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Abstract 

Background: The advent of high-throughput technologies has led to an exponen-
tial increase in uncharacterized bacterial protein sequences, surpassing the capacity 
of manual curation. A large number of bacterial protein sequences remain unanno-
tated by Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology, making it nec-
essary to use auto annotation tools. These tools are now indispensable in the biological 
research landscape, bridging the gap between the vastness of unannotated sequences 
and meaningful biological insights.

Results: In this work, we propose a novel pipeline for KEGG orthology annota-
tion of bacterial protein sequences that uses natural language processing and deep 
learning. To assess the effectiveness of our pipeline, we conducted evaluations using 
the genomes of two randomly selected species from the KEGG database. In our evalu-
ation, we obtain competitive results on precision, recall, and F1 score, with values 
of 0.948, 0.947, and 0.947, respectively.

Conclusions: Our experimental results suggest that our pipeline demonstrates per-
formance comparable to traditional methods and excels in identifying distant relatives 
with low sequence identity. This demonstrates the potential of our pipeline to signifi-
cantly improve the accuracy and comprehensiveness of KEGG orthology annotation, 
thereby advancing our understanding of functional relationships within biological 
systems.

Keywords: KEGG orthology, Protein function prediction, Protein language model, 
Deep learning

Background
Bacteria, ubiquitous microorganisms inhabiting diverse environments, play an indis-
pensable role in shaping the biosphere and influencing human health [1–3]. Their sheer 
abundance and diversity underscore their significance in ecological processes, ranging 
from nutrient cycling to bioremediation [4–6]. Moreover, bacteria have been central to 
pivotal discoveries in the fields of genetics, molecular biology, and biotechnology, serv-
ing as model organisms for fundamental biological research. The functional elucidation 
of bacterial proteins is pivotal in unraveling the intricacies of microbial life and harness-
ing their potential for biotechnological applications.
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With the advent of high-throughput technologies, the number of newly discovered 
bacterial proteins per year is increasing rapidly [7]. While this wealth of genetic informa-
tion offers immense potential for elucidating the roles and functions of these proteins, 
annotating the functions of newly discovered sequences remains a formidable challenge. 
Traditional experimental methods for function annotation, whether in vitro or in vivo, 
are not only expensive but also time-consuming. Consequently, there is an urgent need 
to explore alternative, cost-effective strategies for protein function prediction. One 
promising method is the application of automated annotation tools, which use computa-
tional methods to predict protein functions based on sequences.

These automated annotation tools rely on databases that have been manually curated 
and annotated by human experts. One widely used database for gene and protein func-
tional annotation is the KEGG database [8]. It comprises comprehensive and integrated 
databases of molecular pathways, networks, and genes involved in various cellular pro-
cesses, including metabolism, signaling, and diseases. The KEGG orthology (KO) data-
base is a database of molecular functions represented in terms of functional orthologs. 
A functional ortholog is manually defined in the context of KEGG molecular networks. 
The KO identifier (called K number) is defined based on the experimental characteriza-
tion of genes and proteins within specific organisms. These K numbers are subsequently 
used to assign orthologous genes in other organisms. KO data refers to the protein 
sequences cataloged within the KO database, whereas non-KO data references protein 
sequences identified in the KEGG GENES database yet to be associated with a KO iden-
tifier. Accurate and reliable KO prediction is essential for understanding the biological 
systems.

Several computational methods have been proposed for KO prediction, including 
sequence alignment and machine learning. KOBAS [9–11] used BLAST [12] E-value to 
assign K numbers. KAAS [13] employed BLAST to compute the bidirectional hit rate 
between query sequences and the KEGG reference databases. It defined a weighted 
score to assign K numbers, and these weighting factors take into account aspects such 
as ortholog group and sequence length, among others. BlastKOALA and GhostKOALA 
[14] used BLASTP and GHOSTX [15], respectively, for searching the non-redundant 
KEGG GENES database. KOALA (KEGG Orthology And Links Annotation) was origi-
nally developed as KEGG’s internal annotation tool for K number assignment using 
SSEARCH [16] computation. The scoring methodology of KOALA takes into account 
numerous factors. These include the Smith-Waterman (SW) score [17], the best-best 
flag, the degree of alignment overlap, the ratio of query to DB  (DataBase) sequences, 
the taxonomic category, and the presence of Pfam domains. In BlastKOALA, the K 
number assignment is performed using the weighted sum of BLAST bit scores, where 
the weighting scheme is the same as the KOALA algorithm excluding the bidirectional 
best-hit information. In GhostKOALA, the K number assignment is simply based on the 
sum of GHOSTX normalized scores without considering any weighting factors. Kofam-
KOALA [18] used profile hidden Markov models (pHMM) from machine learning to 
calculate similarity scores and subsequently also used the KOALA algorithm to assign K 
numbers.

