The differences between the IS and the other
statistics were statistically significant at all SDs (p value <
0.001).

Lung cancer data analysis results

We tested 61,075 pairs from the 350 pathways to find dif-
ferentially coexpressed pathway pairs in the real data anal-
ysis. The IS of a pathway pair was computed for each
condition, and the statistical significance of the difference
in the ISs was tested.

In the lung cancer data analysis, we used a strict threshold
(p value = 2.2E-16) to determine the significance of differ-
ential coexpression. Since 53% of p values from paramet-
ric tests were lower than the Bonferroni adjusted p value
8.187E-7 (@ = 0.05, n = 61,075 gene set pairs), we chose
the strict threshold to focus on more significant results.
The threshold was one percentile of the p values obtained
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Overview of the dCoxS algorithm. Gene expression profiles of two gene sets are on the upper panel. In condition A,
expression profiles of gene sets | and 2 are very similar. The similarity is reduced in condition B, and co-varies in a reverse way
in condition C. The dCoxS quantifies the similarities and tests the significance of the change in the similarities across condi-
tions. First, the sample-wise Renyi relative entropy matrix is obtained for each gene set. Then, the correlation coefficient of the
upper-diagonal elements of the matrices, which represents the IS, is calculated for each condition. Diagonal heat maps in the
middle represent the upper-diagonal elements of the sample-wise Renyi relative entropy matrices. The heat maps are trans-
formed to the scatter plots in the lower part, and the fitted lines of the plots represent the ISs.

from dCoxS analysis of all pathway pairs. In the analysis,
three p values were obtained from testing the ISs of the
normal and the diseased conditions and testing the differ-

ence of the ISs between the samples. Even if the condi-
tional difference of the ISs was significant, one of the IS p

values from two conditions could be nonsignificant.
Thus, we selected significant pairs only when all three p
values were lower than the threshold.
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Table I: Evaluation of distance measures by simulation study.
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sD

Distance Metric 0.05 0.1 0.2 0.3 0.4 0.5

IS 0.9982 0.8633 0.6133 0.4232 0.3000 0.2367
Gower 0.9989 09177 0.7715 06178 0.5016 0.4128
Canberra 0.9994 0.9477 0.8314 0.6846 0.5567 0.4571
Bray 0.9995 0.9571 0.8575 0.7248 0.6056 0.5085
Manhattan 0.9995 0.9574 0.8587 0.7276 0.6102 05137
Euclidean 0.9998 0.9748 0.9031 0.7950 0.6819 0.5851

SD: standard deviation, IS: interaction score

Sixty-five (0.11%) of the 61,075 pathway pairs were sig-
nificant within the criteria (see Table S1 in additional file
1). Thirty-eight of the 65 pairs did not have shared mem-
bers. For the pairs with shared genes, we applied both
assigning and nonassigning methods (see methods).
Because we found no significant pairs using the nonas-

signing method, we chose the better assignment with a
bigger difference of Fisher's Z-transformed IS (dZIS). The
assigning method returned 27 significant pairs. All pairs
were also statistically significant in the permutation test (p
value < 8.0E-7). Table 2 shows the top 10 pathway pairs
sorted by the dZIS value. The Cytokine Network and TNF/

Table 2: Top 10 pathway pairs showing significant differences in Z-transformed interaction scores in the lung cancer dataset.

Pathway pair # of OGs IS dZIS
NL SCC

Cytokine Network (37) 7 097 056 13.8

TNF/Stress-Related Signaling (54)%

Estrogen-responsive protein Efp controls cell cycle and breast tumor growth (24) 0 097 055 13.6

Propanoate_metabolism (26)

Activation of Src by Protein-tyrosine phosphatase alpha (22) 0 096 0.59 12.2

Nuclear_Receptors (51)

Double-Stranded RNA-Induced Gene Expression (15) 0 096 0.56 11.8

Neuroregulin receptor degradation protein-1 Controls ErbB3 receptor recycling (13)

Acute Myocardial Infarction (23) 11 096 0.60 1.5

Angiotensin-converting enzyme 2 regulates heart function (18)$

ALK in cardiac myocytes (52) 0 096 0.1 1.4

Inositol_phosphate_metabolism (146)

p38 MAPK Signaling Pathway (69) 10 095 054 1.3

Apoptosis (73)8

fMLP-induced chemokine gene expression in HMC-1I cells (62)$ 2 095 056 11.2

PTEN-dependent cell cycle arrest and apoptosis (25)

