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University of Virginia, paper health records for capturing data. Paper health records are utilized predomi-

Charlottesville, VA, USA nately due to the prohibitive cost of acquisition and maintenance of automated data
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University of Virginia, capture devices and electronic medical records. Data recorded on paper health records

Charlottesville, VA, USA is not easily accessible in a digital format to healthcare providers. The lack of real time

accessible digital data limits healthcare providers, researchers, and quality improve-
ment champions to leverage data to improve patient outcomes. In this project, we
demonstrate the novel use of computer vision software to digitize handwritten intra-
operative data elements from smartphone photographs of paper anesthesia charts
from the University Teaching Hospital of Kigali. We specifically report our approach
to digitize checkbox data, symbol-denoted systolic and diastolic blood pressure,

and physiological data.

Methods: We implemented approaches for removing perspective distortions

from smartphone photographs, removing shadows, and improving image readabil-

ity through morphological operations. YOLOv8 models were used to deconstruct

the anesthesia paper chart into specific data sections. Handwritten blood pressure
symbols and physiological data were identified, and values were assigned using

deep neural networks. Our work builds upon the contributions of previous research

by improving upon their methods, updating the deep learning models to newer archi-
tectures, as well as consolidating them into a single piece of software.

Results: The model for extracting the sections of the anesthesia paper chart achieved
an average box precision of 0.99, an average box recall of 0.99, and an mAP0.5-95

of 0.97. Our software digitizes checkbox data with greater than 99% accuracy and digi-
tizes blood pressure data with a mean average error of 1.0 and 1.36 mmHg for systolic
and diastolic blood pressure respectively. Overall accuracy for physiological data which
includes oxygen saturation, inspired oxygen concentration and end tidal carbon diox-
ide concentration was 85.2%.

Conclusions: We demonstrate that under normal photography conditions we can
digitize checkbox, blood pressure and physiological data to within human accuracy
when provided legible handwriting. Our contributions provide improved access

to digital data to healthcare practitioners in low-middle income countries.
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Background

Globally, approximately 313 million surgical cases are performed annually. 6% of these
surgeries are performed in low-middle income countries (LMICs), where a third of the
global population currently resides. Surgical mortality rates are twice as high in LMICs,
compared to high-income countries despite patients being younger, having a lower risk
profile and undergoing less invasive surgery [1]. A significant majority of these deaths
are preventable with surveillance of high-risk patients and early evidence-based inter-
ventions [1, 2].

Surveillance and improvement in surgical and anesthesia care is dependent on having
access to continuous, reproducible, and real-time data. However, in LMICs the primary
method of data capture for anesthesia and surgery is within paper health records. These
records are characterized by having multiple data elements including medication admin-
istration, physiological parameters, and procedural-specific elements recorded manually
by the provider at a regular frequency (e.g., every 5 min). The data density of the anes-
thesia paper health records, defined as the data generated per unit of time, is amongst
the highest for any healthcare setting [3].

The most efficient method to record high-volume anesthesia data is with automatic
data capture monitors and electronic medical record systems (EMRs). Unfortunately,
due to their cost and complexity, electronic records remain an unlikely solution in
LMICs for the foreseeable future [4]. This creates major gaps in digital data access for
anesthesia providers in LMICs, and their ability to utilize data to rapidly anticipate and
intervene to reduce anesthesia and surgical complications and mortality.

In this paper we describe our methodology to further improve the accuracy of the
digitization of anesthesia paper health records from the University Teaching Hospital of
Kigali (CHUK) in real time using computer vision. Our work builds from our previous
digitizing efforts and further consolidates the process using a single software program.
Our overarching goal for this project is to provide rapidly accessible, digital data to anes-
thesia healthcare providers in LMICs, which can faciliate evidence-based actionable
interventions to reduce morbidity and mortality.

The remainder of this paper begins with an introduction to the paper anesthesia record
from CHUK, leading into a discussion on our methodology for correcting common dis-
tortions in smartphone images of the paper anesthesia record, followed by our methods
for extracting the blood pressure, physiological, and checkbox data elements. Finally, we
assess the improvements in our methods from previous research in the results section,
and discuss the impact, challenges, and future directions of our results and work.

The intraoperative anesthesia paper health record

We utilized 500 smartphone photographs of paper anesthesia records collected from
2019 to 2023. The photographs of the anesthesia paper records varied greatly in qual-
ity, with some being clear, well lit, and legible, whereas others were blurry, poorly lit,
and illegible. The anesthesia record has seven distinct sections: handwritten medications
(Fig 1, Section A), inhaled volatile anesthetics (Fig 1, Section B), intravenous fluids (Fig 1,
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Section C), blood and blood product transfused (Fig 1, Section D), blood pressure and
heart rate (Fig 1, Section E), physiological data elements (Fig 1, Section F), and check-

boxes for marking key procedural events (Fig 1, Section G).

Intravenous medications

Multiple intravenous medications are administered over the course of surgery, with both
the dose and timing of administration recorded in the anesthesia paper health record.
Commonly administered medications include drugs required for induction of anesthe-
sia, prevention of infection (e.g., antibiotics), to induce or reverse muscle paralysis, and
to ensure blood pressure and heart stability. The medications are written in the temporal

order in which they are administered.

Inhaled volatile medications

The inhaled volatile anesthetic medications are halogentated hydrocarbon gases that
are administered to maintain general anesthesia. To document the type of the volatile
inhaled anesthetic administered, the anesthesia paper health record has three check-
boxes, two are for the most commonly used inhaled anesthetics: isoflurane and halo-
thane, and the third box is a fill-in if another gas such as sevoflurane or desflurane is
used. The dose of the volatile inhaled anesthetic medication is recorded as a percentage

value.

Intravenous fluids
Intravenous fluids are administered during anesthesia to maintain fluid homeostasis and
hemodynamic stability. The type of intravenous fluids, in addition to the incremental

and total volume given during anesthesia is recorded as free text.
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Blood and blood product transfused

Blood and component blood products are administered when significant bleeding and
hemorrhagic complications occur. The Blood and Blood Product Transfused section
is a free text section where providers list both the specific blood component product
(e.g., packed red blood cells or fresh frozen plasma) and volume administered.

