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Background
For decades, many studies have focused their efforts on identifying the regulatory 
processes between genes to uncover their potential functions. For example, Shi et  al. 
reviewed the role of Oct4 performing various regulating function [1, 2]. The studies have 
revealed that some of the genes encode several transcription factors (TFs) or protein 
hormones to regulate the expression of other genes. Gene regulatory network (GRN) 
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analysis is one of the most popular approaches for uncovering these regulatory pro-
cesses. Genes within the GRN are connected through regulatory relationships; thus, 
identifying the gene–gene interaction is essential for constructing the GRN. GRN infer-
ence studies utilize various gene–gene interaction algorithms, for which identifying the 
accurate direction of gene–gene interaction is important.

With the advancement of genome-wide association studies (GWAS) [3–5] and expres-
sion quantitative trait loci (eQTL) studies [6–8], the amount of genomic data has 
increased dramatically, making it possible to infer gene–gene interactions more accu-
rately than ever. It is well known that there are various unknown confounding factors 
that distort gene–gene interactions and make their relationship ambiguous. Mendelian 
randomization (MR) is an emerging tool for causal inference analysis in genetics, as it 
successfully infers causality while overcoming problems of confounding effects. The MR 
model is designed to estimate the causal effects of an exposure (i.e., gene) on an outcome 
(i.e., trait) by leveraging an instrumental variable (IV) such as genetic variants, which 
adjusts bias caused by confounding effects. Two-sample MR [9] is one of the founda-
tional MR models, and there are several other MR models such as inverse-variance 
weighted (IVW) MR [10], MR-Egger [11], MR weighted median [12], and multivariable 
MR [13] that are developed based on foundational MR principles to enhance the preci-
sion of causal inference.

In this paper, we propose a new statistical method referred to as “MR-based method 
for inferring Gene–Gene Interaction (MR-GGI),” which accurately infers interactions 
between genes utilizing the MR. MR-GGI infers relationships between two genes by 
applying one gene as the exposure, the other gene as the outcome, and one or more 
causal cis-SNPs for the genes as the IV(s) in the IVW MR model [10]. Utilizing vari-
ous simulated datasets, we show that MR-GGI successfully controls the type 1 error and 
retains its statistical power even though confounding effects exist in the data. In addi-
tion, we show that using more than one cis-SNP as IVs increases the statistical power of 
experiments in simulation studies. Utilizing the DREAM5 dataset [14], which is often 
used as a gold standard dataset for GRN studies, we show that MR-GGI accurately infers 
gene–gene interactions and results in a superior F1 score compared to existing meth-
ods that are designed to infer biological networks. Lastly, to demonstrate that MR-GGI 
works successfully on data in a real biological system, we construct a yeast GRN with six 
clusters utilizing a yeast dataset [15]. By performing a functional enrichment analysis 
with Gene Ontology, we found that three of the clusters are involved in cytoplasmic gene 
expression and one independent cluster is mainly involved in mitochondrial translation.

Results
Overview of MR‑GGI

It is important to accurately infer gene–gene interactions for uncovering poten-
tial functions in a GRN. However, genomics studies are often challenged by various 
unknown confounding factors that influence gene–gene interactions and lead to mis-
interpretations. MR is one of the most popular tools for causal inference as it adjusts 
bias induced by confounding effects. MR incorporates an IV in the model to infer 
the causality between exposure and outcome. We propose a new statistical method, 
MR-GGI, which utilizes MR to accurately infer gene–gene interactions. MR-GGI 
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identifies gene–gene interaction by inferring causality between two genes, where one 
gene is used as an exposure, the other gene is used as an outcome, and causal cis-
SNP(s) for the genes are used as IV(s).

