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Introduction
Liquid–liquid phase separation (LLPS) of biomolecules, such as proteins and RNAs, has 
attracted significant attention due to its central role in various cellular phenomena and 
implications in several diseases. LLPS is a physicochemical process that allows the for-
mation and maintenance of condensates composed of specific biomolecules [1, 2]. These 
condensates show liquid-like properties that allow for fusion, exchange, and dissolution 
of surrounding components, and can respond to specific extracellular and intracellular 
signals [3]. Dysregulation of LLPS has been suggested to induce a phase transition from 
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liquid-like condensates to solid-like condensates, leading to the formation of non-solu-
ble aggregates [4, 5]. These non-soluble aggregates are characteristic features found in 
neurodegenerative diseases, including Alzheimer’s disease and amyotrophic lateral scle-
rosis [6, 7]. Given that LLPS is strongly associated with cellular phenomena and several 
diseases, it is important to evaluate the LLPS propensities of biomolecules to elucidate 
the relationship between their functions and diseases.

Recent studies have shown that the formation and maintenance of LLPS are regu-
lated by RNA and environmental factors, such as surrounding pH and temperature, in 
addition to protein properties [8–10]. Numerous RNAs have been found within mem-
braneless organelles, and it is suggested that various properties of RNAs, including their 
concentration, length, structure, and sequence, can influence the behavior of LLPS [10–
15]. Additionally, several studies have reported that changes in environmental factors, 
such as pH, temperature, and ionic strength, can also alter the behavior of LLPS [9, 16, 
17]. Therefore, proteins, RNAs, and environmental factors are important regulators of 
LLPS and should be considered together for a better understanding of LLPS as a biologi-
cal phenomenon.

In recent years, there has been an increase in published LLPS-related databases, and 
the LLPS-related research utilizing machine learning (ML)-based models has inten-
sified [18–27]. The previous models have mainly focused on identifying LLPS-related 
proteins, and their effectiveness has already been demonstrated. These models typically 
input a protein sequence or sequence-derived properties and output predictions regard-
ing the behavior of LLPS [22–24]. Furthermore, a prediction model that takes a pro-
tein sequence and experimental conditions as input and output the propensity of the 
protein to undergo LLPS has recently been developed using LLPSDB, an LLPS-related 
database [18, 21]. These studies have identified several critical features of proteins that 
significantly influence LLPS behavior through analyses of the databases and assessments 
of the prediction models. However, prediction models that consider proteins, RNAs, 
and environmental factors have not been developed, despite their importance in LLPS 
regulation.

In this study, we aimed to develop prediction models that consider a protein, RNA, 
and experimental conditions. Since the performance of a prediction model is heav-
ily influenced by the quality and quantity of a training dataset, having more detailed 
information is desirable. However, the experimental data corresponding to a single 
experiment is not available in the  published databases. This is due to inconsistent 
recording formats, missing values, the use of range, and the use of multiple notations 
to record information from multiple experiments as a single data point. Thus, we first 
constructed a dataset, RNAPSEC (RNAPhaSep with detailed Experimental Condi-
tions), with a single experiment as an entry by thoroughly reviewing the public lit-
erature referred to in RNAPhaSep [26] and manually collecting detailed experimental 
information from experiments involving a single protein and RNA. RNAPhaSep is a 
comprehensive database that contains biomolecules recorded in other LLPS-related 
databases, such as LLPSDB [18], PhaSePro [19], DrLLPS [20], and PhaSepDB [27]. 
Using RNAPSEC, we first developed a ML-based model to predict whether a given 
protein and RNA can induce LLPS under a given condition. This prediction model 
showed a performance of ROC-AUC 0.67. Moreover, the prediction model can be 
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used to immediately predict the behavior of LLPS under various experimental condi-
tions, thus allowing the construction of phase diagrams and providing insights into 
LLPS-related experiments. We also developed an ML-based model that predicted 
the experimental conditions required for a given protein and RNA to undergo LLPS. 
Notably, this study is an important step toward building a prediction model for LLPS 
that considers proteins, RNAs, and experimental conditions. RNAPSEC and codes for 
the prediction models are available in GitHub. The prediction models are also avail-
able in Google Colaboratory and are easily accessible to inexperienced programmers.