KOBAS, KAAS, and BlastKOALA all utilize the BLAST algorithm to calculate 
sequence similarity but employ distinct methods for scoring computation. KOALA 
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differentiates itself by incorporating additional information, such as taxonomic catego-
ries and Pfam domains, which often contribute to improved results. BlastKOALA and 
GhostKOALA, while both based on KOALA, adopt different approaches to sequence 
similarity calculation. BlastKOALA utilizes BLASTP, a heuristic local alignment algo-
rithm, which is particularly suited for annotating fully sequenced genomes. On the other 
hand, GhostKOALA leverages GHOSTX, which employs genome-wide sequence align-
ment and uses suffix arrays for efficient matching. Unlike BLASTP, GHOSTX is designed 
for protein-level comparisons at the genomic scale, making it ideal for conducting com-
prehensive genome searches and homology analysis in large-scale genome data. Kofam-
KOALA presents a different approach compared to BlastKOALA and GhostKOALA. It 
employs the KOALA framework but also integrates the use of a HMM profiles database 
for KEGG Orthologs, known as KOfam. This method allows KofamKOALA to provide 
accurate functional annotations by matching query sequences using HMM profiles 
instead of actual sequences. An additional advantage of KofamKOALA is its speed, as 
the use of HMM profiles can significantly speed up the matching process. However, 
note that after database updates, a substantial amount of time is needed to update these 
HMM profiles, which could be a potential limitation. Choosing between these methods 
largely depends on the specific characteristics of the dataset in question and the specific 
constraints of the study.

However, these methods have certain limitations, as they rely on sequence similarity 
and may not be effective in identifying KOs with dissimilar sequences. Around one-third 
of identified bacterial proteins lack known homologs, thereby restricting the number of 
annotations that can be accurately predicted [19]. Moreover, the growing reliance on 
high-throughput experiments has resulted in a skewed distribution of functional pro-
tein annotations in databases, leaving a considerable number of bacterial proteins unex-
plored in terms of their functions [20]. In recent years, deep learning has emerged as 
a promising method for protein function prediction, owing to its capacity to autono-
mously learn complex patterns and representations from large and complex datasets.

Anfinsen proposed the famous sequence-structure-function relationship in 1973 [21], 
which states that the protein sequence determines its structure, and the structure deter-
mines its function. Since the protein sequence is composed of amino acids and has a 
hierarchical structure similar to sentences and words, NLP (Natural Language Process-
ing) can be used to model and learn protein sequences and predict protein functions. 
Compared to the previous sequence similarity-based methods, using NLP methods 
with deep learning for KO prediction can discover KOs that have similar functions but 
dissimilar sequences. These methods primarily involves extracting features from the 
protein sequence, converting them into word representations (embeddings), and sub-
sequently classifying these representations. These methods can be classified into three 
categories: context-free models, context-sensitive models, and pre-trained large-scale 
protein language models. Context-free models generate a unique word representation 
for each amino acid(AA) [22, 23]. While context-sensitive models produce representa-
tions that depend on the context in which the AA appears [24, 25]. Therefore, a single 
AA may have different representations across different protein sequences. Pre-trained 
large-scale protein language models have extracted many biological features from pro-
tein sequences through unsupervised pre-training on a large corpus, and fine-tuning 
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or feature extraction in downstream tasks can achieve good results [26–28]. In theory, 
embedding-based methods offer an alternative perspective for annotation, employing 
techniques such as clustering to overcome the limitations of homology-based methods.

In this paper, we propose a novel pipeline for the KO annotation of bacterial sequences 
using NLP and deep learning. Firstly, we propose a classifier based on pre-trained 
large-scale protein language models to distinguish between KO and non-KO data. Sub-
sequently, an embeddings-based clustering module is conducted to assign a specific K 
number to each candidate sequence. Furthermore, we conduct a structural alignment 
method, using structural similarity, to ascertain the functional similarity of sequences, 
thus validating the assigned KOs. Our pipeline demonstrates competitive performance 
compared to traditional methods and notably excels in identifying distant relatives with 
low sequence identity. To the best of our knowledge, this study represents the pioneering 
effort in using a deep learning model that incorporates NLP for computational modeling 
in KO prediction.