Figure 1 shows an overview of MR-GGI. MR-GGI requires gene expression and the 
genotype of the data. We apply a fine-mapping method, such as sum of single effects 
linear regression (susieR [16, 17]) to identify a set of cis-SNPs consisting of independ-
ent variants for each gene. These cis-SNPs are subsequently utilized as IVs. A thresh-
old is used to find gene–gene interaction pair candidates that are to be tested. From 
which, pairs with overlapping cis-SNPs that effect both exposure gene and outcome 
gene are excluded considering the pleiotropic effects. Utilizing the cis-SNP sets and 
gene–gene pair candidates, MR-GGI infers gene–gene interactions based on the IVW 
MR model [10]. Let’s say we are testing the interaction between two genes, g1 and g3 , 
and s1 = {s11} and s3 = {s31, s32, s33} are the sets of cis-SNPs for g1 and g3 , respectively. 
MR-GGI infers the causal relationship between g1 and g3 , assuming 4 scenarios: g1 
affects g3 ; g3 affects g1 ; g1 and g3 affect each other; and g1 and g3 are independent. To 
test whether g1 affects g3 , MR-GGI applies MR using g1 as exposure, g3 as outcome, 
and s1 as IV. To test whether g3 affects g1 , MR-GGI applies MR using g3 as exposure, 
g1 as outcome, and s3 as IV. If both tests apply, we say that g1 and g3 affects each other. 
If none of the tests apply, we say that g1 and g3 are independent of each other.

Fig. 1 Overview of MR-GGI. MR-GGI tests the causal relation between two genes using MR. gi represents 
gene i  , sij represents j  th cis-SNP for gi , and u represents an unknown confounding factor that affects genes. 
The red box shows an example of causality test on g1 and g3 utilizing MR, where s11 represents a cis-SNP for g1 
and s31 , s32 , s33 represent three cis-SNPs for g3 that were found after the fine-mapping and filtering processes
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MR‑GGI controls type I errors in simulation studies

Simulated datasets were generated based on a previous MR model [18], which allows 
multiple instrumental variables (see “Material and methods”). To show that MR-GGI 
controls type I errors in various scenarios, we simulated various datasets with differ-
ent options. First, to show that MR-GGI controls the false positives in cases of differ-
ent numbers of IVs, we simulated 3 sets of 10,000 datasets with two genes. Each gene 
has no effect on the other, and consists of either 1, 3, or 5 cis-SNPs with effect sizes in 
the range of 0.25–0.6 (see “Material and methods”). For different thresholds of 0.01, 
0.05, and 0.1, MR-GGI successfully controls false positives regardless of the number 
of cis-SNPs used in the model (Fig. 2a–c).

Second, we investigated the case when datasets contain IV with a weak effect size. 
Here, we define a weak IV as a IV with small effect size of 0.1, following a previous 
study [18]. We simulated 3 sets of 10,000 datasets of two genes with no effects on 
each other. Each gene consists of 3 IVs, which contain either 1, 2, or 3 weak IVs out 
of 3 IVs. The results show that MR-GGI successfully controls false positives and that 
it is robust to either the number or effect sizes of IVs in the MR model (Fig. 2d–f ). 
In addition, we investigated the case when the variance of the effect size estimate is 
large as IV could be weak in the case even though the effect size estimate is large. As a 
result, we observed that MR-GGI successfully controlled type I error in the case (data 
not shown).

Third, we simulated data with confounding effects to show that MR-GGI success-
fully controls false positives under confounding effects. We simulated 10,000 datasets 
with two genes and no effects on each other. Each gene consists of 3 IVs. The genes 
are correlated to each other due to confounding effects (ρ), which is in the range of 

Fig. 2 False positive rate (FPR) of MR-GGI in simulation studies. The X-axis represents the FPR threshold, and 
the Y-axis represents the FPR of MR-GGI. a, b, and c show the results of simulated data, where 1, 3, and 5 
cis-SNPs are used as IV, respectively. d, e, and f show the results of simulated data where 3 cis-SNPs are used 
as IV; among them, 1, 3, and 5 cis-SNPs have weak effect size of 0.1, respectively
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− 0.9 to 0.9 (see “Material and methods”). Table 1 shows that MR-GGI robustly con-
trols false positives.

MR‑GGI retains statistical power under confounding effects in simulation studies

To show that MR-GGI retains statistical power under confounding effects, we conducted 
simulation analysis using simulated data with various confounding effects. We simulated 
datasets with two genes; for each gene, 3 cis-SNPs were simulated and used as IVs in the 
model. To test the power in various cases, we simulated datasets for which g1 has effect 
on g2 with different effect sizes ( βg1g2 ) in the range of − 0.7 to 0.7 and different correla-
tion sizes due to the confounding effects ( ρ ) in the range of − 0.9 to 0.9. A total of 1000 
simulated datasets were used for each case (see “Material and methods”). Figure 3 shows 
the power curves with different βg1g2 and ρ . The results show that MR-GGI successfully 
retains statistical powers under various confounding effects.