Methods
The overview of this study is illustrated in Fig.  1. We first constructed RNAPSEC 
(Fig. 1A) and then developed prediction models using a preprocessed dataset derived 
from RNAPSEC (Fig. 1B). RNAPSEC was constructed by manually collecting experi-
mental information from the literature referred to in RNAPhaSep (“Construction of 
RNAPSEC” section). The preprocessed dataset was constructed by unifying the rep-
resentation of protein sequences, RNA sequences, and experimental conditions and 
then transforming them into numeric features representing their properties (“Pre-
processing of experimental conditions, protein sequences, and RNA sequences” sec-
tion). To develop a model with useful outputs for LLPS-related experiments using 
the preprocessed dataset, two ML models were designed: one that predicts whether 
a given protein and RNA can undergo LLPS under a given experimental condition 
(“Training and validation method for the prediction model of LLPS behavior” section) 
and the other one that predicts the experimental conditions required for a given pro-
tein and RNA to undergo LLPS (“Training and validation method for the prediction 
model of experimental conditions to undergo LLPS” section).

Fig. 1 Overview of the construction process for RNAPSEC and prediction models. We first constructed 
RNAPSEC (A) and subsequently performed the model construction (B). A Overview of the dataset 
construction. The experimental information from RNAPhaSep, where multiple experiments were grouped 
together, was disassembled into individual experiments. To achieve this, we manually extracted the 
experimental information from the public literature stored in RNAPhaSep and recorded each experiment as 
one entry. B Overview of the model construction. We constructed two ML-based models using RNAPSEC. The 
first model predicts LLPS behavior using protein-derived features, RNA-derived features, and experimental 
conditions. The second model predicts the required conditions for a protein and RNA to undergo LLPS using 
protein-derived features and RNA-derived features. Abbreviations: conc., concentration
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Construction of RNAPSEC

RNAPSEC was constructed by collecting experimental information from literature 
referenced in RNAPhaSep (Fig.  1A). Protein sequences, RNA sequences, protein con-
centration, RNA concentration, salt concentration, buffer pH, temperature, and con-
densate formation were manually recorded into RNAPSEC. The protein sequences 
were recorded in FASTA format, and the RNA sequences were recorded as single-letter 
sequences of nucleotides. Here, to construct the prediction models, experiments involv-
ing only a single protein and RNA were recorded. To simplify data processing, values 
and units were recorded in separate columns for protein, RNA, and salt concentrations. 
Additional parameters, including incubation time and other molecules, were recorded 
in the same manner as in RNAPhaSep. Links to original literature can be found in the 
“pmidlink” column of RNAPSEC. Similarly, detailed information on proteins and 
RNAs can be found in the corresponding columns of RNAPSEC. For example, the pro-
tein sequences, names, and Uniprot IDs have been listed in the columns of “protein_
sequence”, “rnaphasep_protein_name”, and “rnaphasep_Uniprot ID”, respectively.

The results of LLPS-related experiments were recorded based on morphological char-
acteristics of phase separation described in the literature, and four states were used: sol-
ute, liquid, gel, and solid. Solute represents non-LLPS, liquid represents the formation of 
liquid-like condensates, gel represents the formation of gel-like condensates, and solid 
represents the formation of solid-like condensates. When the results were not men-
tioned in the text, they were estimated from the size and shape of the condensates in the 
images. Images with spherical granules were classified as liquid-like condensates, images 
with reticular networks were classified as gel-like condensates, and images with isolated 
non-spherical objects were classified as solid-like condensates [1–5]. Data that could not 
be determined from the text or images were excluded.

Preprocessing of experimental conditions, protein sequences, and RNA sequences

To develop prediction models, a preprocessed dataset was created by converting the 
protein and RNA sequences into numerical features and unifying the representation of 
experimental conditions over the dataset (Fig.  1B). We selected data points that were 
derived from LLPS-related experiments involving a single protein-RNA pair and had five 
experimental conditions: protein concentration, RNA concentration, salt concentration, 
pH, and temperature. Data involving small molecules or crowding agents were excluded.

The protein sequences were unified into single-letter amino acid sequences by remov-
ing the description on the first line of the FASTA format. Subsequently, 29 features, 
including amino acid composition, hydrophobicity, and isoelectric point, were calcu-
lated using the Protein Analysis module from the Biopython package [28]. From the 
RNA sequences, 97 features, including nucleotide composition and sequence periodici-
ties, were calculated using the Mathfeature package [29]. Data points with protein or 
RNA sequence lengths less than 10 were excluded because the descriptor calculation 
tools did not support them. Detailed information about the features is provided in the 
Additional file 1: Tables S1 and S2.