Blood pressure and heart rate

The blood pressure and heart rate section utilize handwritten arrows and dots to
encode blood pressure in millimeters of mercury (mmHg) and heart rate in beats per
minute (bpm). The x axis on the grid indicates five minute epochs, during which a
provider takes a systolic blood pressure (downward arrow), diastolic blood pressure
(upward arrow), and heart rate measurement (dot). The y-axis encodes both bpm and

mmHg in increments of 10.

Physiological indicators

The physiological indicators section uses handwritten digits to encode different types
of physiological information including oxygen saturation, inspired oxygen concentra-
tion, exhaled carbon dioxide, mechanical ventilator data, body temperature, amount
of urine produced, and blood loss encountered. The x-axis on the grid represents five
minute epochs.

Checkboxes

The checkboxes section uses handwritten check marks to indicate boolean values
associated with a patient’s position on the operating table, intubation status, type of
monitoring devices and details, and safety best-practices utilized during the surgery.

Related work

In 2015, Ohuabunwa et al. [5] detailed the need for electronic medical record systems
in LMICs. According to their analysis, the rise of “communicable diseases necessi-
tates adequate record keeping for effective follow-up”, and for retrospective research.
Among the difficulties with implementing these EMRs in LMICs are unfamiliarity
with these systems and the cost of implementation and maintenance which make
them prohibitively expensive. The authors assert that even hybrid paper-electronic
systems where an image of the health record is scanned into a database and certain
data elements are manually entered into an EMR can be very costly and require sig-
nificant human and monetary resources. We postulate that a system which would
only require the user to take a smartphone image of an anesthesia paper record would
impose minimal burdens to the existing clinical workflow and require a very small
amount of capital to adopt in comparison to EMR systems.

In 2020, Rho et al. described using computer vision software to automatically digi-
tize portions of an anesthesia paper record from CHUK using smartphone images [6].
Their work utilized a wooden box within which the anesthesia paper record would
be inserted and on top of which a smartphone could be placed to attain an image
that was standardized for lighting and position. They digitized the checkboxes section
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with 82.2% accuracy, blood pressure data with an average mean squared error of
21.44 between the systolic and diastolic symbols, and classified handwritten images of
medication text with an accuracy of 90.1%. It is unclear how comparable this metric is
to future work, since the algorithm used was trained to reject “unreadable” samples,
and did so on approximately 15% of the test set.

Subsequently, Adorno et al. developed an improved approach for blood pressure sym-
bol detection utilizing U-Nets [7]. By generating a segmentation mask of the blood pres-
sure symbols, using image morphology to separate the detections, and computing the
centroid of each pixel cluster, Adorno was able to improve the object detection precision
to 99.7% and recall to 98.2%. The mean average error of the association between U-Net
detections and the ground truth blood pressure values was approximately 4 mmHg. Our
approaches build on this conceptual basis of using deep learning to identify handwritten
symbols in conjunction with a post-processing algorithm to associate values with detec-
tions. We implement two of the suggestions in the future work section of Adorno’s paper,
namely to incorporate image tiling, and to improve the post-processing algorithms.

For checkbox detection, Murphy et al. utilized a deep neural network approach. They
used a template matching algorithm called ORB and a convolutional neural network
(CNN) to locate and classify the checkboxes rather than the proportion of pixel inten-
sity method initially used by Rho et al. [8]. Their new algorithm was capable of locating
checkboxes with an accuracy of 99.8% and classifying them as checked or unchecked
with an accuracy of 96.7%. In subsequent development, we simplified this process by
using the YOLOVS single shot detector to combine the detection and classification steps.

Finally, Annapareddy et al. investigated the use of the YOLOVS5 single shot detector to
extract and classify handwritten intravenous medications and digitize the physiological
indicators Sect. [9]. Due to the large number of classes in the medication and physiologi-
cal indicator sections, their paper found that models that attempted both detection and
classification were generally unable to do either due to lack of sufficient data in each
class. However, models trained on a single class performed much better in detection, but
could not classify.

Methods

The extraction of data from an anesthesia paper chart begins with optimizing the light-
ing of the smartphone photographs, removing shadows, and using object detection to
find document landmarks for use in removing perspective distortion. Then, each section
of the chart is identified by a YOLOv8 model and cropped out of the chart. YOLOvV8
models which are trained to detect handwritten blood pressure symbols, numbers, and
checkboxes used in anesthesia paper charts produce lists of bounding boxes that a com-
bination of convolutional neural networks, traditional computer vision, machine learn-
ing, and algorithms then use to impute meaningful values and detect errors.

Image optimization techniques
To maximize the accuracy of digitization, the input images need to be optimized as
follows: (1) shadows removed, (2) pixel intensities standardized and normalized, (3)

perspective distortions such as rotation, shear, and scaling corrected, and (4) general
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location of document landmarks fixed. We accomplish this by first removing shadows
using image morphology techniques, then normalize and standardize the pixel values
of the images, and finally correct perspective distortions and approximately correct the
location of document landmarks using a homography transformation.

Shadow removal

Smartphone photographs of the anesthesia paper chart often suffer from sudden
changes in pixel intensities caused by shadows being cast onto the image which break
up the lighting. Sudden changes in the value of pixels can cause difficulty for deep learn-
ing models which learn representations of objects as functions of the weighted sums of
pixels. Therefore, both normalization and shadow removal are necessary to optimize our
inputs and maximize detection accuracy. One algorithm for accomplishing this is out-
lined by Dan Masek in a stack overflow post from 2017 (Algorithm 1) [10].

Algorithm 1 Basic Shadow Removal

Input: An input image I
Output: An output image O without shadows
1: procedure BASICSHADOWREMOVAL([)
O = Copy(I)
Dilate(O)
MedianBlur(O)
forpe I do
Op =255 — |1, — Op]
end for
Normalize(O)
return O
9: end procedure

® N g R »N

The exact values for the median blur and dilation operations are subject to the image’s size and degree of
shadow and can be tuned to the dataset. This algorithm only operates on grayscale images, but since no
information in the anesthesia paper charts are encoded with color, we converted our charts to grayscale. We did
not use any metrics to assess shadow removal, but a visual inspection of the output shows that the resulting
images no longer suffer from a lighting gradient (Fig. 2).