In addition, we evaluated the statistical power of MR-GGI using different numbers of 
causal cis-SNPs in the MR model as IVs. We simulated datasets with two genes, g1 and 
g2 , where g1 has an effect on g2 with an effect size ( βg1g2) in the range of − 0.7 to 0.7. 
A total of 5 cis-SNPs with effect sizes in the range of 0.25–0.6 were simulated for each 
gene. The result of MR-GGI, where 1, 3, and 5 cis-SNP(s) are used in the model as IVs 
to find gene–gene interactions (Fig. 4). The ones with the strongest effect size, referred 
to as top cis-SNPs, were selected as IV(s) among the 5 simulated cis-SNP(s), and 1000 
datasets were simulated for each case (see “Material and methods”). The result shows 
that the statistical power increases with the number of IVs used in the model; especially, 
using more than 1 IV increases the statistical power significantly.

Table 1 False positive rate (FPR) of MR-GGI under 7 different values of confounding effects ( ρ)

FPR Correlation of u1 and u2 ( ρ)

− 0.9 − 0.5 − 0.2 0 0.2 0.5 0.9

Cut-off

0.1 0.1026 0.1041 0.1043 0.0990 0.1015 0.1031 0.1048

0.05 0.0517 0.0528 0.0521 0.0509 0.0523 0.0520 0.0560

0.01 0.0113 0.0108 0.0107 0.0111 0.0109 0.0106 0.0119

Fig. 3 The power curve of MR-GGI for datasets with different confounding effects ( ρ ). The X-axis represents 
the effect size estimate of g1 to g2(βg1g2 ), and the Y-axis represents the statistical power. a The plot shows 
power curves for positive ρ . The black, red, blue, and green lines show the power curves for ρ at 0, 0.2, 0.5, 
and 0.9, respectively. b The plot shows power curves for negative ρ . The black, red, blue, and green lines show 
the power curves for ρ at 0, − 0.2, − 0.5, and − 0.9, respectively
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MR‑GGI accurately identifies gene–gene interactions in the DREAM5 dataset

We evaluated our method using the DREAM5 dataset [14], which is one of the gold 
standard datasets for testing gene–gene interactions based on IVs. We compared 
our method with existing causal inference methods: PC algorithms [19]; MR-based 
PC (MRPC) method [20]; and a Bayesian network with the Max–Min Hill Climbing 
(MMHC) method [21].

We compared F1 scores applying each method to the DREAM5 dataset with 3 
different sample sizes. Gene pairs with a correlation ( βgigj ) of > 0.5 were used in the 
experiments. Figure  5a shows results when all the genes with cis-SNPs reported by 
the DREAM5 dataset were used in the experiment. Additionally, we compared F1 
scores when weak IVs, which are cis-effect ( βsigi) < 0.2, were filtered out in the experi-
ment. As a result, MR-GGI shows higher F1 scores in all sample sizes compared to 
other methods. Notably, the results show that when the data contains cis-SNPs with 
weak effect sizes, MR-GGI consistently demonstrates robust performance, while oth-
ers do not.

Fig. 4 The power curve for different number of IV(s) used in the model. The X-axis represents the effect size 
estimate ( βg1g2 ), and the Y-axis represents the statistical power. The blue, red, and black lines show the power 
curve when the top 5, 3, and 1 cis-SNPs are used as IVs in the model, respectively

Fig. 5 Comparison of MR-GGI with other methods using the DREAM5 dataset. MR-GGI, MMHC, MRPC, and 
PC methods were applied to the DREAM5 dataset with 100, 300, and 999 samples. Correlation between 
eGenes > 0.5 was used for the analysis. The bar graph shows the average F1-score of four different networks 
in the DREAM5 dataset. a The barplot shows the result when all genes with cis-SNPs reported by the DREAM5 
dataset were used. b The barplot shows the result when weak IVs are filtered out of the dataset
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MR‑GGI finds gene–gene interaction in the yeast dataset

We applied MR-GGI to a yeast dataset [15] to identify gene–gene interactions and 
construct a GRN using real datasets. MR-GGI found a total of 683 gene–gene interac-
tions between 331 genes. Then we applied the Louvain clustering algorithm [22] to 
find six sub-network clusters (Fig. 6). Here, eGenes were filtered out using an absolute 
correlation of at least 0.75(see “Material and methods”). Next, to find the key role for 
each cluster, we calculated the degree of centrality for each gene in each cluster. We 
then identified biological process of Gene Ontology terms [23] by 2-step. In clusters 
1, 2, 3, 4, 5, and 6, we found 14, 25, 15, 40, 3, and 8 GO BP terms (p < 0.05), respec-
tively (Supplementary Data 1–6).