BRCA-dependent Ub-ligase activity (18) 0 096 0.6l 11.2

Aminosugars_metabolism (13)

Endocytotic role of NDK, Phosphins and Dynamin (21) 0 096  0.65 11.0

Pyruvate_metabolism (40)

# of OGs: number of overlapping genes in two gene sets, NL: normal lung, SCC: squamous cell carcinoma, dZIS: difference of Z-transformed IS, ():
number of genes in a gene set, Nonparametric p value < 8.0E-7, §: Shared genes are assigned to this pathway.
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Stress-related pathway pair yielded the largest dZIS. The
second largest dZIS was that of the Estrogen-responsive pro-
tein Efp-related and Propanoate metabolism pathway pair.
Many important carcinogenesis-associated pathways such
as cell cycle, apoptosis and telomerase pathways were
found (see Table S1 in additional file 1).

For gene pair-wise differential coexpression tests, the cor-
relation coefficients of each gene pair were obtained, and
the conditional difference of the correlation coefficients
was tested using Bonferroni's multiple testing correction.
In contrast to the set-wise analysis results, there were no
significant results in the single gene differential coexpres-
sion analysis.

Figure 2 shows the expression profiles and the ISs of the
Cell Cycle: G1/S Check Point and Inhibition of Cellular Pro-
liferation by Gleevec pathways. The expression profiles of
the pathways seem less similar in lung cancer than in nor-
mal lung samples by visual inspection. This difference is
more evident in the IS scatter plots (Figure 2, lower
panel).

The dynamic relationship between the differentially coex-
pressed gene sets can be expanded to construct a network
of closely collaborating gene sets. Table 3 summarizes the
five major pathways of the network, showing significant
differential coexpression with several other pathways (see
Table S2 in additional file 1 for the comprehensive list).
The Thrombin signaling and protease-activated receptors path-
way showed differential coexpression with five other
pathways, which was the highest number of interacting
pathways.

Duchenne's muscular dystrophy data analysis results

In the Duchenne's muscular dystrophy (DMD) data anal-
ysis, we used the tenth percentile of the p values (= 1.18E-
8) obtained from the parametric test as a cutoff threshold
because only three pairs of gene sets were significant
within the one percentile threshold. Although we
increased the p-value threshold, it was still lower than the
Bonferroni adjusted p values (= 8.187E-7). When the
threshold was applied as in the lung cancer data analysis,
30 pathway pairs were significant (see Table S3 in addi-
tional file 1). The results of the permutation test for the 30
pathway pairs were all significant (p value < 8.0E-7).
Twenty-five of the 30 pairs did not have shared members.
Of those that did have shared members, we found no sig-
nificant pair using the nonassigning method; the assign-
ing method returned five significant pairs with a one-way
assignment (see Table S3 in additional file 1). As with the
lung cancer data, single gene differential coexpression
analysis detected no significant results.

http://www.biomedcentral.com/1471-2105/10/109

Table 4 shows the pathway pairs that have the top 10
dZISs. The Beta-arrestins in GPCR Desensitization and D4-
GDI Signaling pathway pair had the highest dZIS value.
The D4-GDI Signaling and Role of arrestins in the activation
and targeting of MAP kinases pathway pair had the second
highest dZIS. Figure 3 shows the scatter plots of relative
entropies and the ISs of the six selected pathway pairs,
which may be related to the pathophysiology of DMD.

Table 5 shows the major pathways in the DMD data anal-
ysis results (see Table S4 in additional file 1 for the com-
prehensive list). The D4-GDI Signaling pathway had the
highest number of interacting pathways (n = 10). The
Monoamine_GPCRs pathway was connected to three oth-
ers, which was the second highest number of interacting
pathways.

Discussion

In the present study, we developed a method for identify-
ing significant changes in expression similarity (or coex-
pression) of two gene sets under two different conditions.