Original Image __ Dilated and Blurred Image Deshadowed and Normalized Image

Fig. 2 Example of an anesthesia paper chart before and after the removal of shadows and normalization. The
dilated, blurred image is subtracted pixel-wise from the original image to produce the final result
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Fig. 3 Anillustration of a homography performing a general linear mapping of the points of one
quadrilateral to another. Images suffering from perspective distortions can have much of their error corrected
by finding four anchor points on the image, and using them as the four points on a quadrilateral to map to a
perfect, scanned sheet

Fig. 4 Anillustration of perspective based distortion due to an off-angle camera. Even the most vigilant
camera operators will have some degree of perspective distortion. [11]

The planar homography

The planar homography is defined as the most general linear mapping of all the points
contained within one quadrilateral to the points of another quadrilateral (Fig. 3). A pla-
nar homography was used to correct perspective distortions within the smartphone
image.

Translation, rotation, scaling, affine, and shear transformations are all subsets of the
homography, and the homography in turn can be decomposed into these transforma-
tions. Here, as in many other computer vision applications, the homography is used to
correct linear distortions in the image caused by an off-angle camera perspective (Fig. 4).

In order to compute a useful homography for document correction, four document
landmarks need to be identified from a target anesthesia paper chart image. Those same
four landmark locations were then identified on a scanned, perfectly aligned control
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Fig.5 Anillustration of correction using a homography on an image of the anesthesia paper chart.
Perspective based distortions are corrected
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anesthesia paper chart image. We trained a YOLOvV8 model to detect the document
landmarks “Total’, “Time”, “Procedure Details’, and “Patient Position” which fall in the
four corners of the anesthesia paper chart described in Fig. 1. We then used the OpenCV
python package to compute the homography between the two sheets and warp the tar-
get image accordingly (Fig. 5). The benefits to this method are that the homography
computation is robust to failure due to YOLOVS8’s high accuracy, even under sub-opti-
mal conditions. In cases where the planar homography failed to correct the distortion,
clear errors were found on the anesthesia paper chart including: (1) landmarks being
obscured by writing (2) landmarks being covered by other pieces of paper (3) landmarks
not being included in the smartphone image entirely. Initially, this deep object detection
approach seems excessive, as there are a number of traditional computer vision methods
for automatic feature matching between two images such as ORB and SIFT. However,
the variance in lighting and blurriness in our dataset posed challenges for these nondeep
algorithms, which often failed silently, mistaking one landmark for another, and warping

images such that they were unidentifiable.

Section extraction

There are seven sections which encode different pieces of intraoperative information on
the anesthesia paper chart (Fig. 1). Due to nonlinear distortions in the image, the hom-
ography is not a perfect pixel-to-pixel matching from the target image to the scanned
control image. Therefore, an alternative method of identifying the precise location of
the sections is required. We accomplished this by training a YOLOv8s model to place
a bounding box around each section. Because the homography already normalizes the
locations of the sections to within a few dozen pixels, we were able to train one of the
smallest architectures of YOLOvV8, YOLOVSs, to extract the different sections.

Image tiling for small object detection
The anesthesia paper chart is characterized by having handwritten symbols (e.g., medi-
cation, numerical and blood pressure symbols) that are small and often tightly packed
together (Fig. 1). Single shot detectors like YOLO struggle to separate and identify these
handwritten symbols due to their use of a grid which assigns responsibility of a single
cell to the center of a single object. One solution to this issue is to increase the image
size, however since YOLO uses padding to make all images square, and the number of
pixels in a square image grows quadratically with image size, this causes training mem-
ory usage and detection time to increase quadratically as well. To overcome this prob-
lem, we used an approach called image tiling where we divided the image into smaller
pieces called tiles and trained on the tiles rather than the entire image. This allowed us
to increase the size of these small objects relative to the frame, allowing us to get much
better object detections.

There are, however, several challenges associated with image tiling. First, objects
which are larger than the tiles which we have divided the image into will not be able to
fit into a single tile, and will be missed by the model. All the handwritten symbols in our

dataset were small, and were uniform in size, allowing us to use image tiling without
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Fig. 6 An example of our implementation of image tiling. By using a sliding window rather than a grid, the
edge of one image is the center of the next one [12]

the risk of losing any detections. Second, by needing to detect on every sub-image, the
detection time increases. Whereas this may be an issue in real-time detection, the dif-
ference in detection time is only measured in several hundred milliseconds, which does
not affect our use case. Third, the number of unique images and total objects in a sin-
gle training batch will be smaller, causing the models weights to have noisy updates and
require longer training. We solved these issues by utilizing the memory savings acquired
by tiling to double the training batch size from 16 to 32. In addition, due to the very large
number of empty tiles, we were able to randomly add only a small proportion to the
training dataset, which further increased the object to tile ratio. Finally, objects which lie
on the border of two tiles will not be detected since they do not reside in either image.
Our solution to this issue is to not divide the image into a strict grid, but instead to treat
the tiling process as a sliding window which moves by one half of its width or height
every step. With this approach, if an object is on the edge of one sub-image, it will be
directly in the center of the next one (Fig. 6). This solution introduces its own challenge
though since nearly every detection will be double counted when the detections are
reassembled. Our solution to this problem is to compute the intersection-over-union of
every bounding box with every other bounding box at detection time, group together
boxes whose intersection-over-union is greater than a given threshold, and combine
them into one detection. Since the objects we are detecting should be well separated and
never overlap, this allows us to remove the doubled detections.