In cluster 3 (C3), cytoplasmic translation (GO:0002181), translation (GO:0006412), 
peptide metabolic processes (GO:0006518), peptide biosynthetic processes 
(GO:0043043), and gene expression (GO:0010467) were significantly enriched. 
In C4, ribosome biogenesis (GO:0042254), ribonucleoprotein complex biogen-
esis (GO:0022613), rRNA processing (GO:0006364), rRNA metabolic processes 
(GO:0016070), ribosomal large subunit biogenesis (GO:0042273), ribosomal small 
subunit biogenesis (GO:0042274), and gene expression (GO:0010467), were enriched. 
In C6, mitochondrial translation (GO:0032543), mitochondrial gene expression 
(GO:0140053), and translation (GO:0006412) were enriched. Notably, mitochondrial 
translation and mitochondrial gene expression were only enriched in C6. This result 
shows that C6 is involved in translation that occurs in ribosomes located in mito-
chondria differently from C3.

Fig. 6 Yeast GRN with gene–gene interactions estimated from MR-GGI. Six clusters consisting of 331 nodes 
and 683 edges were found
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C2 is related to NADP and NADPH metabolism. We identified pyridine nucleotide 
metabolic process (GO:0019362), cellular response to oxidative stress (GO:0034599), 
pyridine-containing compound metabolic process (GO:0072524), response to oxidative 
stress (GO:0006979), NADPH regeneration (GO:0006740), and NADP metabolic pro-
cess (GO:0006739). Response to desiccation (GO:0009269) and cellular response to des-
iccation (GO:0071465) were also identified in C2. Through this result, we predicted that 
NADP and NADPH metabolism system may be associated with desiccation/rehydration 
in yeast [24]. Additionally, C1 and C5 are the clusters related to ATP metabolism and 
regulation process (Table 2).

Discussion
Many studies have focused their efforts on identifying the regulatory processes between 
genes and their potential functions in the GRNs. Examining the gene–gene interaction 
is one of the useful approaches for these studies. However, in a real biological environ-
ment, there are many confounding factors that may influence the gene–gene interaction 
and make their relationship ambiguous. The MR method is one of the powerful tools 
to correct these confounding effects in the causality analysis. With various MR models 
being proposed, IVW MR allows multiple IVs in the model to increase the statistical 
power of the inference. We introduce a new statistical method referred to as MR-GGI 
using MR approach to infer causality between genes. We applied one gene as the expo-
sure, the other gene as the outcome, and one or more cis-SNPs for the genes as instru-
mental variable(s) to infer the interaction between two genes.

Using various simulated datasets, we showed that MR-GGI successfully controls the type 
1 error and retains statical power under confounding effects. Furthermore, type I errors are 
controlled by MR-GGI regardless of the number of IVs, the existence of weak cis-eQTLs, or 
the confounding effects in the data. In addition, using the DREAM5 dataset, a gold standard 
dataset for gene network analysis, we compared our method with previous causal inference 
methods: PC algorithms [17], MRPC [18], and MMHC [19]. Comparing the F1 scores, MR-
GGI results in higher scores than other methods, especially when the data contains weak 
cis-eQTLs, such as in the case of the DREAM5 dataset, where MR-GGI closely maintained 
its performance, while others failed. Lastly, utilizing the yeast dataset, we constructed yeast 
GRN using gene–gene interactions estimated by MR-GGI. We obtained a total of 6 clus-
ters, and from gene ontology [23] term analysis, we found clusters C3, C4, and C6 were 
related to cytoplasmic translation, ribosome biogenesis, and mitochondrial translation, 

Table 2 Summary of yeast GRN constructed by MR-GGI

Cluster Number of genes After filtering out Key role

1 12 3 ATP metabolism

2 51 17 NADP and NADPH metabolism

3 41 17 Cytoplasmic translation

4 80 40 Ribosome biogenesis

5 59 4 Regulation process

6 18 11 Mitochondrial translation

- 70 – –
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respectively. Additionally, C1, C2, and C5 were related to ATP metabolism, NADP and 
NADPH metabolism, and regulation process, respectively. Especially mitochondria harbor 
their own genome, and interestingly, an independent cluster, C6, was related to mitochon-
drial translation.

