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Introduction
More than 98% of the human genome consists of non-coding regions, considered in the 
past as “junk” DNA. However, in the last decades evidence has been shown that non-
coding genome elements often play an important role in regulating various critical 
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biological processes [1]. An important class of non-coding molecules which have started 
to receive great attention in the last few years is represented by long non-coding RNAs 
(lncRNAs), that is, RNAs not translated into functional proteins, and longer than 200 
nucleotides.

LncRNAs have been found to interplay with other molecules in order to perform 
important biological tasks, such as modulating chromatin function, regulating the 
assembly and function of membraneless nuclear bodies, interfering with signalling path-
ways [2, 3]. Many of these functions ultimately affect gene expression in diverse biologi-
cal and physiopathological contexts, such as in neuronal disorders, immune responses 
and cancer. Therefore, the alteration and dysregulation of lncRNAs have been associated 
with the occurrence and progress of many complex diseases [4].

The discovery of novel lncRNA-disease associations (LDAs) may provide valuable 
input to the understanding of disease mechanisms at lncRNA level, as well as to the 
detection of disease biomarkers for disease diagnosis, treatment, prognosis and preven-
tion. Unfortunately, verifying that a specific lncRNA may have a role in the occurrence/
progress of a given disease is an expensive process, therefore the number of disease-
related lncRNAs verified by traditional biological experiments is yet very limited. Com-
putational approaches for the prediction of potential LDAs can effectively decrease 
the time and cost of biological experiments, allowing for the identification of the most 
promising lncRNA-disease pairs to be further verified in laboratory (see [5] for a com-
prehensive review on the topic). Such approaches often train predictive models on the 
basis of the known and experimentally validated lncRNA-disease pairs (e.g., [6–9]). In 
other cases, they rely on the analysis of lncRNAs related information stored in public 
databases, such as their interaction with other types of molecules (e.g., [10–15]). As an 
example, large amounts of lncRNA-miRNA interactions have been collected in pub-
lic databases, and plenty of experimentally confirmed miRNA-disease associations are 
available as well. However, although non-coding RNA function and its association with 
human complex diseases have been widely studied in the literature (see [16–18]), how to 
provide biologists with more accurate and ready-to-use software tools for LDAs predic-
tion is yet an open challenge, due to the specific characteristics of lncRNAs (e.g., they are 
much less characterized than other non-coding RNAs.)

We propose three novel computational approaches for the prediction of LDAs, rely-
ing on the use of known lncRNA-miRNA interactions (LMIs) and miRNA-disease 
associations (MDAs). In particular, we model the problem of LDAs prediction as a 
neighborhood analysis performed on tripartite graphs, where the three sets of ver-
tices represent lncRNAs, miRNAs and diseases, respectively, and vertices are linked 
according to LMIs and MDAs. Based on the assumption that similar lncRNAs interact 
with similar diseases [12], the first approach proposed here (NGH) aims at identify-
ing novel LDAs by analyzing the behaviour of lncRNAs which are neighbors, in terms 
of their intermediate relationships with miRNAs. The main idea here is that neigh-
borhood analysis automatically guides towards the detection of similar behaviours, 
and without the need of using a-priory known LDAs for training. Therefore, differ-
ently than other approaches from the literature, those proposed here do not involve 
verified LDAs in the prediction step, thus avoiding possible biases due to the fact that 
the number and variety of verified LDAs is yet very limited. The second presented 
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approach (CF) relies on collaborative filtering, applied on the basis of common miR-
NAs shared by different lncRNAs. We have also explored the combination of neigh-
borhood analysis with collaborative filtering, showing that this notably improves the 
LDAs prediction accuracy. Indeed, the third approach we have designed (NGH-CF) 
boosts NGH with collaborative filtering, and it is the best performing one, although 
also NGH and CF have been able to reach high accuracy values across all the different 
considered validation tests. In particular, Fig.  1 summarizes the research flowchart 
explained above.

The proposed approaches have been exhaustively validated on both synthetic and real 
datasets, and the result is that they outperform (also significantly) the other methods 
from the literature. The experimental analysis shows that the improvement in accuracy 
achieved by the methods proposed here is due to their ability in capturing specific situa-
tions neglected by competitors. Examples of that are represented by true LDAs, detected 
by our approaches and not by the other approaches in the literature, where the involved 
lncRNA does not present intermediate molecules in common with the associated dis-
ease, although its neighbor lncRNAs share a large number of miRNAs with that disease. 
Moreover, it is shown that our approaches are robust to noise obtained by perturbing a 
controlled percentage of lncRNA-miRNA interactions and miRNA-disease associations, 
with NGH-CF the best one also for robustness. The obtained experimental results show 
that the prediction methods proposed here may effectively support biologists in select-
ing significant associations to be further verified in laboratory.

Novel putative LDAs coming from the consensus of the three proposed methods, 
and not yet registered in the available databases as experimentally verified, are pro-
vided. Interestingly, the core of novel LDAs returned with highest score by all three 
approaches finds evidence in the recent literature, while many other high scored pre-
dicted LDAs involve less studied lncRNAs, thus providing useful insights for their 
better characterization.

Fig. 1 Flowchart of the research pipeline. The miRNA-lncRNA interactions and miRNA-disease associations 
are exploited for the construction of the tripartite graph. The tripartite graph, in its turn, is at the basis of 
both neighborhood analysis and collaborative filtering steps, from which the three proposed approaches are 
obtained: NGH from neighborhood analysis, CF from collaborative filtering, NGH-CF from the combination of 
the two ones. Each prediction approach returns in output a LDAs rank
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Background
A first group of approaches aim at using existing true validated cases to train the predic-
tion system, in order to make it able to correctly detect novel cases.

In [19] a Laplacian Regularized Least Squares is proposed to infer candidates LDAs 
(LRLSLDA) by applying a semi-supervised learning framework. LRLSLDA assumes 
that similar diseases tend to correlate with functionally similar lncRNAs, and vice 
versa. Thus, known LDAs and lncRNA expression profiles are combined to prioritize 
disease-associated lncRNA candidates by LRLSLDA, which does not require negative 
samples (i.e., confirmed uncorrelated LDAs). In [20] the method SKF-LDA is proposed 
that constructs a lncRNA-disease correlation matrix, based on the known LDAs. Then, 
it calculates the similarity between lncRNAs and that between diseases, according to 
specific metrics, and integrates such data. Finally, a predicted LDA matrix is obtained 
by the Laplacian Regularized Least Squares method. The method ENCFLDA [6] com-
bines matrix decomposition and collaborative filtering. It uses matrix factorization 
combined with elastic networks and a collaborative filtering algorithm, making the pre-
diction model more stable and eliminating the problem of data over-fitting. HGNNLDA 
recently proposed in [21] is based on hypergraph neural network, where the associations 
are modeled as a lncRNA-drug bipartite graph to build lncRNA hypergraph and drug 
hypergraph. Hypergraph convolution is then used to learn correlation of higher-order 
neighbors from the lncRNA and drug hypergraphs. LDAI-ISPS proposed in [22] is a 
LDAs inference approach based on space projections of integrated networks, recostruct-
ing the disease (lncRNA) integrated similarities network via integrating multiple infor-
mation, such as disease semantic similarities, lncRNA functional similarities, and known 
LDAs. A space projection score is finally obtained via vector projections of the weighted 
networks. In [7] a consensual prediction approach called HOPEXGB is presented, to 
identify disease-related miRNAs and lncRNAs by high-order proximity preserved 
embedding and extreme gradient boosting. The authors build a heterogeneous disease-
miRNA-lncRNA (DML) information network by linking lncRNA, miRNA, and disease 
nodes based on their correlation, and generate a negative dataset based on the similari-
ties between unknown and known associations, in order to reduce the false negative rate 
in the data set for model construction. The method MAGCNSE proposed in [23] builds 
multiple feature matrices based on semantic similarity and disease Gaussian interaction 
profile kernel similarity of both lncRNAs and diseases. MAGCNSE adaptively assigns 
weights to the different feature matrices built upon the lncRNAs and diseases similari-
ties. Then, it uses a convolutional neural network to further extract features from multi-
channel feature matrices, in order to obtain the final representations of lncRNAs and 
diseases that is used for the LDAs prediction task.

LDAFGAN [8] is a model designed for predicting associations between long non-
coding RNAs (lncRNAs) and diseases. This method is based on a generative and a 
discriminative networks, typically implemented as multilayer fully connected neural 
networks, which generate synthetic data based on some underlying distribution. The 
generative and discriminative networks are trained together in an adversarial man-
ner. The generative network tries to generate realistic representations of lncRNA-dis-
ease associations, while the discriminative network tries to distinguish between real 
and fake associations. This adversarial training process helps the generative network 
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learn to generate more realistic associations. Once the model is trained, it can predict 
associations between new lncRNAs and diseases without requiring associated data 
for those specific lncRNAs. The model captures the data distribution during training, 
which enables it to make predictions even for unseen lncRNAs. The approach GCN-
FORMER [9] is based on graph convolutional network and transformer. First, it inte-
grates the intraclass similarity and interclass connections between miRNAs, lncRNAs 
and diseases, building a graph adjacency matrix. Then, the method extracts the fea-
tures between various nodes, by a graph convolutional network. To obtain the global 
dependencies between inputs and outputs, a transformer encoder with a multiheaded 
attention mechanism to forecast lncRNA-disease associations is finally applied.

As for the approaches summarized above, it is worth to point out that they may suf-
fer of the fact that the experimentally verified LDAs are still very limited, therefore 
the training set may be rather incomplete and not enough diversified. For this reason, 
when such approaches are applied for de novo LDAs prediction, their performance 
may drastically go down [12].