Results
Overview of our pipeline for KO annotation

In Fig.  1, we present a schematic overview of the proposed KO annotation pipeline. 
This pipeline is comprised of two primary parts: a classifier designed to discriminate 
between candidate KO sequences and non-KO sequences, and a clustering module that 
subsequently assigns a specific K number to each candidate KO sequence. To validate 
our results, we performed structural alignment between the candidate KO sequences 
and the known sequences in the KEGG database. To train the classifier, we used the BD 
(Bacterial Data) dataset, which consists of pre-processed bacterial protein sequences 
sourced from KEGG GENES, totaling approximately 17 million sequences. The clus-
ter module used the RD (Reference Data) dataset, which comprises reference genomes 
and addendum from KEGG GENES, totaling approximately 0.6 million sequences. For 
comprehensive information regarding the construction of both the BD and RD datasets, 
please refer to Data collection and filtering for detailed explanations.

Fig. 1 Schematic overview of our pipeline. In this study, we started by collecting KO and non-KO data from 
the KEGG GENES database to construct our classifier (left). Subsequently, we employed the classifier to mine 
protein sequences for the identification of potential KOs and used an embedding-based clustering module 
to assign a specific K number (middle). To validate our results, we performed structural alignment between 
the candidate KO sequences and the known sequences in the KEGG database (right)
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In order to provide a more tangible understanding of our pipeline, we present a run-
ning example. Let’s consider an unannotated sequence, which matches with the anno-
tated sequence ppu:PP_4955, associated with the KEGG number K02030. The process 
can be broken down into the following steps: 

1. Sequence Embedding: The unannotated sequence is first transformed into an 
embedding using ProtT5. This sequence embedding captures the essential features of 
the sequence.

2. KO Prediction: This sequence embedding is subsequently input into a Multilayer 
Perceptron (MLP) layer, which acts as our primary prediction model. The MLP layer 
is used to predict whether the sequence is a KO or not, determining if the process 
proceeds to the clustering step or terminates.

3. Sequence Clustering: For sequences predicted as KO, the sequence embedding is 
compared to the embeddings of each sequence in the RD dataset. This comparison is 
performed using Euclidean distance as the similarity metric.

4. Annotation Assignment: The sequence (in this case, ppu:PP_4955) that exhibits the 
smallest Euclidean distance is chosen as the best match. The annotation associated 
with this best match (K02030 in our example) is then assigned to the initially unan-
notated sequence.

Performance evaluation of classifiers

Table  1 presents a comprehensive summary of the performance metrics obtained by 
evaluating various classifiers. The training dataset comprised 80% of the BD database, 
while the remaining 20% was allocated for testing purposes. The evaluated metrics 
encompass precision, recall, and the F1 score, which represents the harmonic mean of 
precision and recall. The LSTM (Long Short-Term Memory) model was based on Veltri 
et al. [29], which is a neural network model with a core layer of LSTM [30]. The attention 
model was inspired by Ma et al. [31], where the LSTM layer was replaced with an atten-
tion layer [32]. Finally, we included a Text-to-Text Transfer Transformer (ProtT5) model 
that was pre-trained using a large number of protein sequences. Notably, the ProtT5 
model outperforms all other classifiers across all metrics, showcasing its superior pre-
dictive capabilities for KO annotation. With compelling results displayed in Table 1, we 
confidently select the ProtT5 model as the preferred classifier for our study.

Table 1 Performance comparison with different classifiers

Best performance is marked in bold. The ProtT5 model exhibits superior performance across all evaluation metrics

In order to distinguish the experimental results of the classifier from the entire pipeline, precision, recall, and F1 here are 
marked with asterisks as superscripts

Model Precision
∗

Recall
∗

F1
∗

LSTM 0.899 0.870 0.884

Attention 0.795 0.798 0.797

ProtT5 0.960 0.967 0.963
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Performance evaluation of KO annotation tools

To validate the results, we implemented a evaluation that involved the random selection 
of two species, Bradyrhizobium japonicum E109 (bjp) and Paraburkholderia aromati-
civorans BN5 (parb), from the KEGG organisms. A test set comprising 12,329 sequences 
from these selected species was used to evaluate the performance of each KO annotation 
tool. The test set had a ratio of 1.09:1 for KO to no KO assigned sequences. Sequences 
from the BD dataset that were identical to those from the two species were removed, 
leaving the remaining sequences as the training set for the classifier. In cases where iden-
tical sequences from different species exhibited varying annotations, we retained the 
annotation with the K number as the final annotation.

Our clustering module still relies on the RD dataset, which does not include sequences 
from these two species. As for BlastKOALA, GhostKOALA, and KofamKOALA, we 
used the default target databases of their respective webservers. Our RD dataset is 
largely consistent with the dataset used by BlastKOALA, while GhostKOALA employed 
a dataset that is one order of magnitude larger. KofamKOALA, on the other hand, uti-
lized 25,346 pHMMs.