There are some limitations in the MR-GGI. It finds gene–gene interactions based on the 
MR model under the assumption that instrumental variables are only associated with expo-
sure but not with confounding factors and that instrumental variables affect the outcome 
solely through exposure. Thus, an invalid IV that violates the MR assumptions may lead to a 
false inference. However, as MR methods are being developed [11–13], they can be applied 
to MR-GGI to reduce misinterpretation and increase the performance of the method. If 
these methods are applied in further research, we can more accurately infer the gene–gene 
interactions. Furthermore, recently, a large number of cis-eQTLs have become available, 
and we believe that MR-GGI has sufficient potential to uncover underlying biological regu-
latory processes and GRNs.

Material and methods
Inverse‑variance weighted Mendelian randomization

MR became popular over the past decade as it accurately infers causality between expo-
sure (i.e., gene) and outcome (i.e., trait) while mitigating the impact of confounding factors 
by using genetic variants as instrumental variables (IV). Additional file 1: Supplementary 
Fig. 1 shows a directed acyclic graph (DAG) for a MR, where Z represents an instrumental 
variable (IV), X represents an exposure, Y represents an outcome, U represents a confound-
ing factor, βzx represents effect size of Z on X, βzy represents effect size of Z on Y, and βxy 
represents the effect size of X on Y. The MR model is based on three basic assumptions: 
IV is associated with exposure; IV is independent of confounding factors that affect expo-
sure and outcome; and there is no causal pathway between IV and outcome other than via 
exposure.

The causality between X and Y can be estimated by 2-stage least squares (2SLS) which 
involves conducting regression technique in two stages as follows:

Stage1) Perform a regression of the exposure on IV:

Stage2) Perform a regression of the outcome on fitted values of the regression in previous 
stage:

If the exposure causally influences Y, the direct effect of Z on Y, βzy is equal to the product 
of βzx and βxy ( βzy = βzxβxy ). It can be expressed as follows [25]:

where βxy represents the effect size (coefficient) of X on Y, βzx represents the effect size 
of Z on X, and βzy represents the effect size of Z on Y. When more than one IV is used in 
the model, the causality of the i th IV can be described as follows:

X |Z = α0 + βzxZ + e1

Y |X = β0 + βxyX + e2

βxy =
βzy

βzx
,
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where βxyi , βzxi , and βzyi represent coefficient estimates using the i th IV.
IVW MR allows multiple IVs, for which it assumes IVs are independent in the 

model and applies the IVW method [10] to find the causality β̂xy and its standard 
error ( se

(
β̂xy

)
 ) as follows:

MR‑based method for inferring gene–gene interaction

MR-GGI identifies gene–gene interactions by inferring causality between two genes 
using IVW MR. In the model, one gene is used as an exposure, the other gene is used 
as an outcome, and the causal cis-SNP(s) for a gene are used as IV(s).

First, we select independent cis-SNPs for each gene to use as IVs in the MR model 
by applying a fine-mapping method to the genotype and expression data. Then, we 
select candidate gene–gene pairs that have a correlation above a predefined thresh-
old. For all the candidate gene–gene pairs, MR-GGI performs a process for identi-
fying gene–gene interactions based on the MR method. We are testing interaction 
between two genes, gi and gj . The association between these genes has four scenarios: 
(1) independent ( gi ⊥ gj ); (2) gi affects gj ( gi → gj ); (3) gj affects gi(gi ← gj) ; and 4) gi 
and gj affects each other ( gi ⇄ gj ). To test the scenarios, MR-GGI estimates the causal 
effect of gi on gj ( ̂βgigj ) by applying MR, incorporating gi as an exposure, gj as an out-
come, and cis-SNP(s) for gi as IV(s). Then, MR-GGI estimates the causal effect of gj 
on gi ( ̂βgjgi ) by applying MR, incorporating gj as an exposure, gi as an outcome, and 
cis-SNP(s) for gj as IV(s). To find significant associations, the Wald test [26] has been 
performed (see below for the details). If we find a significant association either in gi 
→ gj or in gj → gi , we accept the second or third scenario, respectively. If we find sig-
nificant associations in both directions, we accept the third scenario, gi ⇄ gj and if we 
find significant associations in neither of the directions, we accept the first scenario, 
gi ⊥ gj . Additional file 2: Supplementary Fig. 2 shows how we apply MR to find the 
interaction between gi and gj . Here, si = {si1, si2, . . . , sil} represents l  cis-SNPs that are 
used as IVs for gi , sj = {sj1, sj2, . . . , sjp} represents p cis-SNPs that are used as IVs for 
gj , βgigj represents effect size of gi on gj , βsigj represents effect size of si on gj , βsik gj rep-
resents effect size of sik on gj , and u represents a confounding effect that affects both 
gi and gj . Here, the effect size between a cis-SNP and a gene is called the cis-effect.