Blood pressure symbol detection and interpretation

The blood pressure section encodes blood pressure values using arrows, and heart rate
using dots or lines. Each vertical line on the grid indicates a five minute epoch of time
during which a provider records a blood pressure and heart rate reading (Fig. 1). The
y-axis encodes the value of blood pressure in mmHg, and each horizontal line denotes a
multiple of ten (Fig. 1).
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Symbol detection
Systolic blood pressure values are encoded by a downward arrow, and diastolic blood
pressure values are encoded with an upward arrow. The downward and upward arrows
are identical when reflected over the x-axis, so we were able to collapse the two classes
into one. We then trained a YOLOvV8 model on the single “arrow” class, and during
detection we simply detect on the image and an upside-down-version of itself to obtain
systolic and diastolic detections respectively. Finally, the diastolic detections y-values
are subtracted from the image’s height to correct for the flip.

Thereafter two key pieces of information are required from each of the bound-
ing boxes: (1) its value in millimeters of mercury (mmHg), and (2) its timestamp in
minutes.

Inferring mmHg values from blood pressure symbol detections

The value of blood pressure encoded by an arrow corresponds to the y-pixel of
the tip of the arrow. By associating a blood pressure value to each y-pixel in the
blood pressure section, we can obtain a value for each blood pressure bounding
box. We trained a YOLOvV8 model to identify the 200 and 30 legend markers, and
by identifying the locations of the 200 and 30 markers, we were able to interpolate
the value of blood pressure for each y-pixel between the 200 and 30 bounding
boxes (Fig. 7).

Assigning timestamps to blood pressure symbol detections

To impute timestamps, we wrote an algorithm that applies timestamps based on the
relative x distances between the systolic and diastolic detections (algorithm 2).

7 GRS —

i it M i L5 e e ———A—l
Fig. 7 By dividing the space between the 30 and 200 bounding boxes equally, we can find the blood
pressure values of each y-pixel. We ran the algorithm on this image, and set all the y-pixels that were
multiples of 10 to red. We can see the efficacy of the algorithm visually as the detections cover the lines on
the image almost perfectly

Page 11 of 25
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Algorithm 2 Imputing a Time Stamp to a Blood Pressure Bounding Box

Input: A list of systolic bounding boxes S and a list of diastolic bounding boxes D
Output: A list of paired bounding boxes P with timestamps
1: procedure IMPUTETIMESTAMPTOBLOODPRESSUREBOUNDINGBOX(S, D)
2 Initialize an empty list of matches M
3: Initialize an n x n array A, where n is the number of systolic bounding boxes
4 for s€ S,d e D do
5 d, = the x-distance between the centers of boxes s and d
6 A; j = dy, where 7 is the index of s and j is the index of d
7: end for
8 while Je € A where e < 0.01 X image width do
9 €min = min(A)

10: Remove row ¢ from array A where ¢ is the row corresponding to €,in

11: Remove column j from array A where j is the column corresponding to
€min

12: Add the systolic and diastolic boxes that correspond to the removed array
indices (7, j) to the matches list M

13: end while

14: Add all remaining indices to M in their own groups with no matches

15: Sort the matches list M by the average x-centers of the paired boxes

16: for i,p € enumerate(M) do

17: if i == 0 then

18: Set the timestamp of pair p to 0

19: else if p.zqpg — M[i — 1].2405 < 0.018 X image width then

20: p.timestamp = M[i — 1].timestamp + 5

21: else

22: p.timestamp = M[i — 1].timestamp + 10

23: end if

24: end for

25: Return the matches list M
26: end procedure

Missing detections are a common problem when applying timestamps. Our algo-
rithm deals with this in two ways. The while loop checks if two boxes are within 1%
of the image’s width from one another, ensuring they are not too far away to plausibly
match before actually pairing them. If a box has no pair which is within the 1% range,
the algorithm considers it to not have any matches. Another problem occurs when
there are no detections for a five minute epoch. This is solved by sampling the dis-
tance between true matches in the dataset. We found that 100% of the matches were
within 0.016*image’s width of the next matching pair. So, adding a small amount for
error, if a match is more than 0.018*image’s width from the next pair, a time gap of
10 min is applied instead of the typical 5.

Blood pressure model training and error testing

A YOLOVSI model, the second largest architecture of YOLOVS, was trained to detect
downward arrows for 150 epochs and using a batch size of 32 images. The images
used to train this model were tiled images of the blood pressure section where only
the systolic arrows were annotated on unflipped images, and only the diastolic arrows
were annotated on flipped images.
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There are two ways that error will be assessed for the blood pressure section: detec-
tion error and inference error. Detection error will be computed using the normal object
detection model metrics of accuracy, recall, precision, and F1. Inference error is the
error between the value in millimeters of mercury the program assigned to a blood pres-
sure detection on the whole image of the blood pressure section, and the ground truth
value that was manually annotated. Blood pressure detections made by the program
were hand matched with ground truth values during assessment in order to avoid the
case where the correct blood pressure value was assigned to a different timestamp. The
error metric we used for this was mean average error. The 30 chart images used for test-
ing included 1040 systolic and diastolic marks (this number varies from the object detec-
tion testing set due to image tiling duplicating detections). The ability of the program to
match blood pressure detections to a particular time stamp was not assessed.

Physiological indicators

The physiological indicators section is the most difficult and challenging section to dig-
itize. Handwritten digits are written on the line that corresponds to the physiological
data they encode, but are free to vary along the time axis rather than being discretely
boxed in, or being listed in fixed increments. In addition, the individual digits which
appear in the physiological indicators section must be concatenated into strings of digits
to form the number the provider intended to write. Our approach to digitize this section
is described below:

Handwritten number detection

Our approach for the detection of numbers is a two-step process: (1) a YOLOv8 model
trained on a single “digit” class which locates and bounds handwritten numbers, and
(2) a RegNetY_1.6gf CNN that classifies those digits. There are two advantages to this
method over using a single YOLOv8 model for both detection and classification. First,
the distribution of digits in our training dataset was not uniform. For example, there are
over one-thousand examples of the number 'Y’ on the training charts, but only approx-
imately 160 examples of the number ’5" due to the typical range of oxygen saturation
being between 90 and 99. This leads to the number 5 having much poorer box recall
in a model that does both classification and localization. Visually, handwritten num-
bers are very similar to one another, so by collapsing each digit into a single “digit” class,
the model can learn information about how to localize handwritten digits for numbers
which are underrepresented by using numbers which are overrepresented. Second, there
is an added advantage of training the classification CNN separately since the dataset can
be augmented with images of digits not found on the anesthesia paper charts. We used
the MNIST dataset to expand and augment our training dataset, providing sufficient
examples from each class to attain a high accuracy [13].