The evaluation of each tool contains the computation of the number of match, 
unmatch, missed, and added cases, alongside precision, recall, and F1 score calcula-
tions. Specifically, match refers to the number of cases where the predicted KO precisely 
matched the KO defined in the KEGG GENES database. Unmatch denotes cases where 
the predicted KO differed from the assigned KO in KEGG GENES. Missed cases repre-
sented KOs defined in KEGG GENES that were not successfully predicted by the tools. 
Finally, added cases indicated situations where a K number was assigned by the predic-
tion despite no corresponding KO being defined in KEGG GENES.

In Table 2, our pipeline achieved the best recall by having the highest number of match 
cases, the lowest number of missed cases, and the second-best F1 score. GhostKOALA 
obtained the best precision and F1 score due to having the fewest unmatch cases. And 
BlastKOALA had the lowest number of added cases. GhostKOALA’s precision is rela-
tively higher, owing to the larger dataset, which has the potential to improve the accuracy 
of predictions. Due to the differences in datasets, our pipeline’s performance evaluation 
with BlastKOALA is the most equitable. Our pipeline outperforms BlastKOALA with 
higher match cases, recall, and F1 scores.

Table 2 Performance comparison with other KO annotation tools

Best performance is marked in bold. We calculated the number of match (predicted KO is identical to the KO defined in 
KEGG GENES), unmatch (predicted KO is different from the KO defined in KEGG GENES), missed (the KO is defined in KEGG 
GENES but no prediction was made), and added (no KO is defined in KEGG GENES, but the prediction assigned a K number) 
for each tool, along with precision, recall, and F1 score

Method Match Unmatch Missed Added Precision Recall F1

BlastKOALA 6172 64 552 100 0.974 0.909 0.941

GhostKOALA 6423 26 339 117 0.978 0.946 0.962
KofamKOALA 5955 88 745 953 0.851 0.877 0.864

Ours 6426 183 179 171 0.948 0.947 0.947

Ours w/o classifier 5943 62 783 407 0.876 0.927 0.900

Ours with threshold 6399 169 220 151 0.952 0.943 0.948



Page 7 of 18Chen et al. BMC Bioinformatics          (2024) 25:146  

If classifier is not used, and a clustering threshold is employed to distinguish between 
KO and non-KO sequences, the metrics show inferior performance compared to the 
original pipeline that just used classifier. It indicates that relying solely on a clustering 
threshold may not capture the complexity and nuances required for accurate KO pre-
diction. On the other hand, when both the classifier and clustering threshold are used 
simultaneously to differentiate KO and non-KO sequences, precision increases while 
recall decreases. However, the F1 score, which considers both precision and recall, 
remains almost the same. It suggests that the integration of classifier and clustering 
threshold allows for a more refined and precise classification of sequences. It is impor-
tant to note that in this study, a threshold-based method was not utilized to avoid intro-
ducing excessive hyperparameters.

Generalizability across different bacterial species

As a critical measure of the robustness and utility of a model is its ability to generalize 
across diverse datasets, we extended the evaluation to assess our pipeline’s performance 
across different bacterial species. Initially, Bradyrhizobium japonicum E109 (bjp) and 
Paraburkholderia aromaticivorans BN5 (parb), were randomly selected from the KEGG 
database. These species, belonging to the Alphaproteobacteria and Betaproteobacte-
ria classes within the Pseudomonadota phylum respectively. To augment our pipeline’s 
generalizability assessment, we randomly selected a bacterial species from a different 
phylum in the KEGG database, added after our initial download. We ultimately chose 
Borreliella finlandensis Z11 (bff) from the phylum Spirochaetota. The performance met-
rics of our pipeline on this additional species were congruent with our initial results, fur-
ther substantiating our pipeline’s generalization potential. The performance results are 
listed in Table 3.

Validating results through structural alignment

To evaluate the functional similarity in the unmatch and added cases, we conducted 
structural alignments between the known KO sequence and the KO sequence identi-
fied by our pipeline using the CE-CP (Combinatorial Extension for Circular Permuta-
tions) algorithm [33]. The quality of these alignments was assessed using the TM-score 
(Template Modeling score) [34], a score between (0,  1], where 1 indicates a perfect 
match between two structures. Therefore, a higher TM-score reflects a greater level of 
structural similarity. The results of these structural alignments are shown in Fig. 2. In 
the unmatch cases, where the assigned K number differ from those defined in KEGG 
GENES, we found that 55.2% of the sequences had a TM-score ≥ 0.8 , indicating a 
high level of structural similarity. Only 13.7% of the sequences had a TM-score <0.5, 

Table 3 Performance metrics of our pipeline across different bacterial species

This table presents the precision, recall, and F1 score for each of the three bacterial species evaluated: Bradyrhizobium 
japonicum E109 (bjp), Paraburkholderia aromaticivorans BN5 (parb), and Borreliella finlandensis Z11 (bff)