The causal effect size of gi on gj ( ̂βgigj ) and gj on gi ( ̂βgjgi ) can be estimated from 
Eqs. (1) and (2) as follows:

β̂xyi =
βzyi

βzxi
,

(1)β̂xy =

∑n
k=1 βzxkβzyk se

(
βzyk

)−2

∑n
k=1 βzxkβzxk se

(
βzyk

)−2

(2)se
(
β̂xy

)
=

√
1

∑n
k=1 βzxkβzxk se(βzyk)

−2
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Here, se(βsik gj ) represents standard error of βsik gj and se(βsjk gi) represents standard 
error of βsjk gi , and they can be estimated as follows:

When inferring the gene–gene interaction, we excluded gene–gene pairs with 
overlapping cis-SNPs that effect both exposure gene and outcome gene, to satisfy 
one of the MR assumptions; There is no causal pathway between IV and outcome 
other than via exposure. From the Wald test, we can calculate p-values for causal 
effect of all the candidate gene pairs, and Bonferroni correction was applied for the 
multiple testing to adjust p-values and identify the significant causal directions.

MR‑GGI generative model

n Is the number of samples, l  is the number of cis-SNPs for the i th gene, p is the 
number of cis-SNPs for the j th gene. Two genes, gi and gj were generated based on 
the following generative model in the simulation studies.

Here, gi and gj are vectors of length n containing expression values of the i th and 
j th genes, respectively. Si and Sj are n x l  and n x p matrices, containing sets of cis-
SNPs of the i th and j th genes, respectively. βgigj represents effect size of gi on gj , βsigj 
represents effect size of si on gj . ui and uj are vectors of length n , containing con-
founding effects of gi and gj . Furthermore, ui and uj follow a multivariate normal dis-

tribution with a mean of 0 and a covariance of 
(
1 ρ

ρ 1

)
 , where ρ represents the 

correlation between ui and uj . ei and ej are residual errors of gi and gj , which follow a 
normal distribution with a mean of 0 and a variance of 1.

(3)β̂gigj =

∑n
k=1 βsik giβsik gj se(βsik gj )

−2

∑n
k=1 βsik giβsik gi se(βsik gj )

−2

(4)β̂gjgi =

∑m
k=1 βsjk gjβsjk gi se(βsjk gi)

−2

∑m
k=1 βsjk gjβsjk gj se(βsjk gi)

−2

(5)se
(
β̂gigj

)
=

√
1

∑n
k=1 βsik giβsik gi se(βsik gj )

−2

(6)se
(
β̂gjgi

)
=

√
1

∑m
k=1 βsjk gjβsjk gj se(βsjk gi)

−2

(7)gi = Siβsigi
T + ui + ei

(8)gj = Sjβsjgj
T + βgigj gi + uj + ej

(9)
(
ui
uj

)
∼ N

(
0,

(
1 ρ

ρ 1

))
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Simulation studies

For two genes ( g1 and g2 ), cis-SNPs were sampled from binomial distribution with minor 
allele frequency (MAF) of 0.3 and were coded additively.

Here, s1k represents the k th cis-SNP for g1 and s2k represents the k th cis-SNP for g2 . 
Gene expressions of g1 with l number of cis-SNPs and g2 with p number of cis-SNPs 
were simulated as follows:

Here, βsik gj represents the effect size of sik on gi , βgigj represents the effect size of gi on 
gj , and ei represents the residual error of gi that follows a normal distribution of 
e1 ∼ N (0, 1) . ui and uj represent the confounding effect of gi and gj , respectively, which 
follows a multivariate normal distribution with correlation ( ρ ); (
u1
u2

)
∼ MVN

(
0,

(
1 ρ

ρ 1

))
.