The protein concentration, RNA concentration, pH, salt concentration, and tem-
perature were used as experimental conditions. Measure units of the protein and RNA 
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concentrations were unified as μM and were converted using a common logarithmic 
transformation. The salt concentration was converted to ionic strength using the pyEQL 
package [30]. Data points involving salts not supported by pyEQL were excluded. For the 
temperature, the units were unified to Celsius, and room temperature was defined as 25 
degrees Celsius. No specific treatment was performed for the pH.

Finally, a total of 131 features, including 29 features from protein sequences, 97 fea-
tures from RNA sequences, and 5 features from experimental conditions, were used for 
the model development. A dataset was also prepared in which the values of each feature 
were standardized to have a mean of 0 and a variance of 1.

Training and validation method for the prediction model of LLPS behavior

The first model predicts whether a given protein and RNA can undergo LLPS under 
given experimental conditions using the 131 features converted from the protein, RNA, 
and experimental conditions (Fig.  1B). The prediction models were developed using 
seven different ML algorithms: Logistic Regression (LR), K-Nearest Neighbor (KNN), 
Support Vector Machine (SVM), Gaussian Naïve Bayes (GaussianNB), Random Forest 
(RF), Light Gradient Boosting Machine (LightGBM) [31], and Adaptive Boosting (Ada-
Boost) [32]. All algorithms except LightGBM were implemented using the scikit-learn 
library [33]. For LR, KNN, SVM, and GaussiaNB, the standardized dataset was used, and 
for RF, AdaBoost, and LightGBM, the non-standardized dataset was used.

The performances of the prediction models were assessed by repeated stratified group 
10-fold cross-validation (SG10CV). In this study, each group corresponds to a dataset 
with the same protein sequence. In each fold, the dataset was split in a 9:1 ratio into 
a training and test dataset. The redundancy of the local sequences has not been con-
sidered in this process. The training dataset was used for hyperparameter tuning, and 
the prediction performance of the test dataset was evaluated using the trained model 
with the best hyperparameter and the training dataset. The hyperparameter was deter-
mined based on the highest ROC-AUC value using stratified five-fold cross-validation 
(CV). The search ranges for the hyperparameter tuning are shown in Additional file 1: 
Table S3. The SG10CV was repeated 10 times to perform a stable assessment. In each 
SG10CV, the average score of ROC-AUC was calculated, and the total average of the 
scores of the SG10CVs was used as the result of the repeated SG10CV. To analyze 
important features in predictions, the average feature importances for each SG10CV 
were calculated, and the average of the averaged feature importances was used as the 
result of the repeated SG10CV.

Phase diagrams were constructed by plotting the predicted results for shifting the 
protein and RNA concentrations while keeping the other features constant. The range 
of concentrations to be plotted in the phase diagram was determined for each protein-
RNA pair. For each, the protein and RNA concentrations were divided into 20 points, 
from 1.0 less than the minimum value to 1.0 greater than the maximum value, and a 
total of 400 points were used for prediction. The prediction models were taken from the 
SG10CV that showed the highest ROC-AUC among the repeated SG10CV. Data involv-
ing the protein-RNA pair predicted in the phase diagram was included in the test data 
but not in the training data.
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Training and validation method for the prediction model of experimental conditions 

to undergo LLPS

The second model predicts the experimental conditions for a protein and RNA to 
undergo LLPS, based on the input of the features derived from the corresponding pro-
tein and RNA sequences (Fig. 1B). To predict multiple experimental conditions, classifier 
chains [34] were employed. The classifier chains are a sequence of classifiers connected 
in series, which can make multiple predictions by incorporating the prediction results of 
one previous classifier as input for the next classifier. The classifier chains model outputs 
experimental conditions in the following order: pH, temperature, protein concentration, 
RNA concentration, and ionic strength. Each experimental condition was classified into 
several classes according to its value and treated as a classification problem (Table 1). 
The pH was classified into three classes: acidic, neutral, and basic; the temperature into 
three classes: low temperature, room temperature, and high temperature; the protein 
concentration, RNA concentration, and ionic strength into five classes according to 20%, 
40%, 60%, 80%, and 100% of the value distribution. The classifier chains were imple-
mented using the scikit-learn library [33]. Due to the unbalanced amount of data in each 
class, for each experimental condition, a macro-averaged ROC curve was built from the 
total predicted results of test datasets in group 10-fold CV (G10CV) and evaluated using 
its ROC-AUC. In G10CV, each group corresponds to a dataset with the same protein 
sequence.