Species Precision Recall F1

bjp 0.946 0.946 0.946

parb 0.949 0.947 0.948

bff 0.946 0.982 0.964
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suggesting dissimilar structural domains. Similarly, in the added cases, where our pipe-
line assigned the K number to sequences not defined in KEGG GENES, we observed that 
59% of the sequences had a TM-score ≥ 0.8 , while only 7% had a TM-score <0.5. Within 
the unmatch cases, we found that 13.7% of the sequences had different KO numbers but 
belonged to the same EC number, suggesting shared enzymatic functions. For example, 
for the sequence parb:CJU94_35085, we assign K10010, whereas KEGG assigns K02028, 
but they share the same EC:7.4.2.1. And the TM-score between the parb:CJU94_35085 
and our clustered sequence is 0.99. The findings indicate that despite differences in the 
assigned K number, the functionalities of the sequences are quite similar due to the high 
structural similarity.

Exploring recognition of distant relatives

Our pipeline achieved the highest number of match cases, prompting us to conduct 
further analysis. We used the Smith-Waterman algorithm [35] to compute the iden-
tity between the predicted sequences of all match cases and the clustered sequence, as 

Fig. 2 Distribution of structural similarity metric TM-score in unmatch and added cases. These two cases 
represent instances where our pipeline incorrectly assigned the K number, while the KEGG GENES database 
assigned a different K number (unmatch) or did not assign K number (added). A TM-score of ≥ 0.5 suggests 
the presence of similar structural domains, while a TM-score of ≥ 0.8 indicates highly similar structures, which 
implies potential functional similarity

Fig. 3 Identity distribution. The width of the violin plot along the X-axis corresponds to the frequency of data 
points. a The identity distribution of the predicted sequences of all match cases and the clustered sequence. 
b The identity distribution of the sequences not predicted by other methods in our match cases
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shown in Fig. 3a. Additionally, we calculated the identity of the sequences not predicted 
by other methods in our match cases, as shown in Fig. 3b.

Based on the analysis of Fig.  3, the identity distribution of sequences in our match 
cases mostly falls within the range of 80% or higher. However, for sequences not pre-
dicted by BlastKOALA and GhostKOALA in our match cases, the majority of identi-
ties are in the 60% or lower range. This indicates that our model has a stronger ability 
to identify distant relative proteins, despite GhostKOALA’s using a dataset that is one 
order of magnitude larger than ours. KofamKOALA displays a similar overall trend to 
our model, but it identifies fewer match cases compared to ours.

We provided two low identity (< 30%) sequences from our match cases as examples 
where other methods failed to make predictions. Sequence parb:CJU94_35185 exhibits 
only 21.2% identity with the clustered sequence eba:p2A55, yet they are remarkably close 
in the embedding space, allowing our model to recognize it. Likewise, another sequence 
bjp:RN69_21090 and the clustered sequence ppu:PP_4955, showcase a sequence identity 
of 24.3%, but close in the embedding space.

Discussion
Annotating bacterial proteins with KO classifications is crucial for deciphering the func-
tional roles of these proteins within the intricate machinery of microbial organisms. The 
comprehensive understanding of these annotations aids in elucidating the pathways, 
metabolic networks, and regulatory mechanisms that govern bacterial life. Accurate KO 
annotations are pivotal for various downstream analyses, including comparative genom-
ics, pathway reconstruction, and functional inference.

In this study, we present a novel pipeline for predicting KO annotations of bacterial 
proteins using NLP from deep learning. Our model’s performance surpasses most tradi-
tional methods, falling slightly short only in comparison to GhostKOALA. However, it is 
important to note that GhostKOALA operates on a dataset that is an order of magnitude 
larger, which may account for the nuanced differences in performance. On the other 
hand, BlastKOALA uses a dataset that is largely consistent with our RD dataset, and our 
pipeline outperforms BlastKOALA with superior match cases, recall, and F1 scores.

In the comparison of the performance of three classifiers, the ProtT5 model outper-
forms the other two classifiers across all metrics. The ProtT5 model was pre-trained 
using approximately 45 million protein sequences, with the pre-training task involving 
learning to predict masked amino acids (tokens) within known sequences. Subsequently, 
it trained on our BD dataset with 17 million bacterial protein sequences using MLP to 
distinguish between KO and non-KO sequences. In contrast to LSTM and attention 
models trained solely on the BD dataset without pre-training, the extensive pre-training 
on a large dataset enabled ProtT5 to acquire a deeper understanding of the intricate lan-
guage of life. This understanding contributed to its superior performance in our classifi-
cation tasks.