To show that MR-GGI controls the type I error in various scenarios, we simulated var-
ious datasets, giving βg1g2 = 0 . First, to show that MR-GGI controls the false positives in 
cases of different numbers of IVs, we simulated 3 sets of 10,000 datasets with two genes, 
where 1, 3, or 5 cis-SNPs were simulated for each set as follows:

For 1 cis-SNP case, βs11g1 = βs21g2 = 0.6 , for 3 cis-SNPs case, {
βs11g1 ,βs12g1 ,βs13g1

}
=

{
βs21g2 ,βs22g2 ,βs23g2

}
= {0.55, 0.4, 0.25} , and for 5 cis-SNP case 

{
βs11g1 ,βs12g1 ,βs13g1 ,βs14g1 ,βs15g1

}
=

{
βs21g2 ,βs22g2 ,βs23g2 ,βs24g2 ,βs25g2

}
= {0.55, 0.4, 0.35, 0.3, 0.25} were 

used to generate datasets.
Second, to simulate datasets with weak IVs, we simulated 3 sets of 10,000 data-

sets of two genes, and 3 cis-SNPs were simulated for each set. For this experi-
ment, the datasets contain 1, 2, or 3 weak IVs out of 3 IVs, for which a relatively 
small effect size of 0.1 was used, following a previous study [16]. For 1 weak IV case, {
βs11g1 ,βs12g1 ,βs13g1

}
=

{
βs21g2 ,βs22g2 ,βs23g2

}
= {0.4, 0.3, 0.1} , for 2 weak IVs case, {

βs11g1 ,βs12g1 ,βs13g1
}
=

{
βs21g2 ,βs22g2 ,βs23g2

}
= {0.4, 0.1, 0.1} , and for 3 weak IVs case, {

βs11g1 ,βs12g1 ,βs13g1
}
=

{
βs21g2 ,βs22g2 ,βs23g2

}
= {0.1, 0.1, 0.1} were used to generate the 

datasets.
Third, to show that MR-GGI successfully controls false positives under confounding 

effects, we simulated 7 sets of 10,000 datasets with 2 genes, where 3 cis-SNPs were simu-
lated for each set as follows:

(10)sik ∼ Bin(2, 0.3)

(11)sjk ∼ Bin(2, 0.3)

(12)g1 = (s11, s12, . . . , s1l)
(
βs11g1 ,βs12g1 , . . . ,βs1l g1

)T
+ u1 + e1

(13)g2 =
(
s21, s22, . . . , s2p

)(
βs21g2 ,βs22g2 , . . . ,βs2pg2

)T
+ βg1g2g1 + u2 + e2

(14)g1 = (s11, s12, . . . , s1l)
(
βs11g1 ,βs12g1 , . . . ,βs1l g1

)T
+ e1

(15)g2 =
(
s21, s22, . . . , s2p

)(
βs21g2 ,βs22g2 , . . . ,βs2pg2

)T
+ e2
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Here, 
{
βs11g1 ,βs12g1 ,βs13g1

}
=

{
βs21g2 ,βs22g2 ,βs23g2

}
= {0.55, 0.4, 0.25} and correlation 

between u1 and u2 ( ρ ) of [− 0.9, − 0.5, − 0.2, 0, 0.2, 0.5, 0.9] were simulated for each 
dataset.

Lastly, to show that MR-GGI retains statistical power under confounding effects, we 
simulated 21 sets of 1000 datasets with 2 genes, and for each gene, 3 cis-SNPs were sim-
ulated with confounding effects as follows:

Here, 
{
βs11g1 ,βs12g1 ,βs13g1

}
=

{
βs21g2 ,βs22g2 ,βs23g2

}
= {0.55, 0.4, 0.25} , βg1g2 of [−  0.7, 

− 0.5, − 0.3, − 0.15, − 0.05, − 0.025, 0, 0.025, 0.05, 0.15, 0.3, 0.5, 0.7], and correlation 
between u1 and u2 ( ρ ) of [− 0.9, − 0.5, − 0.2, 0, 0.2, 0.5, 0.9] were used for each dataset.

In addition, we changed the number of IVs to show how the power changes with the 
number of IVs. For this experiment, the datasets were simulated as follows:

where, 
{
βs11g1 ,βs12g1 ,βs13g1 ,βs14g1 ,βs15g1

}
=

{
βs21g2 ,βs22g2 ,βs23g2 ,βs24g2 ,βs25g2

}

={0.55, 0.4, 0.35, 0.3, 0.25} , and βg1g2 of [− 0.7, − 0.5, − 0.3, − 0.15, − 0.05, − 0.025, 0, 
0.025, 0.05, 0.15, 0.3, 0.5, 0.7] were used. We simulated 1,000 datasets for each set. This 
test consisted of three cases where the top 1, 3, and 5 cis-SNPs were used as IVs in order 
of increasing cis-effect.