An important feature of this method is the transformation
of the similarity between multivariate expression matrices
into a single IS (see Figure 1 and 2). By visually inspecting
original expression matrices, it is hard to quantify the
expression similarity between two gene sets or its condi-
tional change. The IS makes the change scalable. The
advantage of this multivariate approach becomes more
apparent when compared with a single gene approach.
Single gene differential coexpression analysis failed to
identify significant gene pairs in either dataset. The
dCoxS, however, successfully identified significant gene
set pairs biologically relevant to the conditional changes.

The idea of measuring matrix similarity originated from
Mantel statistics. The Mantel statistics measure the simi-
larity of two matrices using the correlation coefficient of
sample distances [18]. Instead of other well-known dis-
tance metrics, however, we used the quadratic Renyi rela-
tive entropy with multivariate kernel density estimation to
compute sample distances. The Renyi relative entropy is
calculated by subtracting each sample's Renyi entropy,
which has a metric property [19]. Therefore, it is equiva-
lent to the distances between samples. Because the
entropy was estimated according to the multivariate den-
sity, it may elucidate the correlation structure between var-
iables. Because gene sets are defined by biological
knowledge, the member genes are likely to have an inter-
nal correlation structure. To model the correlation struc-
ture in a gene set, the Renyi relative entropy may be an
appropriate distance metric.

The simulation study validated our assumptions. We

tested whether the IS represents the similarity between

Page 5 of 13

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:109

Cell Cycle: G1/S
Check Point

Inhibition of
Cellular
Proliferation by
Gleevec

Figure 2

40

Inhibition of Cellular Proliferation by Gleevec

Normal Lung

e =" =y
=
R S

|

I:u'
" |

s B
ik .1L||.
b R
r SalHL

e __ i ==
et

|
il

) 'I"

' 'y bk
.'.Ihl'

III
¥
i

P"
d

0 20 40

X
Cell Cycle: G1/S Check Point

IS = 0.92

b

Inhibition of Cellular Proliferaion by Gleevec
» 0 10 : 10 ) 0

SCC of Lung
—— | —
- - -
o,
- - =8
-i -E i"—- i.
=__'-. =_-,_-. LI ho
i— o= 5 =ri'.'-"-., ==
-V_EEh""-V - | —
:= | ] — ——
. __- !- =
o i e
g e
R g
. — e
e d:-.=!- _.'I =
A
SR =
S By ey D
e g
B
= - - -
B = F o oy acs =
;"":'—'- - = _d
e - N a E
%
e
.l."r :.".:.-. , .
P

.
-

“

Cell Cycle: G1/S Check Point

IS = 0.54

http://www.biomedcentral.com/1471-2105/10/109

The result of analysis of the cell cycle: GI/S check points and the inhibition of cellular proliferation by Gleevec
pathway pair in the lung cancer dataset. The upper and middle panels show gene expression profiles of the cell cycle:G1/S
check points pathway and the inhibition of cellular proliferation by Gleevec pathway, respectively. The similarity between the path-
ways and the conditional change in the similarity are represented by the IS plots in the lower panel. Although the expression
patterns of the raw pathway expression matrices appear to be more similar in normal lung samples, it is hard to quantify the
change of the similarity in heat maps, whereas the similarity between the pathways and its conditional change is easily identified

in the IS plots.
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Table 3: Major pathways showing significant differential coexpression with other pathways in the lung cancer dataset.

Pathway K Sum(ZIS)
Thrombin signaling and protease-activated receptors (30) 5 43.9
Cell Cycle: G1/S Check Point (42) 4 39.0
Activation of Src by Protein-tyrosine phosphatase alpha (13) 3 31.6
TNF/Stress-Related Signaling (29) 3 315
Pyruvate_metabolism (18) 3 30.3

K: number of pathways showing differential coexpression, Sum(ZIS): total sum of Z-transformed IS, (): number of genes in a gene set.

two gene expression matrices. Because random values
were generated with increasing SDs, it is likely that simu-
lated matrices with higher SDs are more dissimilar to the
original matrix. Therefore, ISs between the original and
the simulated matrices should be lower at higher SDs. We
found that the average IS decreased as the SD increased,
and the differences of the mean ISs were significant (Table

1). This finding indicates that the IS may represent the
expression similarity between two gene sets.

Second, we compared the IS and Mantel statistics using
various distance metrics. All five distance metrics of the
Mantel test use the sum of squared or absolute values of
differences between the gene expression values of two
sample vectors. Therefore, the same distances can be

Table 4: Top 10 pathway pairs showing significant difference of Z-transformed interaction scores in the DMD data.