We explored the use of both classifiers and clustering thresholds. Our findings indi-
cate that employing classifiers, particularly those generated using pre-trained models 
to generate embeddings, offers a more effective method compared to solely relying on 
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clustering thresholds. Combining the classifier and clustering thresholds allows for finer 
adjustments, enabling researchers to prioritize precision or recall depending on the spe-
cific needs of their analysis.

To further validate the accuracy of our predictions for the sequences in our unmatch and 
added cases, we conducted structural alignments. Although we did not precisely predict 
the matching K number, approximately 89.7% of the sequences exhibited TM-score greater 
than 0.5. This suggests that these proteins share similar structural domains and likely per-
form analogous functions. In the case of unmatch, 13.7% of the sequences possessed dif-
ferent KO assignments but shared identical EC numbers, indicating shared enzymatic 
function.

One of the most significant challenges in annotating bacterial proteins lies in the abil-
ity to capture functional relationships between proteins that share low sequence similarity. 
Traditional methods predominantly rely on sequence homology, which can overlook cru-
cial associations, particularly among distantly related proteins. Our analysis revealed that 
a proportion of the KO proteins our model identified were missed by traditional methods, 
particularly those with low sequence similarity. This suggests that our NLP-based pipeline 
has the potential to uncover functional relationships that may be obscured by conventional 
homology-based methods.

While methods such as I-TASSER [36], which are based on protein 3D structures, may 
mitigate an over-reliance on sequence similarity alone, they often need significant compu-
tational resources and time. To illustrate, generating a protein structure with 384 residues 
using a V100 GPU card with 16GB memory can take approximately 9.2 min. This can be 
quite resource-intensive when dealing with large datasets. In contrast, our pipeline is far 
more efficient. More specifically, generating embeddings for a protein of the same length 
using the same GPU card takes only 0.057 s. Further, our study explores the feasibility and 
effectiveness of using embeddings from a pre-trained large-scale protein language model, 
solely based on sequence information, for functional clustering. We have also cross-vali-
dated our results using AlphaFold2, which demonstrated satisfactory performance. This 
approach, while being economical and efficient, also proves to be accurate, offering a viable 
alternative for KO prediction.

Despite the innovative approach and encouraging results achieved by our method, it is 
important to recognize certain limitations. Firstly, the substantial computational resources 
demanded by the large protein language model ProtT5 present a challenge. Specifically, 
the ability to process long sequences is constrained by the memory capacity of the GPU 
used. This requirement thus restricts the range of sequence lengths that our method can 
effectively handle. Furthermore, our pipeline currently focuses on sequence data. Despite 
its ability to yield important information, this approach might not comprehensively cap-
ture the intricate characteristics of proteins. This focus on sequences could potentially leave 
out important information derived from other protein characteristics, such as their three-
dimensional structures or interactions within biological systems.

By effectively identifying and annotating new or unknown bacterial proteins, our pipeline 
contributes to an increased annotation coverage of bacterial proteins in the KEGG data-
base, thereby expanding its application scope. Furthermore, the integration of our pipeline 
with NLP technologies offers a fresh perspective and methodology for future research in 
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the KO prediction domain. It can be effectively applied to other species and extended to 
other protein function predictions, further amplifying its utility and impact.

Conclusions
This study introduces a novel NLP-based pipeline to the field of KO prediction and 
demonstrates its significant potential. Our pipeline excels in predicting distant rela-
tives, providing a new solution to address the challenges faced by traditional homol-
ogy-based methods.

For future research, we suggest exploring the integration of NLP-based methods 
with traditional methods to fully use their complementary advantages in KO predic-
tion, thus improving prediction accuracy and comprehensiveness. In KEGG GENES, 
approximately 20% of bacterial protein sequences have a length greater than 600. 
Therefore, another direction is the analysis of long Transformers, which can handle 
longer amino acid sequences without preprocessing steps and significant computa-
tional resources. As a final point, we consider incorporating other features, such as 
KEGG pathways (molecular interaction, reaction, and relation networks) and protein 
structure information, to further enhance the performance of model.

Methods
Data collection and filtering

We collected three datasets, including BD, RD, and SD (Structural Data) datasets.
The BD dataset contains both KO and non-KO data, which were obtained from the 

KEGG GENES database (downloaded in August 2022) with a restriction on the spe-
cies to bacteria (7409 species in total in KEGG GENES). Duplicate sequences were 
removed. To ensure the quality of the data, we removed sequences shorter than 100 
amino acids and sequences longer than 600 amino acids. We set these size limits 
based on the observation that sequences shorter than 100 amino acids often have 
lower true positives [37], while sequences longer than 600 amino acids contain lim-
ited KO data (less than 20%). Sequences containing undefined amino acids were also 
removed (0.07%). The length distributions of KO and non-KO data were kept consist-
ent (deviation <5%) to avoid length bias in the model. The data were split into train-
ing and testing sets with an 8:2 ratio, and data from all species were merged. In cases 
where identical sequences from different species exhibited varying annotations, we 
retained the annotation with the K number as the final annotation. The final training 
set consisted of 7,624,360 KO sequences and 1,906,089 non-KO sequences, while the 
testing set consisted of 5,875,496 KO sequences and 1,468,873 non-KO sequences. 
The length distribution is shown in Fig. 4.