Other approaches from the literature use intermediate molecules (e.g., miRNA) to 
infer novel LDAs. Such approaches are the most related to those we propose here.

The author in [11] proposes HGLDA, relying on HyperGeometric distribution for 
LDAs inference, that integrates MDAs and LMIs information. HGLDA has been 
successfully applied to predict Breast Cancer, Lung Cancer and Colorectal Cancer-
related lncRNAs. NcPred [10] is a resource propagation technique, using a tripartite 
network where the edges associate each lncRNA with a disease through its targets. 
The algorithm proposed in [10] is based on a multilevel resource transfer technique, 
which computes the weights between each lncRNA-disease pair and, at each step, 
considers the resource transferred from the previous step. The approach in [24], 
referred to as LDA-TG for short in the following, is the antecedent of the approaches 
proposed here. It relies on the construction of a tripartite graph, built upon MDAs 
and LMIs. A score is assigned to each possible LDA (l, d) by considering both their 
respective interactions with common miRNAs, and the interactions with miRNAs 
shared by the considered disease d and other lncRNAs in the neighborhood of l on 
the tripartite graph. The approaches proposed here differ from LDA-TG for two main 
reasons. First, the score of LDA-TG is different from the one we introduce here, that 
allows to reach a better accuracy. Second, a further step based on collaborative filter-
ing is considered here, which also improves the accuracy performance. A method for 
LDAs prediction relying on a matrix completion technique inspired by recommender 
systems is presented in [14]. A two-layer multi-weighted nearest-neighbor prediction 
model is adopted, using a method similar to memory-based collaborative filtering. 
Weights are assigned to neighbors for reassigning values to the target matrix, that is 
an adjacency matrix consisting of lncRNAs, diseases and miRNA. SSMF-BLNP [25] 
is based on the combination of selective similarity matrix fusion (SSMF) and bidi-
rectional linear neighborhood label propagation (BLNP). In SSMF, self-similarity net-
works of lncRNAs and diseases are obtained by selective preprocessing and nonlinear 
iterative fusion. In BLNP, the initial LDAs are employed in both lncRNA and disease 
directions as label information for linear neighborhood label propagation.
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A third category includes approaches based on integrative frameworks, proposed 
to take into account different types of information related to lncRNAs, such as their 
interactions with other molecules, their involvement in disorders and diseases, their 
similarities. This may improve the prediction step, taking into account simultaneously 
independent factors.

IntNetLncSim [26] relies on the construction of an integrated network that comprises 
lncRNA regulatory data, miRNA-mRNA and mRNA-mRNA interactions. The method 
computes a similarity score for all pairs of lncRNAs in the integrated network, then ana-
lyzes the information flow based on random walk with damping. This allows to infer 
novel LDAs by exploring the function of lncRNAs. SIMCLDA [12] identifies LDAs by 
using inductive matrix completion, based on the integration of known LDAs, disease-
gene interactions and gene-gene interactions. The main idea in [12] is to extract fea-
ture vectors of lncRNAs and diseases by principal component analysis, and to calculate 
the interaction profile for a new lncRNA by the interaction profiles. MFLDA [27] is a 
Matrix Factorization based LDAs prediction model that first encodes directly (or indi-
rectly) relevant data sources related to lncRNAs or diseases in individual relational data 
matrices, and presets weights for these matrices. Then, it simultaneously optimizes the 
weights and low-rank matrix tri-factorization of each relational data matrix. RWSF-BLP, 
proposed in [28], applies a random walk-based multi-similarity fusion method to inte-
grate different similarity matrices, mainly based on semantic and expression data, and 
bidirectional label propagation. The framework LRWRHLDA is proposed in [15] based 
on the construction of a global multi-layer network for LDAs prediction. First, four iso-
morphic networks including a lncRNA similarity network, a disease similarity network, 
a gene similarity network and a miRNA similarity network are constructed. Then, six 
heterogeneous networks involving known lncRNA-disease, lncRNA-gene, lncRNA-
miRNA, disease-gene, disease-miRNA, and gene-miRNA associations are built to design 
the multi-layer network. In [29] the LDAP-WMPS LDA prediction model is proposed, 
based on weight matrix and projection score. LDAP-WMPS consists on three steps: the 
first one computes the disease projection score; the second step calculates the lncRNA 
projection score; the third step fuses the disease projection score and the lncRNA pro-
jection score proportionally, then it normalizes them to get the prediction score matrix.

For most of the approaches summarized above, the performance is evaluated using the 
LOOCV framework, such that each known LDA is left out in turn as a test sample, and 
how well this test sample is ranked relative to the candidate samples (all the LDAs with-
out the evidence to confirm their relationships) is computed.

Methods
The main goal of the research presented here is to provide more accurate computational 
methods for the prediction of novel LDAs, candidate for experimental validation in lab-
oratory. To this aim, external information on both molecular interactions (e.g., lncRNA-
miRNA interactions) and genotype-phenotype associations (e.g., miRNA-disease 
associations) is assumed to be available. Indeed, while only a restricted number of vali-
dated LDAs is yet available, large amounts of interactions between lncRNAs and other 
molecules (e.g., miRNAs, genes, proteins), as well as associations between these other 
molecules and diseases, are known and annotated in curated databases.
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A commonly recognized assumption is that lncRNAs with similar behaviour in 
terms of their molecular interactions with other molecules, may also reflect such a 
similarity for their involvement in the occurrence and progress of disorders and dis-
eases [12]. This is even more effective if the correlation with diseases is “mediated” 
by the molecules they interact with. Based on this observation, we have designed 
three novel prediction methods that all consider the notion of lncRNA “neighbors”, 
intended as lncRNAs which share common mediators among the molecules they 
physically interact with. Here, we focus on miRNAs as mediator molecules. However, 
the proposed approaches are general enough to allow also the inclusion of other dif-
ferent molecules. Relationships among lncRNAs, mediators and diseases are modeled 
through tripartite graphs in all the proposed approaches (see Fig. 1 that illustrates the 
flowchart of the presented research pipeline).

Problem statement Let L = {l1, l2, . . . , lh} be a set of lncRNAs and D = {d1, d2, . . . , dk} 
be a set of diseases. The goal is to return an ordered set of triplets R = {�lx, dy, sxy�} 
(with x ∈ [1, h] , and y ∈ [1, k] ), ranked according to the score sxy.

The top triplets in R correspond to those pairs (lx, dy) with most chances to repre-
sent putative LDAs which may be considered for further analysis in laboratory, while 
the triplets in the bottom correspond to lncRNAs and diseases which are unlikely 
to be related each other. A key aspect for the solution of the problem defined above 
is the score computation, that is the main aim of the approaches introduced in the 
following.

NGH: neighborhood based approach

A model of tripartite graph is adopted here to take into account that lncRNAs interact-
ing with common mediators may be involved in common diseases.

Let TLMD = �I ,A� be a tripartite graph defined on the three sets of disjoint vertexes L, 
M and D, such that (l,m) ∈ I are edges between vertexes l ∈ L and m ∈ M , (m, d) ∈ A 
are edges between vertexes m ∈ M and d ∈ D , respectively. In particular, L is associated 
to a set of lncRNAs, M to a set of miRNA and D to a set of diseases. Moreover, edges of 
the type (l, m) represent molecular interactions between lncRNAs and miRNA, experi-
mentally validated in laboratory; edges of the type (m, d) correspond to known miRNA-
disease associations, according to the existing literature. In both cases, interactions and 
associations annotated and stored in public databases may be taken into account.

The following definitions hold.

Definition 1 (Neighbors) Two lncRNAs lh, lk ∈ L are neighbors in TLMD = �I ,A� if there 
exists at least a mx ∈ M such that (lh,mx) ∈ I and (lk ,mx) ∈ I.

Definition 2 (Prediction Score) The Prediction Score for the pair (li, dj) such that li ∈ L 
and dj ∈ D is defined as:

(1)sij = α ·
|Mli Mdj |

|Mli Mdj |
+ (1− α) ·

| x(Mlx Mdj )|

| x(Mlx Mdj )|
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where:

• Mli is the set of annotated miRNA interacting with li,
• Mdj is the set of miRNA found to be associated to dj,
• Mlx is the set of miRNA interacting with the neighbor lx of li (for each neighbor of 

li),
• α is a real value in [0, 1] used to balance the two terms of the formula.

Definition 3 (Normalized prediction score) The Normalized Prediction Score for the 
pair (li, dj) such that li ∈ L , dj ∈ D and sij is the Prediction Score for (li, dj) , is defined as:

NGH‑CF: NGH extended with collaborative filtering

We remark that the main idea here is trying to infer the behaviour of a lncRNA, from 
that of its neighbors. Moreover, it is worth to point out that the notion of neighbor 
is related to the presence of miRNAs interacting with the same lncRNAs. However, 
not all the miRNA-lncRNA interactions have already been discovered, and miRNA-
disease associations as well. This intuitively reminds to a typical context of data 
incompleteness where Collaborative Filtering may be successful in supporting the 
prediction process [30].

In more detail, what to be encoded by the Collaborative Filter is that lncRNAs pre-
senting similar behaviours in terms of interactions with miRNAs, should reflect such a 
similarity also in their involvement with the occurrence and progress of diseases, medi-
ated by those miRNAs. To this aim, a matrix R is considered here such that each element 
rij represents if (or to what extent) the lncRNA i and the disease j may be considered 
related. We call R relationship matrix (it is also known as rating matrix in other con-
texts, such as for example in the prediction of user-item associations). How to obtain rij 
is at the basis of the two variants of the approach presented in this section.