Matching each box to the corresponding row

Prior to clustering the digit bounding boxes together by proximity (Fig. 9), we had to
find which row the box belongs to. For any given patient, between 0 and 7 rows were
filled out depending on the type of surgery and ventilation parameter data recorded by
the anesthesia provider. For the special cases where 0 or 1 rows were filled out, there
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Fig. 8 Clustered detections in the physiological indicator section using the KMeans clustering algorithm, and
selecting K based on the maximum silhouette score

were either no detected digits or the standard deviation of the y-center of the detected
digits was only a few pixels. For the case where there was more than one row, we used
KMeans clustering on the y-centers of the digit bounding boxes using k € [2,3,4,5,6,7]
and determined the number of rows by choosing the value of k which maximized the
silhouette score, a metric which determines how well a particular clustering fits the
data. In order to determine which row a cluster encodes, we examined the y-centroid
of clusters from 30 sheets, and found that the distribution of y-centroids for a particular
row never overlapped with any other row. This meant that there were distinct ranges of
y-pixels that corresponded to a given row, allowing us to determine which row a cluster
encodes by finding which range contained the y-centroid of a cluster (Fig. 8).

Clustering single digit detections into multi-digit detections

When we assigned each row an ordered list of boxes that correspond to it, we then clus-
tered those boxes into observations that encode a single value (Fig. 9). This is done with
the same KMeans-silhouette method used to find which rows each digit bounding box
corresponds. In order to narrow down the search for the correct value of k, we used the
plausible range of values for each row. For example, the first row encodes oxygen satura-
tion, which realistically falls within the range SpO, € [75,100]. If we let # be the num-
ber of digit bounding boxes, the minimum number of clusters would be realized if the
patient had a 100% oxygen saturation for the entire surgery, leading to k = |#/3]. In con-
trast, the maximum number would be realized when the patient never had a 100% oxy-
gen saturation, leading to k = [#/2]. Allowing for a margin of error on either side of 10%
due to missed or erroneous detections, we fit a KMeans clustering model with each of
k €[ln/3] — 0.1 *n], [n/2] 4+ [0.1 x n]], and selected the value of k which maximized
silhouette score. For the other physiological parameter rows, we reassessed the plausi-
ble number of digits for that specific variable and obtained a new range of k values. The
clusters created by the optimal KMeans model are then considered to be digits which
semantically combine to form one value.

The only section which does not conform to this paradigm is the tidal volume row. In
this row, there is an “X” which separates a tidal volume in milliliters from the respiratory
rate in breaths per minute. To detect semantic groupings of digits, we used the fact that
tidal volume is nearly always three digits, and respiratory rate is nearly always two digits,
with an “X” mark in the center, and made our search accordingly. A small CNN trained
as a one vs rest model to detect the “X” mark was then trained to separate the tidal vol-
ume from the respiratory rate.
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Fig. 9 Boxes from the SpO, section clustered into observations using KMeans. A plausible range of values for
k is determined by computing the number of boxes divided by the highest and lowest plausible number of
digits found in a cluster (3 and 2 for the SpO; section, respectively). From this range, the k which maximizes
the silhouette score is chosen

Assigning a value to each multi-digit detection cluster

We trained a RegNetY CNN model to classify images of handwritten numbers by com-
bining the MNIST dataset with the digits from the charts we labeled. Initially the pro-
gram runs the model on each digit in a cluster and concatenates them together to form a
single value. However, due to the poor quality of handwriting, our test set classification
accuracy was approximately 90% rather than the standard 99% or greater that is achiev-
able with most modern CNNs using the MNIST dataset.

One way to minimize this error is to check if the value assigned is biologically plausi-
ble. The program first checks if the concatenated characters of a section fall in a plausible
range for each row. For example, if SpOy & [75%, 100%] the program marks the observa-
tion as implausible. In addition, if the absolute difference between a value and the values
immediately before or after it is larger than a one sided tolerance interval constructed
with the differences we observed in the dataset, the program also marks it as implausi-
ble. For example, if an observation for SpOj is truly 99, but the model mistakes it is 79,
and the observations just before and after it is 98 and 100 respectively, the observation
is marked as implausible since SpOs is very unlikely to decrease and improve that rap-
idly. If an observation is marked as implausible, the program imputes a value by fitting a
linear regression line with the previous two and next two plausible values, and predicts
the current value by rounding the output of the regression model at the unknown value.

Physiological indicator model and error testing
A YOLOV8] model was trained to detect one class, handwritten digits, for 150 epochs
with a batch size of 32.

A RegNetY_1.6gf model was trained on a mixture between observations cropped from
the charts and the MNIST dataset. The model was validated and tested on observations
only from the charts. The training set contained 88571 observations, while the valida-
tion and testing sets had 7143 observations each. The model was trained for 25 epochs
and images were augmented using Torchvision’s autoaugment transformation under the
‘imagenet’ autoaugment policy.

Error for object detection will be assessed with accuracy, precision, recall, and F1.
Error for classifying numbers will be reported using only accuracy. The error for inferring
a value from the classified object detections will be assessed using mean average error on
each of the 5 physiological indicators on all 30 test charts. Using the output of the pro-
gram and the ground truth dataset, we will compute the mean average error by index
value of the lists. For example, let the program output be (99, 98, 97), the ground truth
from the chart image be (98, 99, 100). Then the matched values are ((99, 98), (98, 99), (97,
100)), and the error would be computed as ((]|99 — 98]| + |98 — 99]| + ||97 — 100]|)/3)).
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If the ground truth and predictions vary in length, the longer of the two lists will be
truncated to the length of the shorter.