Pathway Pair # of OGs IS dZIS
NM DMD

Hs_beta-arrestins in GPCR Desensitization (15) 0 095  -0.71 14.7

D4-GDil Signaling Pathway (22)

D4-GDI Signaling Pathway (22) 0 094  -0.65 13.2

Role of arrestins in the activation and targeting of MAP kinases (22)

Eicosanoid Metabolism (25) 0 094  -0.66 13.2

Lysine_degradation (28)

Regulation of hematopoiesis by cytokines (28) 0 092  -0.66 12.6

Monoamine_GPCRs (34)

Aspirin Blocks Signaling Pathway Involved in Platelet Activation (35) 0 090 -0.68 12.3

D4-GDil Signaling Pathway (22)

D4-GDI Signaling Pathway (22) 0 079  -0.80 .5

RB Tumor Suppressor/Checkpoint Signaling in response to DNA damage (23)

T Helper Cell Surface Molecules (16) 0 088  -0.64 1.4

TGF beta signaling pathway (34)

D4-GDI Signaling Pathway (22) 0 084 -0.68 1.0

Trka Receptor Signaling Pathway (22)

Aspirin Blocks Signaling Pathway Involved in Platelet Activation (35) 0 0.8l -0.72 10.8

Msp/Ron Receptor Signaling Pathway (14)

Msp/Ron Receptor Signaling Pathway (14) 0 0.79 -0.72 10.5

Roles of arrestin-dependent Recruitment of Src Kinases in GPCR Signaling (28)

# of OGs: number of overlapping genes in two gene sets, NM: normal muscle, DMD: Duchenne's muscular dystrophy, dZIS: difference of Z-
transformed IS, (): number of genes in a gene set, Nonparametric p value < 8.0E-7.
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obtained even if the sample expression vectors have differ-
ent combinations of up and down gene expressions.
Under these conditions, the Renyi relative entropy deter-
mines different sample distances because the multivariate
kernel density estimation was used for the entropy com-
putation (see Additional file 2 for detailed examples).
Thus, the similarity score from the Mantel statistics may
be higher than the IS for the same data. As expected, all
Mantel statistics were higher than the IS on average and

the IS was the lowest score among the similarity measures
in the simulation study (Table 1). Biologically, distances
from a sample vector to two different sample vectors
should be different. Therefore, we concluded that the IS a
representative score for dissimilar gene expression matri-
ces.

In this analysis, we applied both parametric and nonpar-
ametric methods for testing the significance of differential

Table 5: Major pathways showing significant differential coexpression with the other pathways in DMD dataset.

Pathway Name

K Sum(ZIS)

D4-GDil Signaling Pathway (30)

Monoamine_GPCRs (42)

Trka Receptor Signaling Pathway (13)

Aspirin Blocks Signaling Pathway Involved in Platelet Activation (29)
Msp/Ron Receptor Signaling Pathway (18)

0 1115
30.6
29.2
23.1
21.4

NN W Ww —

K: number of pathways showing differential coexpression, Sum(ZIS): total sum of Z-transformed IS, (): number of genes in a gene set.
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coexpression between two pathways. Because many p val-
ues were lower than the Bonferroni adjusted p values, we
used strict threshold cutoffs for more reliable results.
However, the correlation between the entropies may be
different from the original assumptions of Fisher's Z sta-
tistics. Therefore, to check the selected pathway pairs, the
results were reevaluated using a nonparametric permuta-
tion test. The nonparametric test also showed that the
results were significant with 1.25 x 10¢ permutations in
each dataset.

Lung cancer data analysis revealed many pathways related
to the pathophysiology of lung cancer. For example, the
Cytokine Network and TNF/Stress Related Signaling pathway
pair showed the highest dZIS (Table 2). Many of the mem-
ber genes of these pathways are known to be associated
with squamous cell cancer of the lung [20,21]. The
Thrombin signaling and protease-activated receptors pathway,
which had the highest number of interacting pathways
and sum of corresponding dZISs (Table 3), is known to be
involved in the angiogenesis of lung cancer [22]. It is note-
worthy that the Cell Cycle: G1/S Check Point and Inhibition
of Cellular Proliferation by Gleevec pathway pair was
detected (see Figure 2 and Table S1 in additional file 1).
Although the Gleevec was originally developed for the
treatment of chronic myelogenous leukemia, it has
already been used for treating many kinds of solid tumors,
including lung cancer [23]. This suggests a novel avenue
for exploring the mechanism of Gleevec in solid tumors.
We found a strong tendency that all pathway pairs had
lower ISs in lung cancer samples than in normal samples
(Table 2). This suggests perturbed normal molecular reg-
ulatory mechanisms in cancer.