Due to the fact that R is usually a very sparse matrix, it can be factored into other 
two matrices L and D such that R ≈ L T  D . In particular, matrix factorization models 
map both lncRNAs and diseases to a joint latent factor space F of dimensionality f, 
such that each lncRNA i is associated with a vector li ∈ F  , each disease j with a vector 
dj ∈ F  , and their relationships are modeled as inner products in that space. Indeed, 
for each lncRNA i, the elements of li measure the extent to which it possesses those 
latent factors, and the same holds for each disease j and the corresponding elements 
of dj . The resulting dot product in the factor space captures the affinity between 
lncRNA i and disease j, with reference to the considered latent factors. To this aim, 
there are two important tasks to be solved: 

1 Mapping lncRNAs and diseases into the corresponding latent factors vectors.
2 Fill the matrix R, that is, the training set.

(2)ŝij =
sij∑
hk shk

, ∀h ∈ [1, . . . , |L|], ∀k ∈ [1, . . . , |D|]



Page 9 of 37Bonomo and Rombo  BMC Bioinformatics          (2024) 25:187  

To learn the factor vectors li and dj , a possible choice is to minimize the regularized 
squared error on the set of known relationships:

where χ is the set of (i, j) pairs for which rij is not equal to zero in the matrix R. To this 
aim, we apply the ALS technique [31], which rotates between fixing the li ’s and fixing 
the dj’s. When all li ’s are fixed, the system recomputes the dj ’s by solving a least-squares 
problem, and vice versa.

Filling the matrix R is performed according to two different criteria, resulting in the 
two different variants of the approach presented in this section, namely, CF and NGH-
CF, respectively. According to the first criteria (CF), rij is set equal to 1 if the lncRNA i 
and the disease j share at least one miRNA in common, to 0 otherwise. The second vari-
ant (NGH-CF) works instead as a booster to improve the accuracy of NGH. In this latter 
case, the matrix R is filled by the normalized score (2). For both variants, the considered 
score to rank the predicted LDAs is given by the final value returned by the ALS tech-
nique applied on the corresponding matrix R.

Validation methodologies

We remark that the proposed approaches for LDAs prediction return a rank of LDAs, 
sorted according to the score that is characteristic of the considered approach, such that 
top triplets may be assumed as the most promising putative LDAs for further analysis 
in laboratory. As in other contexts [19–33], the performance of a prediction tool may be 
evaluated using suitable external criteria. Here, an external criterion relies on the exist-
ence of LDAs that are known to be true from the literature or, even better, from pub-
lic repositories, where associations already verified in laboratory are annotated. A gold 
standard is constructed, containing only such true LDAs. The putative LDAs returned 
by the prediction method can thus be compared against those in the gold standard. In 
order to work properly, this validation methodology requires the gold standard informa-
tion to be independent on that considered, in its turn, from the method under evalua-
tion during its prediction task. This is satisfied in our case, due to the fact that all three 
approaches introduced in the previous sections do not exploit any type of knowledge 
referred to known LDAs during prediction, relying instead on known miRNA-lncRNA 
interactions and miRNA-disease associations, which come from independent sources.

According to the above mentioned validation methodology, the proposed approaches 
can be validated with references to the Receiver Operating Characteristics (ROC) analy-
sis [34]. In particular, each predicted LDA is associated to a label, that is true if that asso-
ciation is contained in the considered gold standard, and false otherwise.

By varying the threshold value, it is possible to compute the true positive rate (TPR) 
and the false positive rate (FPR), by refferring to the percentage of the true/false predic-
tions whose ranking is higher/below than the considered threshold value. ROC curve 
can be drawn by plotting TPR versus FPR at different threshold values. The Area Under 
ROC Curve (ROC-AUC) is further calculated to evaluate the performance of the tested 

∑

(i,j)∈χ

(rij − lTi dj)
2
,
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methods. ROC-AUC equal to 1 indicates perfect performance, ROC-AUC equal to 0.5 
random performance.

Similarly to the ROC curve, the Precision-Recall (PR) curve can be drawn as well, 
combining the positive predictive value (PPV, Precision), i.e., the fraction of predicted 
LDAs which are true in the gold standard, and the TPR (Recall), in a single visualization, 
at the threshold varying. The higher on y-axis the obtained curve is, the better the pre-
diction method performance. The Area Under PR curve (AUPR) is more sensitive than 
AUC to the improvements for the positive class prediction [35], that is important for the 
case studied here. Indeed, only true LDAs are known, therefore no negative samples are 
included in the gold standard.

Another important measure useful to evaluate the prediction accuracy of a method 
and that can be considered here is the F1-score, defined as the harmonic mean of Preci-
sion and Recall to symmetrically represent both metrics in a single one.

Results
Datasets

We have validated the proposed approaches on both syntetic and real datasets, as 
explained below.

Synthetic data

A synthetic dataset has been built with 15 lncRNAs, 35 miRNA and 10 diseases, such 
that three different sets of LDAs may be identified, as follows (see also Table 1, where the 
characteristics of each LDA are summarized).

• Set 1: 26 LDAs, such that each lncRNA has from 3 to 4 miRNAs shared with the 
same disease (strongly linked lncRNAs).

• Set 2: 16 LDAs, each lncRNA having only one miRNA shared with a disease, and 
from 2 to 5 neighbors that are strongly linked with that same disease (directly linked 
lncRNAs and strong neighborhood).

• Set 3: 12 LDAs involving lncRNAs without any miRNA in common with a certain 
disease, and a number between 2 and 5 neighbors that are strongly linked with that 
same disease (only strong neighborhood).

Real data

Experimentally verified data downloaded from starBase [36] and from HMDD [37] have 
been considered for the lncRNA-miRNA interactions and for the miRNA-disease asso-
ciations, respectively. In particular, the latest version of HMDD, updated at 2019, has 
been used. Overall, 1,114 lncRNAs, 1,058 miRNAs, 885 diseases, 10,112 lncRNA-miRNA 
interactions and 16,904 miRNA-disease associations have been included in the analysis.

In order to evaluate the prediction accuracy of the approaches proposed here against 
those from the literature, three different gold standards have been considered. A first 
gold standard dataset GS1 has been obtained from the LncRNA-Disease database [38], 
resulting in 183 known and verified LDAs. A second, more restrictive, gold standard 
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Table 1 Summary of synthetic data characteristics

LDA Neighbours

lncRNA Disease N. miRNAs N. lncRNAs N. miRNAs

Set 1

l1 d1 3 3 3

l1 d2 3 4 10

l1 d3 3 3 6

l1 d4 3 4 7

l10 d6 3 3 2

l11 d2 3 5 10

l13 d3 3 4 5

l13 d4 4 7 7

l2 d1 3 4 4

l2 d2 3 4 9

l2 d3 3 5 5

l2 d4 4 3 4

l3 d1 3 4 6

l3 d2 3 5 11

l3 d4 3 5 5

l5 d1 3 4 1

l6 d6 3 6 6

l6 d8 3 4 3

l6 d9 4 6 7

l7 d7 3 6 7

l7 d8 3 5 4

l7 d9 3 4 3

l8 d6 4 5 5

l8 d7 4 4 4

l8 d8 3 3 2

l8 d9 3 5 6

Set 2

l10 d10 1 4 7

l10 d7 1 5 6

l12 d2 1 3 10

l12 d3 1 2 9

l13 d2 1 4 8

l15 d5 1 3 7

l14 d2 1 4 11

l14 d4 1 4 9

l4 d1 1 2 8

l4 d2 1 4 12

l4 d4 1 4 8

l9 d6 1 3 9

l9 d7 1 4 10

l9 d9 1 3 9

l3 d3 1 4 9

l6 d7 1 5 8

Set 3

l11 d1 0 3 7

l11 d3 0 2 8

l11 d4 0 3 10
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GS2 with 157 LDAs has been built by the intersection of data from [38] and [39]. Finally, 
also a larger gold standard dataset GS3 has been included in the analysis, by extracting 
LDAs from MNDRv2.0 database [40], where associations both experimentally verified 
and retrieved from manual literature curation are stored, resulting in 408 known LDAs.

Comparison on real data

The approaches proposed here have been compared against other approaches from the 
literature, over the three different gold standards described in the previous Section. In 

In the first three columns information on the LDA is reported: lncRNA, disease and the number of miRNA shared between 
them, respectively
Fourth and fifth columns show information on the neighbours of the lncRNA in the first column which share some miRNA 
with the disease in the second column. In particular, column 4 shows the number of such neighbours, while column 5 the 
number of miRNAs they share with the disease

Table 1 (continued)

LDA Neighbours

lncRNA Disease N. miRNAs N. lncRNAs N. miRNAs

l12 d1 0 2 7

l12 d4 0 4 8

l13 d1 0 3 8

l15 d1 0 5 9

l15 d2 0 3 15

l5 d2 0 4 13

l5 d3 0 3 7

l5 d4 0 2 9

l7 d6 0 3 7

Others

l1 d5 1 1 2

l14 d5 1 2 1

l15 d5 1 1 2

l15 d8 1 1 1

l9 d3 1 1 1

l9 d8 1 1 1

l9 d10 1 1 2

l10 d5 1 2 2

l10 d8 1 1 1

l15 d4 2 1 2

l8 d5 1 2 2

l3 d6 2 1 1

l3 d8 2 1 1

l7 d2 1 2 1

l5 d10 1 2 3

l11 d10 1 1 2

l11 d3 1 1 2

l11 d8 2 2 2

l13 d7 1 2 1

l13 d5 2 2 3

l3 d4 1 1 2

l15 d6 1 1 2

l12 d9 1 2 1
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particular, all approaches considered from the literature have been run according to the 
default setting of their parameters, reported on the corresponding scientific publications 
and/or on their manual instructions.