Checkboxes
The checkbox section is a two class object detection and classification problem. Imput-
ing a value can be made difficult if there are missing or erroneous detections.

Checkbox detection and classification

We labeled each checkbox from all the anesthesia paper charts in the dataset as checked
or unchecked, and then trained a YOLOv8 model to detect and classify each checkbox in
the image. Approximately one out of every twenty checkboxes that were intended to be
checked did not actually contain a marking inside them. Instead, the marking would be
placed on the text next to the box, slightly above the box, or adjacent to the box in some
other location. We decided a priori to label these as checked because it was the intention
of the provider to indicate the box as checked, and so that the model would begin to look
to areas adjacent to the box for checks as well.

Assigning meaning to checkboxes

The checkboxes are arranged in columns (Fig. 1), so the algorithm for determining
which bounding box corresponds to which checkbox starts by sorting the bound-
ing boxes by x-center, then groups them using the columns that appear on the page,
and sorts each group by y-center. For example, the left-most boxes “Eye Protection’,
“Warming’, “TED Stockings’, and “Safety Checklist” on the anesthesia paper chart
are all in the “Patient Safety” column, and have approximately the same x-center. The
algorithm sorts all checkbox bounding boxes by x-center, selects the first four, then
sorts them by y-value. Assuming there are no missing or erroneous boxes, these first

four bounding boxes should match the “Patient Safety” checkboxes they encode.

Checkbox model training and error testing
A YOLOvV8] model was trained to detect and classify checkboxes for 150 epochs using
a batch size of 32. Error will be reported by overall accuracy, precision, recall, and F1
score. Sheets where the number of detections does not match the number of check-
boxes will be removed from the error calculation, and the number of sheets where
this occurred will be reported.

In addition to detection and classification, the program’s ability to correctly infer
which checked/unchecked bounding box detection associates with which checkbox
will be assessed. This error will be quantified with accuracy, precision, recall, and F1.

Results and discussion

Our testing results were based on a 30 chart holdout set. The reason we report accu-
racy on these and not the testing sets used during YOLO training was due to image
tiling duplicating many of the labels, which would provide an accuracy that does not
reflect what would be seen on the whole section of the chart. While not reported, in
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all cases the test and validation sets had nearly identical metrics, suggesting the mod-

els were generalizing.

Section extraction

On the 30 test charts, the model for extracting the sections of the anesthesia paper
chart achieved an average box precision of 0.99, an average box recall of 0.99, and an
mAPO0.5-95 of 0.97. Due to the handwritten symbols being listed on the interior of the
sections rather than the edges, a small error is, for our purposes, equivalent perfect
model since it never cut off the important data elements in the sections.

Blood pressure

Detection errors were computed using the full test set of 30 images, which in total
had 1040 systolic and diastolic marks. Inference errors were computed using the first
5 images, which in total had 141 systolic and diastolic markers. This set is smaller
because the systolic and diastolic markers were manually matched with their ground
truth counterparts due to 8 erroneous extra markers and 2 missed markers.

Detection error

Table 1 demonstrates that our new method has a slightly lower accuracy rate. How-
ever, it is important to note that the previous method was tested on scanned, synthetic
anesthesia paper chart images, whereas the new method was tested on smartphone
images of anesthesia paper charts from real cases.

Table 1 Blood pressure YOLOv8 dataset

Set Total images Images with no annotations Training
instances
Training 18990 12799 31476
Validation 3870 2797 5244
Testing 2970 1842 5973

A breakdown of the dataset used to train the handwritten digit detection model. The dataset consisted of tiles from the
larger images, so one marker on the larger image would appear in multiple tiles in varying locations. Test set error is not
reported on this dataset, but instead on a 30 chart holdout set for more interpretable results

Table 2 Physiological indicator YOLOv8 dataset

Total images Images with no annotations Training
instances
Training 10665 7883 17387
Validation 1350 1050 2060

A breakdown of the dataset used to train the handwritten digit detection model. No testing set was used for the YOLO
model, and instead the model was tested on the 30 chart testing dataset
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Inference error
The mean average error for the inference of a mmHg measurement to a blood pressure
detection was only approximately 1.25mmHg, and did not vary greatly (Table 2). While
not listed, the mean squared error also remains small, suggesting the error we observe
did not come from a few very incorrect observations. Rather, the error we observed
came from most observations being some small distance away from the true value.

The MAE for imputing a value in mmHg to a blood pressure detection is much lower
than previous methods. The MAE of the new method is within the variance that human
beings assign to the handwritten symbols and is clinically insignificant.

Physiological indicators

Detection error

By passing the output bounding boxes of the single class YOLOvV8 model to the clas-
sification CNN, we can get an end to end detection error for the single characters. The
overall accuracy was 85.2%, but this metric varied greatly between digits, primarily due
to less representation in the training dataset for certain digits, and handwritten digits
looking similar to each other (e.g., 7, 2, and 9).

Inference error

Obtaining an error for the imputed value of the physiological indicators is challenging.
Approximately one out of every six characters that should be detected was not (false
negative), and one out of every twenty proposed boxes was not actually a character, but
was instead a percentage sign or other nondigit pen marking (false positive). In addition,
there were relatively few examples of FiO; (inspired oxygen concentration) and EtCO,
(end tidal carbon dioxide) in the test set, making their error highly dependent on the
quality of the small number of sheets which did record them.

Therefore, we assessed error only on observations in which at least one charac-
ter was detected, and a-priori decided to exclude those which were completely unde-
tected. In addition, we left in any erroneous boxes that were clustered together with an
observation.