DMD data analysis provided a new hypothesis about
muscle cell degeneration mechanisms. The D4-GDI Sign-
aling pathway showed the highest dZIS with the Beta-
arrestins in GPCR Desensitization pathway (Table 4) and
also had the highest number of interacting pathways
(Table 5). From previous research, D4-GDI is known to be
associated with cytoskeletal changes in apoptotic cells
[24]. Therefore, a significant change of the IS with the
other pathways implies that the D4-GDI Signaling path-
way has an important role in propagating the abnormal
genetic features of DMD. While all ISs in the lung cancer
dataset showed positive signs in the normal lung and lung
cancer samples, the ISs of 23 pairs in the DMD dataset
showed the opposite signs of the normal muscle and
DMD samples (see Table S3 in additional file 1). This sug-
gests different degrees of perturbation of gene expression
between lung cancer and DMD.

The lung cancer dataset showed a much larger number of
significant pathway pairs than the DMD dataset. Massive
genetic alterations in cancer, including mutation, inser-

http://www.biomedcentral.com/1471-2105/10/109

tion, deletion, and translocation, may result in severe per-
turbations of gene and pathway regulations as shown in
previous studies [20,25]. DMD, on the contrary, has only
a mutated dystrophin gene, and the pathology is largely
confined to muscle tissue. The lower number of results in
the DMD dataset compared with lung cancer may be
explained by the limited change of gene expression of dys-
trophin-related genes. Previous studies also support this
assumption [26,27]. Thus the gap in the number of signif-
icant results in the present study may reflect the genomic
alteration of the datasets.

Pathways often share common genes. We used two
approaches for such cases: assigning and not assigning the
shared members to one of the pathways (see methods).
When we assigned the shared members to one of the path-
ways, there remained a subset in the other pathway.
Therefore, any biological interpretation of the pathway
pairs should be done carefully, especially when the com-
mon genes occupy a large portion of the original pathway.
This approach can be used to find a novel subset of a path-
way that is differentially coexpressed with another path-
way when two pathways have shared members. The
discovery of the novel substructures of pathways will be
investigated in further research.

Conclusion

Here we proposed the dCoxS algorithm to determine gene
set pairs showing significant differential coexpression
under different conditions. The coexpression relation-
ships between gene sets can be used to understand the
biological mechanisms caused by conditional changes.

Methods

Simulation datasets

To validate whether the IS represents the similarity
between two gene expression matrices, we generated dis-
similar expression matrices using an original expression
matrix. After selecting a pathway expression matrix from
real datasets, we added random values to each element of
the original expression matrix.

In the above equation, SX;; and Xj; indicate the j-th gene
expression values of the i-th sample in the simulated and
original expression matrices, respectively. Random values
were generated from the normal distributions (x = 0) with
different standard deviation (SD = o) values. Conse-
quently, as the SD increases, the similarity between the
original and simulated matrices decreases. Six different SD
values were applied (SD = 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5)
in this analysis; that is, one original matrix had six dissim-
ilar matrices and corresponding ISs. This procedure was
repeated for 700 pathway expression profiles from two
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real datasets (see below). ISs were calculated between the
original and dissimilar matrices, and the means of the 700
ISs originating from the different SDs were compared.

In addition, using the veganR package, the Mantel statis-
tics between the matrices were computed with five dis-
tance measures: Bray, Canberra, Euclidean, Gower and
Manhattan. The IS and the five different Mantel statistics
were then paralleled at each SD. For comparison, a paired
t-test was used.