Our approaches have been compared at first on GS1 against those approaches taking 
exactly the same input than ours, that are HGLDA [11], ncPred [10] and LDA-TG [24]. 
In particular, we have implemented HGLDA and used the corresponding p-value score, 
corrected by FDR as suggested by [11], for the ROC analysis. Moreover, we have normal-
ized also the scores returned by ncPred and LDA-TG for the predicted LDAs, accord-
ing to the formula in Definition 3. Indeed, we have observed experimentally that such 
a normalization improves the accuracy of both methods from the literature, resulting 
in a better AUC. As for the novel approaches proposed here, the Normalized Predic-
tion Score has been considered for NGH, while the approximated rating score resulting 
from ALS [31] is used for both CF and NGH-CF. Figure  2 shows the AUC scored by 
each method on GS1, while in Fig. 3 the different ROC curves are plotted. In particular, 
NGH scores a value of AUC equal to 0.914, thus outperforming the other three meth-
ods previously presented in the literature, i.e., HGLDA, ncPred and LDA-TG, that reach 
0.876, 0.886 and 0.866, respectively (we remark also that performance of both ncPred 

Fig. 2 Comparison of the scored AUC on GS1

Fig. 3 ROC curves for the compared methods on GS1
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and LDA-TG has been slightly improved with respect to their original one, by normal-
izing their scores). As for the novel approaches based on collaborative filtering, they 
both present a better accuracy than the others, with CF having AUC equal to 0.957 and 
NGH-CF to 0.966, respectively. Therefore, these results confirm that taking into account 
the collaborative effects of lncRNAs and miRNAs is useful to improve LDAs prediction, 
and the most successful approach is NGH-CF, that is, the neighborhood based approach 
boosted by collaborative filtering.

Another interesting issue is represented by the “agreement” between the different 
methods taking the same input, in terms of the returned best scoring LDAs. Table  2 
shows the Jaccard Index computed between the proposed approaches and those receiv-
ing the same input, on the top 5% LDAs in the corresponding ranks, sorted from the 
best to the worst score values for each method. It emerges that results by HGLDA and 
ncPred have a small match with the other approaches (at most 0.23), while NGH-CF has 
high agreement with CF (0.74), as well as with NGH and LDA-TG (both 0.70). LDA-TG 
and CF present a sufficient match in their best predictions (0.59). This latter compari-
son based on agreement shows that approaches based on neighborhood analysis share a 
larger set of LDAs, in the top part of their ranks.

The proposed approaches have been compared also against other two recent meth-
ods from the literature, i.e., SIMCLDA and HGNNLDA, which receive in input differ-
ent data than ours, including mRNA and drugs. For this reason, the more restrictive 

Table 2 Jaccard Index on the top 5% LDAs, for each pair of methods

HGLDA ncPred LDA‑TG NGH CF NGH‑CF

HGLDA 1 0.23 0.20 0.20 0.15 0.21

ncPred 0.23 1 0.11 0.11 0.10 0.11

LDA-TG 0.20 0.11 1 0.70 0.59 0.70

NGH 0.20 0.11 0.70 1 0.59 0.70

CF 0.15 0.10 0.59 0.59 1 0.74

NGH-CF 0.21 0.11 0.70 0.70 0.74 1

Fig. 4 Comparison of the scored AUC on GS2
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gold standard GS2 has been exploited for the comparison, where only lncRNAs and 
diseases having some correspondences with the additional input data of SIMCLDA 
and HGNNLDA are included. Figure 4 shows the comparison of the scored AUC on 
GS2, while Fig.  5 the corresponding ROC curves. In particular, the behaviour of all 
approaches previously tested does not change significantly on this other gold stand-
ard, moreover all the other approaches overcome SIMCLDA. On the other hand, 
HGNNLDA has a better performance than HGLDA, NcPred and LDA-TG, although 
it has a worse accuracy than NGH, CF and NGH-CF. The former confirms its superi-
ority with regards to all considered approaches.

Fig. 5 ROC curves for the compared methods on GS2

Fig. 6 Comparison of the scored AUC on GS3
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The proposed approaches have been compared also against LDAP-WMPS on GS3. 
Figure  6 shows the AUC values scored by all compared approaches on GS3, while 
Fig. 7 the corresponding ROC curves. In particular, the behaviour of all approaches 
previously tested does not change on this other gold standard, and LDAP-WMPS has 
better performance than the other approaches except for NGH, CF, NGH-CF and 
HGNNLDA.

The AUPR values scored by the compared methods on GS1, GS2, and GS3 are 
shown in Fig. 8, while the corresponding PR-curves are plotted in Fig. 9. In particular, 
for GS1 results are analogous to the ROC analysis, with NGH-CF the best perform-
ing one, followed by CF and NGH, while HGLDA is the worst. On GS2, NGH-CF 
and CF keep their superiority, followed by SMCLDA and NGH, while HGLDA is yet 
the worst one. On GS3, NGH-CF is the first, Cf the second and both HGNNLDA 
and LDAP-WMPS outperform NGH, while HGLDA in this case slightly outperforms 
LDA-TG, ncPred and SMCLDA, which results to be the worst one.

Figures 10, 11 and 12 show the F1-score values obtained, for all methods compared 
on GS1, GS2 and GS3, respectively, at the varying of a threshold fixed on the method 
score. In Tables  3, 4 and 5 it is shown, for each gold standard, the highest value of 
F1-score obtained by each considered method, as well as the corresponding Precision 
and Recall values, and the minimum threshold value for which the highest F1-score 
value has been reached. On GS1 and GS2, the three best performing approaches 
are NGH-CF, CF and NGH, in this order. On GS3 the order is the same, and LDAP-
WMPS performs equally to NGH.

Fig. 7 ROC curves for the compared methods on GS3
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Fig. 8 AUPR hystogram for the compared methods on GS1, GS2, GS3
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Robustness analysis

The main aim of the analysis discussed here is to measure to what extent the pro-
posed methods are able to correctly recognize verified LDAs, even if part of the 
existing associations are missed, i.e., the sets of known and verified lncRNA-miRNA 
interactions and miRNA-disease associations are not complete. This is important to 
verify that the proposed approaches can provide reliable predictions also in presence 
of data incompleteness, that is often the case when lncRNAs are involved. Therefore, 
the robustness of each proposed method has been evaluated by performing progres-
sive alterations of the input associations coming from the real datasets, according to 
the following three different criteria. 

1) Progressively eliminate the 5% , 10% , 15% and 20% of lncRNA-miRNA interactions 
from the input data.

2) Progressively eliminate the 5% , 10% , 15% and 20% of miRNA-disease associations 
from the input data.

3) Progressively eliminate the 5% , 10% , 15% and 20% of both lncRNA-miRNA interac-
tions and miRNA-disease associations (half and half ), from the input data.

Tests summarized above have been performed for 20 times each. Tables 6, 7 and 8 show 
the mean of the AUC values for NGH, CF and NGH-CF, respectively, over the 20 tests. 
In particular, all methods perform well on the three test typologies at 5% , the worst 
being NGH-CF, which however presents an average AUC equal to 0.84 for case 1), that 
is still a high value. NGH-CF is also the method that presents the best robustness on 
case 3), keeping the value of 0.92 also at 20% , while CF is the worst performing in case 
3), indeed its average AUC decreases from 0.95 at 5% to 0.63 already at 10% , and then 

Fig. 9 Precision-recall curves for the compared methods on GS1,GS2,GS3
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to 0.50 at 20% . This behaviour in case 3), where both lncRNA-miRNA interactions and 
miRNA-disease associations are progressively eliminated, deserves some observations. 
Indeed, results show that the combination of neighborhood analysis and collaborative 
filtering is the most robust one with regards to this perturbation, while collaborative 
filtering alone is the worst performing. On the other hand, CF results to be the most 
robust in case 1), where only lncRNA-miRNA interactions are eliminated, and this is due 
to the fact that CF does not take into account how many miRNAs are shared by pairs of 
lncRNAs. As for case 2), performance of all methods is comparable and generally good, 
possibly in consideration of the fact that a large number of miRNA-disease associations 
are available, therefore discarding small percentages of them does not affect largely the 
final prediction.

Fig. 10 F1-score for the compared methods on GS1
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Comparison on specific situations

In this section further experimental tests are described, showing how well the consid-
ered methods perform in detecting specific situations, depicted through the synthetic 
dataset first, and then searched for in the real data. In particular, the basic observation 
here is that prediction approaches from the literature usually fail in detecting true LDAs, 
when the involved lncRNAs and diseases do not have a large number of shared miRNAs 
(referring to those approaches taking the same input than ours). The novel approaches 

Fig. 11 F1-Score for the compared methods on GS2
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Fig. 12 F1-Score for the compared methods on GS3
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we propose are particularly effective in managing the situation depicted above, through 
neighborhood analysis and collaborative filtering, allowing to detect similar behaviours 
shared by different lncRNAs, depending on the miRNAs they interact with.