The RD dataset is a small subset of KEGG GENES containing KEGG reference 
genomes and individual sequences linked from PubMed records of KO entries. Ref-
erence genomes are introduced for those genomes with enough experimental data 
for gene/protein functions, as seen by the number of sequence links in the PubMed 
reference fields of the KO database. We obtained 24,146 KOs and 623,239 reference 
sequences (Table 4).
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The SD dataset contains protein structures. The structures of predicted sequences 
are generated using AlphaFold2 [38], while the structures of KEGG sequences are 
obtained from Protein Data Bank (PDB) [39] or AlphaFold Protein Structure Database 
(AFDB). Although AlphaFold2 is a predictive model, it has been shown to achieve 
atomic-level precision that is comparable to experimental protein structure resolu-
tion [38]. Therefore, structures generated by AlphaFold2 are considered to have high 
confidence.

Classifier

We trained three models to distinguish KOs from non-KOs. LSTM and Attention did 
not use pre-training. ProtT5 [28] used pre-training on biological language corpora.

The LSTM model originates from the research conducted by Veltri et al. [29], while the 
Attention model is also based on earlier research by Ma et al. [31]. Firstly, we converted 
the protein sequences into fixed-size vectors by representing the 20 basic amino acids 
as numerical values ranging from 1 to 20. If the raw sequence did not reach 600 amino 
acids, we padded the sequence vectors with 0. The resulting vector was then expanded 
to 128 dimensions using an embedding layer, and fed into a 1D convolutional layer 
with 64 filters and a 1D max pooling layer. Secondly, an LSTM layer with 100 units was 
implemented, followed by a final classification layer that employed a sigmoid function 

Fig. 4 Length distribution of BD dataset

Table 4 Information about datasets

Units: number of proteins in thousands (k), of amino acids in millions (m), and of disk space in MB (uncompressed storage as 
text)

Data name BD RD

Number of proteins (in k) 16,874 623

Number of amino acids (in m) 5121 296

Disk space (in MB) 6550 335
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(Fig. 5a). The attention model simply replaces the LSTM layer with an attention layer, 
while keeping the rest of the network unchanged (Fig. 5b).

ProtT5 (ProtT5-XL-U50) is trained on a large corpus of protein sequences. This allows 
it to learn representations that are particularly well-suited for protein-related tasks, such 
as predicting protein structure, function, and interactions. By feeding protein sequences 
into the model and extracting the last hidden layer representations generated by the 
model, we can obtain high-quality, low-dimensional representations of proteins that can 
be used as input to downstream models [40]. For our downstream model, we used an 
MLP architecture consisting of two fully connected layers with a hidden size of 100. The 
final classification was performed using the sigmoid activation function (Fig. 5c).

Binary cross-entropy loss, Adam optimizer [41], and the ReLU activation function were 
selected for all models. To prevent overfitting, we reserved 20% of the training dataset as the 
validation dataset, which was employed to implement the early-stop strategy. The strategy 
halted the model’s training when its performance began to decline, and the best-performing 
model on the validation dataset was saved as the final model. The final classification layer 
produced a scalar value between 0 and 1, with values greater than 0.5 classified as KO.

To evaluate and compare the three classifiers, we used three evaluation metrics: 
precision∗ , recall∗ , and F1∗ . To distinguish the calculation formulas for precision and 
recall of the classifier from the entire pipeline, an asterisk (*) is added as a superscript here. 
Precision∗ measures the proportion of true positives out of all predicted positives, while 
recall∗ measures the proportion of true positives out of all actual positives. Since precision∗ 

Fig. 5 Classifier architecture. a The LSTM model architecture. The protein sequences were converted into 
fixed-size vectors and subsequently passed through an embedding layer with a length of 128. This was 
followed by a 1D convolutional layer comprising 64 filters and a subsequent 1D max pooling layer. Next, 
an LSTM layer with 100 units was implemented, followed by a final classification layer that employed a 
sigmoid function. b The attention model architecture. The attention model replaced the LSTM layer of 
the LSTM model with an attention layer, while the remaining modules remained unchanged. c The ProtT5 
model architecture. The protein sequences were initially fed into the ProtT5 Layer, followed by an MLP Layer 
comprised of two fully connected layers with a hidden size of 100. Just like the LSTM and attention method, 
the final step used a sigmoid function for classification
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and recall∗ can sometimes conflict with each other, a common way to combine them is 
through the F1∗ score, which is the harmonic mean of precision∗ and recall∗ . The F1∗ score 
provides a balanced measure of model performance that takes both precision∗ and recall∗ 
into account, and is therefore often used as an overall indicator of a model’s classification 
ability. The definition of the formula is as follows:

where TP (True Positive) represents the number of real positive cases where the model 
correctly predicted a positive result, FP (False Positive) represents the number of real 
negative cases where the model incorrectly predicted a positive result, and FN (False 
Negative) represents the number of real positive cases where the model incorrectly pre-
dicted a negative result.