Real datasets

We used two benchmark datasets, lung cancer and DMD
microarray data. The lung cancer dataset, consisting of 17
normal lung and 21 squamous cell carcinoma samples,
was downloaded from the Broad Institute http://
www.broad.mit.edu/[28]. The Affymetrix HU-95 Av2
platform was used for the lung cancer microarray experi-
ment. In the DMD dataset (GSE1004), 11 normal and 12
DMD patient muscle samples used the same microarray
platform [29]. The dataset was downloaded from the
Gene Expression Omnibus (GEO) website http://
www.ncbi.nlm.nih.gov/geo/. Robust Multichip Averaging
(RMA) was applied to the datasets for microarray data
normalization [30].

Gene sets

Biological pathway information was used to define gene
sets. We used the human biological pathways in the
ArrayXPath knowledge base [31] and mapped the micro-
array probes onto the pathway nodes. In this analysis, we
arbitrarily set the minimum size (i.e. the number of mem-
ber nodes) of a valid gene set as 10 and found 350 path-
ways for the Affymetrix HU 95 Av2 platform.

Overview of dCoxS

Figure 1 depicts the overall analysis flow of the dCoxS
algorithm. Original expression matrices of two gene sets
were transformed into sample pair Renyi relative entropy
matrices for each condition. Consequently, two square
matrices containing each sample pair's relative entropy
were generated for each condition. Second, the IS, which
is a correlation coefficient of the corresponding upper-
diagonal elements of the two entropy matrices, was calcu-
lated for each condition. Finally, the statistical signifi-
cance of the difference of the Fisher's Z-transformed ISs
between the conditions was tested. For example, when we
determined the IS of two pathway expression matrices
with dimensions 25 by 20 and 15 by 20 (gene number by
sample number) in a condition, we calculated 190 (=
(20*19)/2) distances between samples for each pathway
expression matrix. We then obtained the ISs by calculating
correlation coefficients between the two distances.

http://www.biomedcentral.com/1471-2105/10/109

Coexpression of gene sets

To measure the degree of coexpression between gene sets,
dCoxS used the variation of expression levels determined
by calculating the Renyi relative entropy. The Renyi
entropy is a generalized form of Shannon entropy [32]. It
is given by equation (2), where X is a stochastic variable
with a probability density function fx.

HR:LLkg(ﬁﬂVM) a>0, azl (2)

Because of its convenience of estimation from the data in
anonparametric manner, the quadratic Renyi entropy was
used as a cluster evaluation function [19]. In the present
study, we used the quadratic Renyi relative entropy to
measure the distance between two samples (or hybridiza-
tions):

DZ(P||Q)=Of_llogU(p)“(q) B J=2log[z]:1og;2((g
]

3)
where ]A‘h(Si) and fh(S j) denote the probabilistic density

of the different samples i and j in an estimated multivari-
ate distribution from a gene set expression matrix. Since &
= 2 and a sample was used, the log ratio of the density of
the different samples approximated the quadratic Renyi
relative entropy. Although log(p%) = alog(p), « is deleted
because it has no effect on the calculation of the IS. The
density was estimated using the Parzen window density
estimation with the Gaussian kernel function. We used a
multiplicative kernel for the density estimation, which
can be expressed as:

n

fe =2

i=1

(4)

d
1| =X
Ii[hf K
j=1 J

where d is the number of variables, n is the sample size,
and K denotes a univariate kernel function [33]. In this
analysis, n is the number of samples in a condition, and d
is the number of genes in a pathway. In equation (4), X;;
is the expression value from the i-th observation of the j-
th gene in a gene set expression matrix, and x is a vector
containing the expression values of d genes in a sample.
For bandwidth () selection of each dimension, we used

Scott's rule in equation (5) in which &j is the estimated

variance of the j-th variable [33].

hj :nl/(d+4)éj (5)
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For two gene sets under each condition, we obtained two
relative entropy matrices of all sample pairs. In equation
(6), as a measure of gene set coexpression under given
experimental conditions, we defined the IS, which is the
Pearson's correlation coefficient between the upper-diag-
onal elements of the relative entropy matrices of the two
gene sets.

Si<j(REC1-REC2)(REC1-REC2)

IS

\/Zi<j (REC1-REC1)? \/Ziq(REGz -REG2)2
(6)

In the above equation, REG! and REC? are the matrices of
the Renyi relative entropy of gene sets, G, and G,, respec-
tively. REC is computed using the following equation.