Table 3 F1-Score values (second column), corresponding precision and recall values (third and 
fourth columns, respectively), and corresponding threshold value of the score for each prediction 
method on GS1

GS1

Method Max F1‑score Precision Recall Threshold

HGLDA 0.67 0.48 0.98 0.30

ncPred 0.67 0.51 0.99 0.30

LDA-TG 0.80 0.50 0.99 0.60

NGH 0.86 0.51 0.99 0.30

CF 0.89 0.56 0.99 0.10

NGH-CF 0.91 0.56 0.99 0.10

Table 4 F1-Score values (second column), corresponding Precision and Recall values (third and 
fourth columns, respectively), and corresponding threshold value of the score for each prediction 
method on GS2

GS2

Method Max F1‑score Precision Recall Threshold

HGLDA 0.67 0.48 0.98 0.40

ncPred 0.75 0.51 0.98 0.10

LDA-TG 0.80 0.50 0.99 0.50

NGH 0.86 0.51 0.99 0.40

CF 0.89 0.56 0.99 0.20

NGH-CF 0.91 0.56 0.99 0.10

SIMCLDA 0.67 0.49 0.98 0.70

HGNNLDA 0.75 0.51 0.99 0.10

Table 5 F1-Score values (second column), corresponding Precision and Recall values (third and 
fourth columns, respectively), and corresponding threshold value of the score for each prediction 
method on GS3

GS3

Method Max F1‑score Precision Recall Threshold

HGLDA 0.67 0.49 0.98 0.30

ncPred 0.67 0.51 0.98 0.70

LDA-TG 0.80 0.51 0.99 0.40

NGH 0.86 0.51 0.99 0.40

CF 0.89 0.56 0.99 0.35

NGH-CF 0.91 0.56 0.99 0.10

SIMCLDA 0.67 0.49 0.98 0.75

HGNNLDA 0.75 0.51 0.99 0.10

LDAP-WMPS 0.86 0.50 0.98 0.4
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Synthetic data

For each set of LDAs defined in the synthetic data (i.e., set 1, set 2, and set 3), and for 
each tested method (i.e., HGLDA, NCPRED, NHG, CF, NGH-CF), Table  9 shows the 
percentage of LDAs in that set which is recognized at the top 10% , 20% , 30% , 50% of the 
rank of all LDAs, sorted by the score returned by the considered method. As an example, 
for HGLDA the 32% of LDAs of set 1 are located in the top 10% of its rank, where instead 
none LDAs in set 2 or 3 find place.

Looking at these results some interesting considerations come out. First of all, for the 
methods HGLDA, NCPRED, NHG and CF most associations of the set 1 are located 
in the top 50% of their corresponding ranks, while NGH-CF has a different behaviour. 
Indeed, it locates a lower number of such LDAs in the highest part of its rank than the 
other approaches, possibly due to the fact that it leaves room for a larger number of 
associations in the other two sets in the top ranked positions. As for LDAs in the set 2, 
all methods recognize some of them already in the top 10% , except for HGLDA, as alredy 
highlighted. The approaches able to recognize the larger percentages of these associa-
tions at the top 50% of their rank are NGH and NGH-CF. LDAs in the set 3 are the most 
difficult to recognize, due to the fact that the lncRNA and the disease do not share any 
miRNA in common. Indeed, the worst performing methods in this case are HGLDA, 
which is able to locate some of these associations only at the top 50% (according to the 
percentages we considered here), and NCPRED, which performs slightly better although 
it reaches the same percentage of located associations than HGLDA at 50% (the 28% ). 

Table 6 The mean values of AUC scored by NGH over the 20 tests performed for each permutation 
case are shown

NGH 5% 10% 15% 20%

1 0.91 0.84 0.83 0.78

2 0.91 0.84 0.79 0.77

3 0.91 0.90 0.84 0.79

Table 7 The mean values of AUC scored by CF over the 20 tests performed for each permutation 
case are shown

CF 5% 10% 15% 20%

1 0.95 0.93 0.84 0.80

2 0.95 0.85 0.79 0.74

3 0.95 0.63 0.56 0.50

Table 8 The mean values of AUC scored by NGH-CF over the 20 tests performed for each 
permutation case are shown

NGH‑CF 5% 10% 15% 20%

1 0.84 0.78 0.77 0.69

2 0.94 0.92 0.84 0.62

3 0.95 0.95 0.95 0.92
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As expected, approaches based on neighborhood analysis and collaborative filtering per-
form better, with the best one resulting to be NGH-CF.

Real data

In the previous section we have shown that all methods proposed here are able to detect 
specific situations, characterized by the fact that a lncRNA may have very few (or none) 
common miRNAs with a disease, and its neighbors share instead a large set of miRNAs 
with that disease. We have checked if this case occurs among the verified LDAs that our 
approaches find and their competitors do not. Table 10 shows, only by meaning of exam-
ple, 10 experimentally verified LDAs, included in GS1, that are top ranked for the novel 
approaches proposed here, whereas they are in the bottom rank of the other approaches 
from the literature compared on GS1. Six out of such LDAs do not present any common 
miRNAs between the lncRNA and the disease, while four share only one miRNA. All 
involved lncRNAs present neighbors with a large number of miRNAs in common with 
the disease in that LDA, in accordance with the hypothesis that the ability in capturing 
this situation allows to obtain a better accuracy.

Survival analysis has been also performed by one of the TCGA Computational Tools, 
that is, TANRIC [41], on four of the pairs in Table 10. In particular, those lncRNAs and 

Fig. 13 Survival analysis related to SNHG16 and bladder neoplasm

Fig. 14 Survival analysis related to CBR3-AS1 and prostate neoplasm
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diseases available in TANRIC have been chosen. Results are reported in Figures 13, 14, 
15 and 16, showing that the over-expression of the considered lncRNA determines a 
lower survival probability over the time, for all four considered cases.

Fig. 15 Survival analysis related to MALAT1 and bladder neoplasm

Fig. 16 Survival analysis related to MEG3 and breast neoplasm

Table 9 Percentage of LDAs in the set 1 (columns 2–5), set 2 (columns 6–9) and set 3 (columns 
10–13) of the syntetic dataset, that has been recognized at the top 10% , 20% , 30% , 50% of the rank 
obtained by sorting all LDAs (set 1, set 2, set 3 and others) according to the score, for each method

Set 1 Set 2 Set 3

Methods 10% 20% 30% 50% 10% 20% 30% 50% 10% 20% 30% 50%

HGLDA 0.32 0.56 0.84 0.96 0 0.13 0.19 0.5 0 0 0 0.28

NCPRED 0.24 0.52 0.68 0.80 0.13 0.19 0.37 0.62 0 0 0.07 0.28

LDATG 0.20 0.44 0.64 0.88 0.13 0.19 0.31 0.56 0.07 0.14 0.21 0.57

NGH 0.28 0.44 0.60 0.72 0.06 0.25 0.43 0.75 0 0.07 0.14 0.35

CF 0.20 0.40 0.56 0.72 0.13 0.25 0.43 0.56 0.07 0.14 0.21 0.57

NGH-CF 0.16 0.24 0.24 0.28 0.06 0.19 0.31 0.68 0.21 0.43 0.64 0.71
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Discussion

In the previous sections the effectiveness and robustness of the proposed approaches 
have been illustrated, showing that all three are able to return reliable predictions, as 
well as to detect specific situations which may occur in true predictions and are missed 
by competitors. Here we provide a discussion on some novel LDAs predicted by NGH, 
CF and NGH-CF.

Table 11 shows seven LDAs which are not present in the considered gold standards, 
and that have been returned by all three methods proposed here, with highest score. 
The first of these associations is between CDKN2B-AS1 and LEUKEMIA, confirmed 
by recent literature [42, 43]. Indeed, CDKN2B-AS1 was found to be highly expressed 
in pediatric T-ALL peripheral blood mononuclear cells [42], moreover genome-wide 
association studies show that it is associated to Chronic Lymphocytic Leukaemia risk in 
Europeans [43]. As for the second association between DLEU2 and LEUKEMIA, DLEU2 
is a long non-coding transcript with several splice variants, which has been identified 
by [44] through a comprehensive sequencing of a commonly deleted region in leukemia 
(i.e., the 13q14 region). Different investigations reported up regulation of this lncRNA 
in several types of cancers. The lncRNA H19 regulates GLIOMA angiogenesis [45, 46], 
while MAP3K14 is one of the well-recognized biomarkers in the prognosis of renal can-
cer, which is reminiscent of the pancreatic metastasis from renal cell carcinoma [47]. 
MEG3 has been recently found to be important for the prediction of LEUKEMIA risk 
[48]. Multiple studies have shown that MIR155HG is highly expressed in diffuse large 
B-cell (DLBC) lymphoma and primary mediastinal B-cell lymphoma, and in chronic 
lymphocytic leukemia. The transcription factor MYB activates MIR155HG activity, 
which causes the epigenetic state of MIR155HG to be dysregulated and causes an abnor-
mal increase in MIR155 [49]. Also the last top-ranked association in Table 11 between 
TUG1 and NON-SMALL CELL LUNG CARCINOMA has found evidence in the litera-
ture [50–52].

Tables 12, 13,  and 14 show the top 100 (sorted by the scores returned by each method) 
novel LDA predictions that NGH and CF, NGH and NGH-CF, CF and NGH-CF have in 
common, respectively. Many of the lncRNAs involved in such top-ranked LDAs are not 
yet characterized in the literature, therefore results presented here may be considered a 
first attempt to provide novel knowledge about them, through their inferred association 
with known diseases.