We identified that handwriting quality had a very large positive effect on the infer-
ence accuracy, so to determine a best case error we created five synthetic sheets and
filled them with an average of 35 plausible datapoints per sheet, and took images of them
with smartphones in lighting similar to the real dataset. Table 3 contains the average and
squared error for each section between the real anesthesia paper chart and the synthetic
anesthesia paper chart test sheets. The inference error on the synthetic sheets was near

Table 3 Physiological indicator RegNetY dataset

Character 0 1 2 3 4 5 6 7 8 9 Total

Number of obs from tiles 5002 4408 3924 2274 1562 1984 1193 1000 1537 4787 28571
Number of obs from MNIST 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949 60000

A breakdown of the dataset used to train the handwritten digit detection model. MNIST data was only included in the
training dataset, the validation and test datasets were entirely made from observations from charts. Because oxygen
saturation is the most commonly monitored vital sign, and oxygen saturation is nearly always 98, 99, or 100, the dataset is
skewed to include far more 0, 1, and 9 examples
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zero and much more consistent than on the real anesthesia paper chart. The error on
the real anesthesia paper chart was comparatively higher and more variable. When an
application for smartphones is developed that will be used by physicians, we believe that
the handwriting will improve to meet that of the synthetic sheets due to the Hawthorne
effect [14].

Checkboxes

1117 checkboxes from the 29 of the 30 test set images were used for assessing error. One
test set image was excluded due to it being too blurry to manually annotate. The accu-
racy metrics in Table 4 demonstrate improvement in all measures, compared to previous

approaches.

Detection error

Some checkboxes had markings which were not strictly inside the checkbox they were
intending to mark, but were still classified as checked in the training dataset since the
intention of the provider was to check them. Because of this, the model learned how to
look in the space immediately around the checkbox to find markings, and was able to
classify some checkboxes that did not have markings inside them (Tables 5, 6, 7 and 8).

Table 4 Checkbox YOLOVS dataset

Unchecked Checked
Training 23253 7795
Validation 2588 987
Testing 806 325

The number of instances of checked and unchecked boxes in the tiled dataset used to train, validate, and test the YOLO
model

Table 5 Blood pressure detection accuracy

Metric New method Previous
method
[71

Recall 0.98 0.98

Precision 0.94 0.99

F1 0.96 0.99

Error metrics for two blood pressure detection algorithms: the new methods described in this paper and those previously
reported

Table 6 Blood pressure inference error

Systolic blood pressure Diastolic
blood
pressure

New method MAE 1.00 1.36
Previous method MAE[7] 4.01 396

Blood Pressure Inference Error for systolic and diastolic blood pressure symbols. MAE: Mean Average Error
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Table 7 Real test sheet versus synthetic test sheet error rates

Real Synthetic
u o u o
MAE 281 293 0.0 0.0 SpO,
MSE 4238 583 0.0 0.0 SpO2
MAE 246 1.01 043 0.68 EtCO»
MSE 2581 15.92 6.04 11.69 EtCO;
MAE 363 1.83 0.06 0.07 FiO2
MSE 3991 3748 0.09 0.12 FiO;
MAE 68.91 8153 243 3.88 Tidal Volume
MSE 22793.37 3783291 65.63 117.69 Tidal volume
MAE 498 9.13 0.35 0.7 Respiratory rate
MSE 240.21 584.85 245 49 Respiratory rate

Error rates for each row of the physiological indicators between the handwriting observed from the real anesthesia paper
chart, and the synthetic anesthesia paper heath record. Sp02: Oxygen saturation, EtC02: end tidal carbon dioxide, Fi02:
Inspired oxygen concentration

Table 8 Checkbox detection accuracy

Metric New method Previous
method
[8]

Accuracy 0.99 0.97

Precision 1.0 091

Recall 0.99 0.94

F1 0.99 0.92

Accuracy metrics for our methods (new method) compared to previous group’s methods

Inference error

To increase the accuracy of the data being extracted from the sheets, our exact
implementation of the checkbox detection algorithm was written to throw an error
if it did not detect the exact number of checkboxes on the sheet and no more. Our
program did so on 4 of the 29 sheets in the test dataset (13.7%). Among the remain-
ing 25 sheets, the program inferred the exact box that was being checked almost
perfectly. The conditional error metrics are reported in Table 9.

Table 9 Checkbox inference accuracy

Metric Value
Accuracy 0.99
Precision 0.99
Recall 0.98
= 0.98

Among sheets that exactly the correct number of detections (25 of the 29 sheets in the test set), the program was able to
correctly infer which box belonged to which detection
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Impact of image preprocessing

To assess the impact of both homography and deshadowing, errors were recomputed
without them. We found the homography to raise accuracy across all metrics, while
deshadowing had no effect on accuracy (Tables 10, 11, 12, 13, 14, 15).

Table 10 Blood pressure detection accuracy

Measure Deshadowing and Deshadowing only Homography only No
homography preprocessing

Accuracy 0.925 0.796 0.931 0.809

Precision 0.941 0.879 0.945 0.889

Recall 0.983 0.894 0.984 0.900

F1 0.961 0.886 0.964 0.894

The effect of preprocessing on blood pressure mark detection. Removing the deshadowing component had little to no
effect, but removing the homography caused a drastic drop in all metrics

Table 11 Blood pressure inference error

Measure Deshadowing and Deshadowingonly  Homographyonly  No
homography preprocessing

Systolic MAE 1.000 2153 1.038 2227

Diastolic MAE 1.356 2.520 1.340 2.589

The effect of preprocessing on blood pressure inference. Removing the deshadowing component has very little effect on
error, but the removal of the homography correction had a negative effect on error

Table 12 Physiological indicator detection accuracy

Measure Deshadowing and homography Deshadowing only Homography only No preprocessing

Accuracy  0.853 0.856 0.883 0.883

Table 13 Physiological indicator inference error

Error Deshadowingand Deshadowing Homography No preprocessing
homography only only

SpO, MAE 281 264 329 243

EtCO,; MAE 246 5.25 11.41 6.02

FiO, MAE 3.63 1.64 3.05 347

Tidal Volume MAE 68.91 69.19 76.82 139.59

Respiratory Rate MAE 4.98 344 2.66 4.91

The effect of preprocessing on inferring values from the objects detected in the physiological indicator section. The effects
varied for each physiological indicator, so preprocessing likely did not affect the physiological indicator section much
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Table 14 Checkbox detection ablation metrics

Measure Deshadowing and Deshadowing only Homography only No
homography preprocessing