REC = x:xijzlogmi,szz,&...,N (7)
fh(S;)

Differential coexpression of gene sets under different
conditions

After computing IS, dCoxS used Fisher's Z-transformation
of the IS in equation (8) to measure the differential coex-
pression of two gene sets under different conditions.

Zf=;><ln(1j§) (8)

The p value of the difference in Zf values was calculated
using the standard normal distribution.

(Zf1-2f3)
TN N3 )

Zf, and Zf, are the Fisher's Z-transformed values of the IS
under two different conditions. N; and N, are the num-
bers of upper-diagonal elements of sample pair matrix,
which is calculated by n(n-1)/2 (n = number of samples),
for each condition.

P(Z 2|

In the differential gene set coexpression test, we obtained
parametric p values and selected significant results accord-
ing to the threshold determined from the p-value distribu-
tion. The selected pathway pairs were retested in a
nonparametric manner. The nonparametric p value was
determined by the number of cases where the difference
of permuted ISs was larger than that of the original ISs.
Permutation-based hypothesis testing was performed
using two dimensions of permutation: gene-wise and
sample-wise. Gene-wise permutation was conducted by
randomly resampling an equal number of genes within

http://www.biomedcentral.com/1471-2105/10/109

each gene set. Shuffling sample class labels was performed
for sample permutations.

_ N, zﬁ.\i lI(de( ISC11S¢2 )<dZfij( pIS',pIS"))
NxM

P

(10)
In equation (10), N and M represent the number of gene
and sample permutations, respectively. dZf(IS.;, ISc,)
computes the absolute value of the difference of Z-trans-
formed ISs from condition C1 and C2. dZf; indicates the
absolute value of the difference between pIS' and pIS",
which are ISs calculated from the i-th gene and j-th sample
permutation. Gene- and sample-wise permutations gener-
ated a pair of random pathway expression matrices for
each condition. After transforming raw expression matri-
ces to the relative entropy matrices, the entropy matrices
were permuted. Permuted ISs (pIS' and pIS") were then
computed with the permuted entropy matrices. This is the
same nonparametric test method as that of the Mantel test
[18]. I(-) is an indicator function. If the absolute value of
the dZf of the permuted entropy matrices is larger than
that of the original dZf, I(-) = 1. Otherwise, I(-) = 0. The
number of permutations was 1.25 x 10°: 2,500 times for
genes and 500 times for samples. We performed more per-
mutations for genes because there were more probes than
samples. All computations were performed using the R
statistical package http://www.r-project.org.

Pathway pairs often have common genes. In such cases,
we used a different approach. For pathway pairs with no
shared member, we directly applied the above method.
For those pairs with shared members, we calculated three
dZISs. One was computed by directly applying the above
method without considering the overlapping genes (non-
assigning method). The other two dZISs were obtained by
assigning the shared genes to one pathway or the other
(assigning method). If the common genes were assigned
to one pathway, the genes were subtracted from the other
pathway of the pathway pair that had common genes. The
remaining genes of the other pathway were used in the
computation of the IS. We chose the most significant dZIS
as that of the pathway pair.

Single gene pair-wise differential coexpression analysis

At first, all gene-gene correlation coefficients were calcu-
lated for each condition. Then, the conditional difference
of the Fisher's Z-transformed correlation coefficients was
tested for each gene pair (equations 11, 12).

Zf=1><ln(l+cc) (11)

2 1-CC
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(Zf1-2f3)
3 N

In the above equations, CC indicates the correlation coef-
ficient of single gene pair. Zf, and Zf, are the Fisher's Z-
transformed correlation coefficients of conditions 1 and
2. Ny and N, are the number of samples in conditions 1
and 2, respectively. From the normal distribution, p val-
ues for differential coexpression tests were obtained
according to the difference between the Z values.

(12)

During calculation, three p values were obtained for each
gene pair. The p values were those of correlation coeffi-
cients from condition 1 and condition 2, and from the dif-
ference between Fisher's Z-transformed correlation
coefficients. Bonferroni multiple testing correction was
applied to the p values, and gene pairs whose three p val-
ues were all lower than the Bonferroni adjusted p value
were selected (adjusted p value = 6.274E-10 for
79,689,000 gene pairs).

Availability and requirements

The R-code for the dCoxS algorithm is available on our
supplementary website: http://www.snubi.org/publica
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