Table 11 LDAs with high score according to all presented methods and that are not in the gold 
standard (the prediction score value is reported in the last three columns, respectively)

LncRNA Disease NGH CF NGH‑CF

CDKN2B-AS1 LEUKEMIA 0.95 0.96 0.97

DLEU2 LEUKEMIA 0.91 0.92 0.93

H19 GLIOMA 0.88 0.90 0.91

MAP3K14 PANCREATIC NEOPLASMS 0.83 0.84 0.84

MEG3 LEUKEMIA 0.80 0.83 0.82

MIR155HG LEUKEMIA, B-CELL 0.79 0.82 0.81

TUG1 CARCINOMA, NON-SMALL-CELL LUNG 0.76 0.77 0.78
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Table 12 First 100 novel LDAs predicted as the consensus between NGH and CF

Consensus between CF and NGH

lncRNA Disease CF Score NGH score

AC005152.2 PARKINSON DISEASE 0.99 0.99

AC007566.10 CARCINOMA, ENDOMETRIOID 0.99 0.98

AC015849.16 DEMYELINATING DISEASES 0.99 0.98

BZRAP1-AS1 CENTRAL NERVOUS SYSTEM DISEASES 0.99 0.97

CTB-89H12.4 UTERINE CERVICAL NEOPLASMS 0.99 0.97

CTC-550B14.6 GRAVES DISEASE 0.99 0.97

FLI1-AS1 CHORDOMA 0.99 0.96

H19 MYOTONIC DYSTROPHY 0.99 0.96

HCG18 HYPERTENSION 0.99 0.96

KCNQ1OT1 DIGESTIVE SYSTEM NEOPLASMS 0.99 0.96

KIAA1984-AS1 ASTHMA 0.99 0.96

LIFR-AS1 DIABETIC NEPHROPATHIES 0.99 0.96

LINC00661 ENDOMETRIOSIS 0.99 0.95

LINC00667 LEUKEMIA, MYELOID 0.99 0.95

LINC00667 LEUKEMIA, MYELOID 0.99 0.95

MEG8 UTERINE CERVICAL NEOPLASMS 0.99 0.95

RP11-102F4.3 LYMPHOMA, MANTLE-CELL 0.99 0.94

RP11-108P20.1 FIBROBLASTS 0.99 0.94

RP11-108P20.1 RENAL INSUFFICIENCY 0.99 0.93

RP11-159D12.9 URINARY BLADDER NEOPLASMS 0.99 0.93

RP11-169K16.9 PROSTATIC NEOPLASMS 0.99 0.93

RP11-174G17.2 NASAL POLYPS 0.99 0.93

RP11-184E9.2 FRANCISELLA 0.99 0.93

RP11-216F19.2 CARCINOMA, HEPATOCELLULAR 0.99 0.92

RP11-221J22.2 DEMYELINATING DISEASES 0.99 0.92

RP11-429D19.1 HEART FAILURE 0.99 0.92

RP11-618G20.1 MUSCULAR DYSTROPHY, DUCHENNE 0.99 0.92

RP11-67L3.4 HCV 0.99 0.92

RP6-24A23.7 MELANOMA 0.99 0.92

SPPL2B LEUKEMIA, LYMPHOCYTIC, CHRONIC, B-CELL 0.99 0.92

RP11-365O16.6 BLADDER NEOPLASMS 0.98 0.92

RP11-379K17.11 LEUKEMIA, LYMPHOCYTIC, CHRONIC, B-CELL 0.98 0.92

RP11-767N6.7 CEREBRAL ISCHEMIA 0.98 0.91

MAL2 ENDOMETRIOSIS 0.98 0.91

RP11-797A18.6 LEUKEMIA, BIPHENOTYPIC, ACUTE 0.98 0.91

RP4-665N4.8 SCLERODERMA, LOCALIZED 0.98 0.90

SCAMP1 BREAST NEOPLASMS 0.98 0.90

SCGB1B2P CARCINOMA, SQUAMOUS CELL 0.98 0.89

TTTY15 MYELODYSPLASTIC SYNDROMES 0.98 0.89

MIR3179-1 HCV 0.98 0.89

MIR3179-1 CEREBRAL ISCHEMIA 0.98 0.89

AC005152.2 SCHIZOPHRENIA 0.98 0.88

AC007036.5 CICATRIX 0.98 0.88

AC007255.7 LEIOMYOSARCOMA 0.98 0.88

AC084219.4 MYELODYSPLASTIC SYNDROMES 0.98 0.88

C1RL-AS1 COLORECTAL NEOPLASMS 0.98 0.88

C1RL-AS1 COLORECTAL NEOPLASMS 0.98 0.87

CTBP1-AS1 MELANOMA 0.98 0.87
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Table 12 (continued)

Consensus between CF and NGH

lncRNA Disease CF Score NGH score

CTC-338M12.2 PEMPHIGUS, BENIGN FAMILIAL 0.98 0.87

FBXL19-AS1 URINARY BLADDER NEOPLASMS 0.98 0.87

FLI1-AS1 AMYOTROPHIC LATERAL SCLEROSIS 0.98 0.87

LEMD1-AS1 FRANCISELLA 0.98 0.87

LINC00707 LUNG NEOPLASMS 0.98 0.86

RP11-1055B8.4 MYOCYTES, CARDIAC 0.98 0.86

RP11-105N14.1 ABORTION, HABITUAL 0.98 0.86

RP11-123K3.4 OLIGODENDROGLIOMA 0.98 0.86

RP11-139H15.1 HEMANGIOSARCOMA 0.98 0.85

RP11-184E9.2 ENCEPHALOMYELITIS, AUTOIMMUNE, EXPERIMENTAL 0.98 0.85

RP11-184E9.2 COLORECTAL NEOPLASMS, HEREDITARY NONPOLYPOSIS 0.98 0.85

RP11-277L2.2 RETINAL NEOVASCULARIZATION 0.98 0.84

RP11-290D2.4 LEUKEMIA, MYELOID 0.98 0.84

RP11-290F20.1 MULTIPLE SCLEROSIS 0.98 0.84

RP11-290F20.3 PULMONARY EMBOLISM 0.98 0.83

AC005083.1 STOMACH NEOPLASMS 0.97 0.83

AC025171.1 CARCINOMA, DUCTAL, BREAST 0.97 0.83

ALMS1-IT1 PRRSV INFECTION 0.97 0.83

C11ORF95 HEART FAILURE 0.97 0.83

COX10-AS1 TOXOPLASMOSIS 0.97 0.83

CTA-204B4.6 GASTROINTESTINAL NEOPLASMS 0.97 0.83

CTC-338M12.2 NASAL POLYPS 0.97 0.83

CTC-459F4.3 HEPATITIS C 0.97 0.83

CTC-487M23.5 PULMONARY DISEASE, CHRONIC OBSTRUCTIVE 0.97 0.82

H19 CARCINOMA, HEPATOCELLULAR 0.97 0.82

HOTAIR LEUKEMIA, B-CELL 0.97 0.82

LEMD1-AS1 GASTRITIS, ATROPHIC 0.97 0.81

LEMD1-AS1 GRAFT VS HOST DISEASE 0.97 0.81

LIFR-AS1 PARKINSON DISEASE 0.97 0.80

MATN1-AS1 DIABETIC RETINOPATHY 0.97 0.80

MIAT RHABDOMYOSARCOMA 0.97 0.80

MIR3179-1 LIVER CIRRHOSIS, BILIARY 0.97 0.80

MIR4720 NASOPHARYNGEAL NEOPLASMS 0.97 0.80

RP11-108P20.1 ENCEPHALOMYELITIS, AUTOIMMUNE, EXPERIMENTAL 0.97 0.80

RP11-108P20.1 INTERVERTEBRAL DISK 0.97 0.79

RP11-184E9.2 CYSTIC FIBROSIS 0.97 0.79

RP11-184E9.2 INTERVERTEBRAL DISK 0.97 0.79

RP11-184E9.2 GASTRITIS, ATROPHIC 0.97 0.79

RP11-184E9.2 FIBROBLASTS 0.97 0.79

RP11-203J24.9 CARDIOMYOPATHIES 0.97 0.79

RP11-206L10.11 NEUROBLASTOMA 0.97 0.79

RP11-264L1.3 NASAL POLYPS 0.97 0.79

RP11-277P12.20 LIPOSARCOMA 0.97 0.79

RP11-290F20.3 CENTRAL NERVOUS SYSTEM DISEASES 0.97 0.79

RP11-331F9.10 AMYOTROPHIC LATERAL SCLEROSIS 0.97 0.78

RP11-344B2.2 ASTHMA 0.97 0.78

RP11-355O1.11 LEUKEMIA, B-CELL 0.97 0.78

RP11-355O1.11 TOXOPLASMOSIS 0.97 0.78
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Conclusion
We have explored the application of neighborhood analysis, combined with collabora-
tive filtering, for the improvement of LDAs prediction accuracy. The three approaches 
proposed here have been evaluated and compared first against their direct competi-
tors from the literature, i.e., the other methods which also use lncRNA-miRNA inter-
actions and miRNA-disease associations, without exploiting a priori known LDAs. 
It results that all methods proposed here are able to outperform direct competitors, 
the best one (NGH-CF) also significantly (AUC equal to 0.966 against the 0.886 by 
NCPRED). In particular, it has been shown that the improvement in accuracy is due 
to the fact that our approaches capture specific situations neglected by competitors, 
relying on similar lncRNAs behaviour in terms of their interactions with the consid-
ered intermediate molecules (i.e., miRNAs). The proposed approaches have been then 
compared also against other recent methods, taking different inputs (e.g., integrative 
approaches), and the experimental evaluation shows that they are able to outperform 
them as well.