Clustering

The process of clustering predicted KOs and known KOs from the RD dataset based on 
similar functions begins with the conversion of protein sequences into embeddings using 
ProtT5. Subsequently, the Euclidean distance (calculated using Eq.  (4)) is calculated 
between the embeddings of the predicted sequences and those of the known KOs. The 
best match is selected based on the smallest Euclidean distance, and the associated annota-
tion of the best match is subsequently assigned to the predicted sequence. In cases where 
there are several top matches with different annotated K number, our pipeline is designed 
to report all such matches. While theoretically it’s possible to have multiple top matches, 
the likelihood of is extremely low due to the high dimensionality and complexity of protein 
embeddings. Thus, in our experiments, we have not encountered such cases.

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are n-dimensional embeddings of two pro-
tein sequences.

We selected the ProtT5 model to convert the protein sequence into embeddings due to 
its superior performance, as observed in the experimental results of ProtTrans [28] and our 
classifier experiment. Among the models evaluated, ProtT5 exhibited the most comprehen-
sive and effective performance, making it the preferred choice for generating embeddings 
from protein sequences in our study.

For a comprehensive evaluation, we use precision, recall, and F1 score. While precision 
and recall bear similarities to those used in classification, there exist subtle distinctions. 
Specific details can be found in Eqs. (5) and (6).

(1)Precision
∗
=

TP

TP+ FP

(2)Recall
∗
=

TP

TP+ FN

(3)F1∗ =
2

(Recall∗)−1
+ (Precision∗)−1

(4)d(x, y) = (x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2
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Match refers to the number of cases where the predicted KO precisely matched the KO 
defined in the KEGG GENES database. Unmatch denotes cases where the predicted KO 
differed from the assigned KO in KEGG GENES. Missed cases represented KOs defined 
in KEGG GENES that were not successfully predicted by the tools. Added cases indi-
cated situations where a K number was assigned by the prediction despite no corre-
sponding KO being defined in KEGG GENES.

Structural alignment

The predicted sequences are subjected to structural modeling using the highly pre-
cise AlphaFold2 model, renowned for its accuracy in protein structure prediction. Sub-
sequently, these predicted structures are compared to the structures of clustered KO 
sequences, which are included in the SD dataset, using the CE-CP algorithm (Fig. 6). The 
CE-CP algorithm facilitates the comparison of circularly permuted proteins, enabling a 
comprehensive analysis of the structural similarities between the predicted sequences 
and the clustered KO sequences. We employed AlphaFold v2.3.2 with specific parame-
ters configured as follows: model type: alphafold2_ptm, number relax: 0, templete mode: 
pdb70, msa mode: mmseqs2_uniref_env, pair mode: unpaired_paired, num recycles: 20, 
recycle early stop tolerance: tol = 0.5, max msa: auto, num seeds: 1, use dropout: False. 
For the CE-CP algorithm, specific parameters were set as follows: maximum gap size: 30, 
gap opening penalty: 5, gap extension penalty: 0.5, fragment size: 8, RMSD (Root Mean 
Square Deviation) threshold: 3, maximum RMSD: 99, and min CP block length: 5.

(5)Precision =
match

match+ unmatch+ added

(6)Recall =
match

match+ unmatch+missed

(7)F1 =
2

Recall−1
+ Precision−1

Fig. 6 Structural alignment. The structure of the predicted sequence was generated using the AlphaFold2 
model, while the structure of the clustered KO sequence was sourced from the PDB or AFDB databases. 
Structural alignment was conducted using the CE-CP algorithm
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For evaluating structural comparison, the TM-score is used as the assessment met-
ric. TM-score measures the proportion of the distance difference between matched 
residues in the target protein and template protein to the length of the target protein. 
The TM-score equation is presented in Eq. (8).

where Ltarget is the length of the amino acid sequence of the target protein, and Lcommon 
is the number of residues that appear in both the template and target structures.di is 
the distance between the ith pair of residues in the template and target structures, and 
d0(Ltarget) = 1.24 3

√

Ltarget − 15− 1.8 is a distance scale that normalizes distances.
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