DREAM5 dataset analysis

We compared MR-GGI with other network construction methods using DREAM5 
[14] (https:// www. synap se. org/# !Synap se: syn28 20440/ files/). DREAM5 comprises 15 
simulated datasets created for the 2010 DREAM5 Systems Genetics In-silico Network 
subchallenge, each incorporating various scales of Recombinant Inbred Lines (RILs) 
[27], utilized for inferring gene networks. This dataset provides simulated genotype and 
expression data for synthetic gene regulatory networks. The DREAM5 sub-datasets con-
taining 1000 genes consisted of 100, 300, and 999 samples from 5 different networks 
each. Each gene has exactly one corresponding genotype value in every 15 sub-datasets. 
In every sub-dataset, each gene has exactly one corresponding genotype variable, and 
the gold standard (correct edges) was obtained.

We transform the genotype data and the expression data for each gene to have a 
mean of 0 and a variance of 1. Gene–gene pairs were selected only up to absolute 
gene expression correlations of 0.5. To avoid using weak IV, we filtered out the rest of 

(16)g1 = (s11, s12, s13)
(
βs11g1 ,βs12g1 ,βs13g1

)T
+ u1 + e1

(17)g2 = (s21, s22, s23)
(
βs21g2 ,βs22g2 ,βs23g2

)T
+ u2 + e2

(18)g1 = (s11, s12, s13)
(
βs11g1 ,βs12g1 ,βs13g1

)T
+ u1 + e1

(19)g2 = (s21, s22, s23)
(
βs21g2 ,βs22g2 ,βs23g2

)T
+ βg1g2g1 + u2 + e2

(20)g1 = (s11, s12, s13, s14, s15)
(
βs11g1 ,βs12g1 ,βs13g1 ,βs14g1 ,βs15g1

)T
+ e1

(21)g1 = (s21, s22, s23, s24, s25)
(
βs21g1 ,βs22g1 ,βs23g1 ,βs24g1 ,βs25g1

)T
+ βg1g2g1 + e2

https://www.synapse.org/#!Synapse:syn2820440/files/
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the gene–gene pairs where the absolute cis-effect was less than 0.2. Then, compared 
with the previous case, we didn’t perform cis-effect filtering to confirm the perfor-
mance when including weak IV in gene–gene interaction inference.

We used the F1-score to compare the performance of MR-GGI and other methods. 
The F1-score is calculated as the harmonic mean of precision and recall [28], and it is 
a proper metric for evaluating model performance in imbalanced datasets.

Yeast dataset analysis

We analyzed yeast datasets to investigate whether MR-GGI performs well not only 
in simulated data and virtual networks but also in real biological environments. The 
yeast dataset contains 5,720 genes and 42,052 SNPs in 1,012 yeast segregants from a 
cross between the BY4617 (BY) strain and the vineyard RM11-1a (RM) strain [15]. 
Selecting the cis-SNP to be used as IV was performed as follows. First, cis-eQTLs 
were identified within ±1 Mb of each transcription start site (TSS) of a gene. And, we 
perform fine-mapping with the susie function in the susieR package [16, 17] to select 
true causal variants based on fine-mapping. Gene–gene pairs were selected only up to 
absolute gene expression correlations of 0.75.

After inferring gene–gene interactions, we extracted the information about nodes 
corresponding to genes and edges to construct the yeast GRN. Next, we applied the 
Louvain algorithm in the igraph R package [22] for clustering. To identify the key 
roles of each cluster, we performed 2-step functional enrichment analysis using yeast 
GO biological processes using the GO Term Finder in the Saccharomyces Genome 
Database (SGD) [23]. First, we obtained the GO terms of all genes for each cluster, 
and filtered out low centrality (degree centrality < 3) genes in annotated genes. Degree 
centrality of all genes for each cluster was calculated by using the tidygraph R package 
[29]. In the second step, we acquired the ‘final GO terms’ for these filtered gene sets 
to discover key role for each cluster. We used the visNetwork R package [30] for yeast 
GRN visualization.
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