It is worth pointing out the importance of providing reliable data in input to the LDAs 
prediction approaches. As discussed in this manuscript, information on the lncRNAs 
relationships with other molecules, and between intermediate molecules and diseases, 
is provided in input to the proposed approaches. Reliable datasets have been used to 
perform the experimental analysis provided here. However, as the user may provide also 
different input datasets, it is important to point out that the reliability of the obtained 
predictions strictly depends on that of input information.

As neighborhood analysis has resulted to be effective in characterizing lncRNAs with 
regards to their association with known diseases, we plan to apply it also for predicting 
possible common functions among lncRNAs, for example by clustering them according 
to their interactions, which has shown to be successful for other types of molecules [53]. 
Moreover, due to the success of integrative approaches on the analysis of biological data 
[54], we expect that including other types of intermediate molecules, such as for exam-
ple genes and proteins, in the main pipeline of the proposed approaches may further 
improve their accuracy.

In conclusion, the use of reliable input data and the integration of different types of 
information coming from molecular interactions seem to be the most promising future 
directions for LDAs prediction.

Table 12 (continued)

Consensus between CF and NGH

lncRNA Disease CF Score NGH score

RP11-429J17.7 DIABETIC RETINOPATHY 0.97 0.78

RP3-523K23.2 NEOPLASMS, SQUAMOUS CELL 0.97 0.77

RP4-659J6.2 PHEOCHROMOCYTOMA 0.97 0.77

AC005532.5 PEMPHIGUS, BENIGN FAMILIAL 0.96 0.77
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Table 13 First 100 novel LDAs predicted as the consensus between NGH and NGH-CF

Consensus between NGH and NGH‑CF

lncRNA Disease NGH score NGH‑CF score

SLC26A4-AS1 KIDNEY DISEASES 1.0 0.88

RP11-44F14.11 SARCOMA 1.0 0.88

VPS11 HIV 1.0 0.88

RP11-380L11.4 VASCULAR DISEASES 1.0 0.88

RP11-367N14.2 LYMPHOMA 1.0 0.87

RNU12 NEOPLASMS 1.0 0.87

RP11-37B2.1 GLIOMA 1.0 0.87

RP11-77H9.2 SARCOMA 1.0 0.87

RP11-221J22.2 GLOMERULONEPHRITIS 1.0 0.86

SLC26A4-AS1 SARCOMA 1.0 0.86

SNHG1 PERIODONTITIS 1.0 0.86

RP11-361F15.2 CERVICAL NEOPLASMS 1.0 0.86

RP11-305N23.1 HEPATITIS 1.0 0.85

RP3-523K23.2 RECTAL NEOPLASMS 1.0 0.85

RP11-618G20.1 SARCOMA 1.0 0.84

RP11-277P12.20 SARCOMA 1.0 0.84

RP1-59M18.2 LEUKEMIA 1.0 0.84

RP11-819C21.1 HEPATITIS 1.0 0.83

RP11-175K6.1 SARCOMA 1.0 0.83

RP11-390P2.4 SARCOMA 1.0 0.83

RP11-68L18.1 HEPATITIS 1.0 0.83

RP11-983P16.4 SARCOMA 1.0 0.83

RP11-206L10.11 FIBROSIS 1.0 0.83

SCARNA10 ADENOMA 1.0 0.83

PDXDC2P SARCOMA 1.0 0.83

RP11-66N24.4 SARCOMA 1.0 0.83

RP11-214C8.5 ADENOMA 1.0 0.83

RP11-158K1.3 FIBROSIS 1.0 0.82

RP11-2C24.4 SARCOMA 1.0 0.82

RP11-221J22.1 SARCOMA 1.0 0.82

RP5-886K2.3 LEUKEMIA 1.0 0.82

RP11-457M11.2 SARCOMA 1.0 0.82

RP11-701H24.4 ECLAMPSIA 1.0 0.80

RP5-1172N10.3 SARCOMA 1.0 0.80

RP11-690D19.3 BLADDER NEOPLASMS 1.0 0.80

RP11-498E2.8 LEUKEMIA 1.0 0.80

RP11-797A18.6 LEUKEMIA 1.0 0.79

RP11-690D19.3 LUNG DISEASES 1.0 0.79

RP11-126O1.5 CARCINOMA 1.0 0.79

RP5-1028K7.2 SARCOMA 1.0 0.79

RP11-849I19.1 ADENOMA 1.0 0.79

RP11-399K21.11 KIDNEY DISEASES 1.0 0.79

SCAMP1 HEPATITIS 1.0 0.79

RP11-496I9.1 DEMENTIA 1.0 0.78

RP11-54O7.1 EYE ABNORMALITIES 1.0 0.78

RP11-108P20.1 FIBROSIS 1.0 0.78

RP11-492E3.1 LUNG DISEASES 1.0 0.78

RP11-677M14.3 LEUKEMIA, MYELOID 1.0 0.78
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Table 13 (continued)

Consensus between NGH and NGH‑CF

lncRNA Disease NGH score NGH‑CF score

RP11-761E20.1 LYMPHOMA 1.0 0.78

RP11-293M10.6 SARCOMA 1.0 0.77

RP11-310H4.2 HEPATITIS 1.0 0.77

XXBAC-BPG254F23.6 DIABETES MELLITUS 1.0 0.77

PVT1 SARCOMA 1.0 0.77

RP11-403I13.8 LEUKEMIA 1.0 0.77

RP11-996F15.2 SARCOMA 1.0 0.77

RP11-478C19.2 COLITIS 1.0 0.77

RP11-252P19.3 NEOPLASMS 1.0 0.77

RP11-473I1.10 GLOMERULONEPHRITIS 1.0 0.77

RP11-54O7.1 VASCULAR DISEASES 1.0 0.77

RP11-24B19.4 HEPATITIS 1.0 0.76

RP11-213H15.3 CARCINOMA 1.0 0.76

SNHG1 BLADDER NEOPLASMS 1.0 0.76

RP11-529K1.2 LEUKEMIA 1.0 0.76

RP11-24B19.4 SARCOMA 1.0 0.76

RP11-506M13.3 CERVICAL NEOPLASMS 1.0 0.76

RP11-480D4.3 HEPATITIS 1.0 0.76

RP11-498D10.6 DEMENTIA 1.0 0.75

RP11-98I9.4 CARCINOMA 1.0 0.75

RP11-521C20.4 ADENOMA 1.0 0.75

RP5-1024G6.5 KIDNEY DISEASES 1.0 0.75

U47924.19 RECTAL NEOPLASMS 1.0 0.74

RP11-379K17.4 GLOMERULONEPHRITIS 1.0 0.73

RP11-690G19.3 SARCOMA 1.0 0.73

WDR7-UA1 NERVOUS SYSTEM DISEASES 1.0 0.73

RP11-324L3.3 LEUKEMIA 1.0 0.73

SNHG1 MOYAMOYA DISEASE 1.0 0.72

RP11-284N8.3 ARTHRITIS 1.0 0.72

ST8SIA6-AS1 LUNG DISEASES 1.0 0.72

RP11-178G16.4 NEOPLASMS 1.0 0.72

SNHG1 LIPOSARCOMA 1.0 0.72

RP11-421L21.3 SARCOMA 1.0 0.71

RP11-649G15.2 LEUKEMIA 1.0 0.71

RP11-363E7.4 SARCOMA 1.0 0.71

RP11-344B2.2 NEOPLASMS 1.0 0.70

RP11-24B19.4 LEUKEMIA 1.0 0.70

RP11-492E3.1 ADENOMA 1.0 0.69

RP11-290F20.1 LEUKEMIA 1.0 0.69

RP11-119F7.5 LEUKEMIA 1.0 0.68

RP11-761E20.1 NEOPLASMS 1.0 0.68

RP11-498C9.15 SARCOMA 1.0 0.67

RP11-160O5.1 NEOPLASMS 1.0 0.67

RP11-418J17.1 RECTAL NEOPLASMS 1.0 0.67

RP11-767N6.7 ISCHEMIA 1.0 0.67

RP11-758M4.4 FIBROSIS 1.0 0.67

RP11-50E11.3 RECTAL NEOPLASMS 1.0 0.67

RP11-403I13.8 LEUKEMIA 1.0 0.66
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Table 13 (continued)