Accuracy 0.998 0.963 0.997 0.963

Precision 1.0 0.970 0.999 0972

Recall 0.993 0.993 0.992 0.994

F1 0.997 0.981 0.996 0.984

The effect of removing deshadowing and the homography correction from the test set images. The effect of deshadowing is
almost negligible, while the effect of the homography correction is pronounced

Table 15 Checkbox inference ablation metrics

Measure Deshadowingand Deshadowing only Homography only No preprocessing
homography

Accuracy 0.990 0.994 0.989 0.994

Sheets skipped 4 (13.7%) 5(17.2%) 4(13.7%) 5(17.2%)

Almost no accuracy decrease was observed on the inference of meaning to checkboxes when removing preprocessing,
although removing the homography did cause one additional sheet in the test dataset to not have the exact number of
detections needed to impute meaning to the checkboxes. This is listed in the second row as the number of sheets skipped
with the percentage of the test set skipped in parenthesis

Blood pressure

Physiological indicators

The effect of preprocessing on the physiological indicator section was unclear. By remov-
ing deshadowing, the amount of numbers correctly detected raised by 3%, and removing
both the homography correction and deshadowing had varying effects on the inference
of a value for the detections (Tables 12, 13).

Checkboxes

The checkboxes showed very little performance loss when removing the deshadowing
component, but did have a notable but small drop in the metrics when removing the
homography correction (Tables 14, 15). Removing the homography caused an additional
sheet from the test dataset to not have the correct number of detections for imputing
meaning to the checkbox detections.

Conclusion

In this manuscript we discussed the integration of previous research into one piece of
software and the improvement of algorithms for extracting handwritten data from
smartphone photographs of anesthesia paper health records. While electronic medical
records are not a feasible solution for LMICs in the near future, we have demonstrated
that it is possible to extract high quality data elements from anesthesia paper charts,
utilizing locally available, low-cost resources such as a smartphone. Through the use of
deep neural networks and the careful filtering and correction of their output by classi-
cal machine learning models and algorithms, we were able to improve the digitization
of blood pressure and checkboxes to near perfect accuracy, under realistic photography
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and lighting conditions. In addition, we demonstrated that, through careful and legible
handwriting, physiological data could likewise be digitized with high accuracy. Our work
is an important step in improving access to data for health care providers in LMICs, and
is a major advance in providing access to data for real time, point of care clinical decision
support.

Challenges and limitations

Image and chart quality

We have demonstrated the ability of the program to digitize multiple components of the
anesthesia paper chart with high accuracy. However, as has been demonstrated with dig-
itization of the physiological indicators, poor or illegible handwriting and image quality
make extraction difficult, and is responsible for the majority of errors in the system. It is
important to note that model development was done on previously archived anesthesia
paper charts. We believe that in the future there will likely be a Hawthorne effect with
improved handwriting quality when health care providers are aware that paper health
records will be digitized [14]. This will improve the accuracy of the physiological data.

Single site usage

Anesthesia paper health charts are not standardized, with different hospitals having
their own unique chart. This means that our current software will only work on a single
version of the chart at a single hospital.

Future work

Improvement of error detection and inference algorithms

For our initial implementation of the system, we kept the algorithms for imputing values
to erroneous detections either (1) simple, using only linear models and filtering algo-
rithms, or (2) left them out entirely, such as in the case of the checkboxes. The software
we developed can now be used to test and compare local or nonlinear regression algo-
rithms for imputing values, and new filtering methods for detecting erroneous values.

Digitization of remaining chart elements

There are several reasons why the remaining anesthesia paper chart elements remain
undigitized. In our current dataset, Inhaled Volatile Medications (Fig. 1. Section B),
Intravenous Fluids (Fig. 1. Section C) and Blood and Blood Product Transfused (Fig. 1.
Section D) were infrequently recorded. In addition, the transfusions and intravenous flu-
ids sections are completely free text, the heart rate encoding is not consistent with some
anesthesia paper records using a dot, whereas others use a straight line, and the intrave-
nous drugs section is particularly hard to read even for human clinicians. The inhaled
anesthetics, however, could be digitized since they are simple checkboxes and digits,
which are both currently readable. Other techniques for digitizing the data could also
be available in the future, especially with a potentially larger training dataset. If a smart-
phone app implemented our code into a full system, the providers could list the drugs
they used, eliminating the most difficult section while imposing only a minor amount of
extra work for anesthesia providers.
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Prospective creation of a new intraoperative sheet

Anesthesia paper health charts are not standardized, with different hospitals having
their own unique chart. Immense time and effort is required to digitize one unique anes-
thesia paper health chart. To ensure future success for this project, our next goal is to
design a standardized, machine readable, anesthesia paper chart using a collaborative
effort between anesthesia providers from LMIC and computer vision engineers using
a Delphi approach. By creating a chart prospectively, chart sections that are currently
outside our ability to digitize accurately such as the intravenous fluids, transfusions, and
intravenous drugs could be redesigned with machine readability in mind. For example,
the intravenous drugs could have a three digit alphanumeric code written alongside the
name of the medication, allowing the machine to accurately read drugs and circumvent-
ing the need to read handwritten words altogether. A smartphone app that sends images
of charts to a server for processing could also store a medication-to-code dictionary so
providers can easily look up the code of medications. Findings and knowledge gained
from this work will guide future efforts to digitize paper charts from nonsurgical loca-

tions such as the emergency room, obstetrical delivery areas and critical care units.

Abbreviations

BPM Beats per minute

CHUK University Teaching Hospital of Kigali

CNN Convolutional neural network

EMRs Electronic medical records

EtCO2 End tidal carbon dioxide

FiOg Fraction of inspired oxygen

LMICs Low-middle income countries

MAE Mean average error

mAP Mean average precision

mmHg Millimeters of mercury

MSE Mean squared error

ORB Oriented FAST and rotated BRIEF

SpOg Oxygen saturation

RegNetY 1.6gf  RNN regulated residual network Y 1.6 gigaflops
SIFT Scale-invariant feature transform

YOLOVS You only look once version 5

YOLOv8 You only look once version 8

YOLOvV8s You only look once version 8 small architecture
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