Consensus between NGH and NGH‑CF

lncRNA Disease NGH score NGH‑CF score

RP5-886K2.3 SARCOMA 1.0 0.65

RP11-571M6.8 NEOPLASMS 1.0 0.65

RP11-54O7.1 MUSCULAR DYSTROPHY, DUCHENNE 1.0 0.64

RP5-1172N10.3 KIDNEY DISEASES 1.0 0.64

Table 14 First 100 novel LDAs predicted as the consensus between CF and NGH-CF

Consensus between NGH and NGH‑CF

lncRNA Disease CF score NGH‑CF score

RP11-132A1.3 SCLERODERMA, SYSTEMIC 0.88 0.88

RP11-123K3.4 LEIOMYOSARCOMA 0.87 0.88

RP11-330L19.4 GRAFT VS HOST DISEASE 0.87 0.88

RECQL4 ABORTION, HABITUAL 0.87 0.88

PDXDC2P CERVICAL INTRAEPITHELIAL NEOPLASIA 0.87 0.87

RP11-357C3.3 DIABETIC RETINOPATHY 0.87 0.87

RP11-227G15.3 PRRSV INFECTION 0.87 0.87

RP11-315H15.2 ISCHEMIA 0.86 0.87

RP11-193H5.1 PAPILARY THYROID CARCINOMA 0.86 0.86

RP11-105N14.1 LIVER CIRRHOSIS, BILIARY 0.86 0.86

RP11-229P13.25 CRYPTOSPORIDIUM 0.86 0.86

RP11-1094M14.11 PAIN 0.86 0.86

RP11-119F19.2 NASAL POLYPS 0.85 0.85

RP11-286H14.6 CYSTIC FIBROSIS 0.85 0.85

RP11-393M11.2 MOUTH NEOPLASMS 0.85 0.84

RP11-344B2.2 BRAIN INJURIES 0.85 0.84

RP11-227D2.3 LYMPHOMA 0.85 0.84

RP11-140H17.1 GRAVES DISEASE 0.84 0.83

RP11-214K3.21 AZOOSPERMIA 0.84 0.83

PVT1 PULMONARY EMBOLISM 0.84 0.83

RP11-141O11.2 LYMPHOMA, MANTLE-CELL 0.83 0.83

RP11-464F9.1 HCV 0.83 0.83

RP11-355O1.11 FIBROSIS 0.83 0.83

RP11-27I1.2 PITUITARY ADENOMAS 0.83 0.83

RP11-267N12.3 PROLACTINOMA 0.83 0.83

RP11-153A23.6 CHOLANGIOCARCINOMA 0.83 0.83

RP11-290D2.4 MYOTONIC DYSTROPHY 0.83 0.83

RNU12 FANCONI ANEMIA 0.83 0.82

RP11-425M5.5 ARTHRITIS, PSORIATIC 0.83 0.82

RP11-307E17.8 MULTIPLE SCLEROSIS 0.83 0.82

RP11-298I3.1 PSYCHOTIC DISORDERS 0.82 0.82

RP11-244H3.1 CERVICAL INTRAEPITHELIAL NEOPLASIA 0.82 0.82

RP11-35G9.3 CREUTZFELDT-JAKOB SYNDROME 0.82 0.80

RP11-261C10.5 MUSCULAR DYSTROPHIES 0.82 0.80

RP11-2C24.4 CHOLESTEATOMA 0.82 0.80

RP11-443N24.2 FANCONI ANEMIA 0.81 0.80
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Table 14 (continued)

Consensus between NGH and NGH‑CF

lncRNA Disease CF score NGH‑CF score

RP11-304M2.2 EYE ABNORMALITIES 0.81 0.79

RP11-11N9.4 AORTIC ANEURYSM, ABDOMINAL 0.80 0.79

RP11-284M14.1 CAT ARA CT 0.80 0.79

RP11-244O19.1 MOUTH NEOPLASMS 0.80 0.79

RP11-174G17.2 ANXIETY DISORDERS 0.80 0.79

RP11-473I1.9 DIABETIC NEPHROPATHIES 0.80 0.79

RP11-421L21.3 FRAGILE X SYNDROME 0.80 0.79

RP11-418J17.3 OSTEOARTHRITIS 0.80 0.78

RP11-383J24.5 PULMONARY FIBROSIS 0.79 0.78

PDXDC2P ENDOMETRIAL NEOPLASMS 0.79 0.78

RP11-304M2.2 DIABETIC NEPHROPATHIES 0.79 0.78

RP11-276H19.1 MYOCARDITIS 0.79 0.78

RP11-380L11.4 BRAIN INJURY 0.79 0.78

RP11-44F14.11 BRAIN INJURY 0.79 0.77

PRIM2 CEREBRAL INFARCTION 0.79 0.77

PTOV1-AS1 HAND, FOOT AND MOUTH DISEASE 0.79 0.77

RP11-140H17.1 PROSTATE NEOPLASMS 0.79 0.77

RP11-1186N24.5 ATRIAL FIBRILLATION 0.79 0.77

RP11-379H18.1 BRAIN INJURY 0.79 0.77

RP11-396C23.2 PHEOCHROMOCYTOMA 0.79 0.77

RP11-290D2.4 ANXIETY DISORDERS 0.78 0.77

RP11-145M9.4 CARDIOMEGALY 0.78 0.77

RP11-221J22.2 PROSTATIC NEOPLASMS 0.78 0.77

RP11-203J24.9 ACQUIRED IMMUNODEFICIENCY SYNDROME 0.78 0.76

RP11-392P7.6 ADRENOCORTICAL ADENOMA 0.78 0.76

RP11-276H19.2 RHABDOMYOSARCOMA 0.78 0.76

RP11-220I1.1 ARTHRITIS, RHEUMATOID 0.77 0.76

RP11-214K3.21 DRUG-INDUCED LIVER INJURY 0.77 0.76

RP11-159F24.1 SCHIZOPHRENIA 0.77 0.76

RP11-461L13.3 ADENOMA 0.77 0.76

RP11-261C10.5 ESOPHAGUS 0.77 0.75

RP11-20G6.3 CARCINOMA, BASAL CELL 0.77 0.75

RP11-109M17.2 MYELOPROLIFERATIVE DISORDERS 0.77 0.75

RP11-154J22.1 FRAGILE X SYNDROME 0.77 0.75

RP11-429J17.7 HEMANGIOMA 0.77 0.74

RP11-252P19.3 ACUTE CORONARY SYNDROME 0.77 0.73

RP11-155D18.12 GASTRITIS, ATROPHIC 0.77 0.73

RP11-277L2.2 MUSCULAR DYSTROPHY, FACIOSCAPULOHUMERAL 0.76 0.73

RP11-169D4.1 HUNTINGTON DISEASE 0.76 0.73

RP11-18F14.2 NASAL POLYPS 0.76 0.72

RP11-121C2.2 PRECURSOR T-CELL LYMPHOBLASTIC LEUKEMIA-LYMPHOMA 0.76 0.72

RP11-324L3.3 HEPATITIS C, CHRONIC 0.76 0.72

RP11-213H15.3 HIV-1 0.76 0.72

RP11-475D8.1 ASTROCYTOMA 0.76 0.72

RP11-384K6.6 HEMANGIOSARCOMA 0.75 0.71

RP11-325D5.3 ADENOMA 0.75 0.71

RP11-405O10.2 LEIOMYOMA 0.75 0.71

RP11-458D21.1 FIBROBLASTS 0.75 0.70



Page 35 of 37Bonomo and Rombo  BMC Bioinformatics          (2024) 25:187  

Acknowledgements
The authors are grateful to the Anonymous Reviewers, for the constructive and useful suggestions that allowed to sig-
nificantly improve the quality of this manuscript. Some of the results shown here are in part based upon data generated 
by the TCGA Research Network: https:// www. cancer. gov/ tcga.

Author contributions
MB and SER equally contributed to the research presented in this manuscript. MB implemented and run the software, 
SER performed the analysis of results. Both authors wrote and reviewed the entire manuscript.

Funding
PRIN “multicriteria data structures and algorithms: from compressed to learned indexes, and beyond”, Grant No. 
2017WR7SHH, funded by MIUR (closed). “Modelling and analysis of big knowledge graphs for web and medical 
problem solving” (CUP: E55F22000270001), “Computational Approaches for Decision Support in Precision Medicine” 
(CUP:E53C22001930001), and “Knowledge graphs e altre rappresentazioni compatte della conoscenza per l’analisi di big 
data” (CUP: E53C23001670001), funded by INdAM GNCS 2022, 2023, 2024 projects, respectively. “Models and Algorithms 
relying on knowledge Graphs for sustainable Development goals monitoring and Accomplishment - MAGDA” (CUP: 
B77G24000050001), funded by the European Union under the PNRR program related to “Future Artificial Intelligence 
- FAIR”.

Availability of data and materials
The source code is available at: https:// github. com/ maryb onomo/ LDAsP redic tionA pproa ches. git In particular, execut-
able software for NGH, CF, and NGH-CF are provided, as well as syntetic and real input datasets used here; the three 
different gold standard datasets GS1, GS2, GS3; the final obtained results.

Declarations

Ethics approval and consent to participate
Not Applicable

Consent for publication
Not Applicable

Competing interests
SER is editor of BMC Bionformatics. MB has no Conflict of interest. 

Received: 13 December 2023   Accepted: 11 April 2024

Table 14 (continued)

Consensus between NGH and NGH‑CF

lncRNA Disease CF score NGH‑CF score

RP11-303E16.2 SARS VIRUS 0.74 0.70

RP11-16B13.1 ABORTION, HABITUAL 0.74 0.69

RP11-174G6.5 FRONTOTEMPORAL LOBAR DEGENERATION 0.73 0.69

RP11-118N24.3 CENTRAL NERVOUS SYSTEM DISEASES 0.73 0.68

RP11-446J8.1 MUSCULAR DYSTROPHY, FACIOSCAPULOHUMERAL 0.73 0.68

RP11-133N21.10 SCLERODERMA, SYSTEMIC 0.73 0.67

RP11-160E2.6 PERIODONTITIS 0.73 0.67

PRR7-AS1 UTERINE CERVICAL NEOPLASMS 0.72 0.67

RP11-392P7.6 SARCOMA, EWING’S 0.72 0.67

RP11-380L11.4 INFLAMMATORY BOWEL DISEASES 0.72 0.67

PRR7-AS1 TOXOPLASMOSIS 0.72 0.67

RP11-140H17.1 BLADDER NEOPLASMS 0.72 0.66

RP11-436A20.4 COLON NEOPLASMS 0.72 0.65

RP11-286H14.6 DIABETES MELLITUS 0.72 0.65

RP11-173M1.8 ADRENOCORTICAL ADENOMA 0.71 0.64

PRKAG2-AS1 ESOPHAGEAL NEOPLASMS 0.71 0.64

https://www.cancer.gov/tcga
https://github.com/marybonomo/LDAsPredictionApproaches.git
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