Results and discussion
Data contents in RNAPSEC

Figure 2A shows the distribution of morphologies for RNAPSEC and RNAPhaSep. As a 
result, both the total amount and the amount in each form were increased in RNAPSEC 
compared to RNAPhaSep under the same filter conditions. Currently, RNAPSEC con-
tains a total of 1514 data points, including 385 solute data points without LLPS, 984 liq-
uid data points with liquid-like condensates, 92 gel data points with gel-like condensates, 
and 53 solid data points with solid-like condensates. These experiments consisted of 
37 proteins, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
nucleoproteins, fused in sarcoma (FUS) proteins, and TAR DNA-binding protein 43 kDa 
(TDP- 43) (Additional file  1: Figure S1A), with 96 unique sequences and 147 RNAs. 
Among the 1514 data points, 40 data points consisting of 13 protein sequences are 
negative data that do not cause LLPS under any conditions in the recorded range. Also, 
RNAPSEC contains several protein sequences with sequence deletions or amino acid 

Table 1 Classification of experimental values into classes. Each experimental condition was 
classified into three or five classes depending on its value

Class 1 2 3 4 5

pH 0 to 7.0 7.0 to 8.0 8.0 to 14 – –

Temp. (°C) 0 to 25 25 to 30 30 to 40 – –

Ionic strength 0 to 0.032 0.032 to 0.066 0.066 to 0.14 0.14 to 0.17 0.17 to 0.40

Protein conc. (Log μM) −1.64 to −0.49 −0.49 to −0.29 −0.29 to 0.84 0.84 to 1.5 1.5 to 2.7

RNA conc. (Log μM) −4.7 to −3.7 −3.7 to −2.4 −2.4 to −1.0 −1.0 to −0.12 −0.12 to 2.3
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substitutions, resulting in multiple variants for a single protein (Additional file 1: Figure 
S1B). RNAPhaSep (Component type = “RNA + Protein”) contains 86 solute data points, 
323 liquid data points, 21 gel data points, 18 solid data points, 14 data points where 
experimental results are not described, and 87 data points with multiple descriptions 
(labeled as “Unknown” and “Other” in Fig.  2A). RNAPSEC was designed to avoid the 
inclusion of ambiguous entries, such as missing or multiple descriptions of experimen-
tal results. Note that the number of proteins and RNAs included in RNAPSEC appears 
to be small compared to other LLPS-related databases because only data that have all 
RNAs, proteins, and experimental conditions were collected.

Figure 2B and C shows the distribution of protein and RNA concentrations in RNA-
PhaSep and RNAPSEC, respectively. The protein and RNA concentrations in RNA-
PhaSep were preprocessed in the same way as in RNAPSEC. As the protein and RNA 
concentrations were recorded in a single column in RNAPhaSep, data with the following 
descriptions were excluded: data where it was unclear whether the recorded concentra-
tion referred to a protein or an RNA, where either concentration was not recorded, or 
where multiple experimental results were described. When a range notation or multiple 
values were mentioned, the average was used as the corresponding value. To compare 
the number of experiments, both datasets include data with small molecules or crowd-
ing agents. As a result, there are noticeable differences in the distribution of protein and 
RNA concentrations between RNAPhaSep and RNAPSEC. In the case of RNAPhaSep, 
the distribution appears scattered, suggesting that a large amount of information may 
be missing (Fig. 2B). In contrast, RNAPSEC showed a broad distribution of protein and 
RNA concentrations (Fig. 2C). In addition, the minimum and maximum values of the 
protein and RNA concentrations in RNAPSEC were more extended than those in RNA-
PhaSep in almost all morphologies (Additional file  1: Table  S4). Therefore, RNAPSEC 
has a potential to provide a wide range of information regarding LLPS-related experi-
ments, in addition to offering a greater quantity of data.

Previous studies have shown that changes in protein and RNA concentrations can alter 
the behavior of LLPS [9], suggesting a possible trend between concentration changes and 

Fig. 2 Distribution of morphology for phase separation and protein-RNA concentrations in RNAPShaSep and 
RNAPSEC. A The distribution of phase separation morphology in the experimental data consisted of a single 
protein and RNA in RNAPSEC and RNAPhaSep. Others represent data where more than one morphology has 
been recorded, and unknown represents data where no morphology has been recorded. B The distribution 
of protein and RNA concentrations in preprocessed RNAPhaSep. C The distribution of protein and RNA 
concentrations in preprocessed RNAPSEC. In B and C, the orange dots show data where LLPS did not occur, 
the blue dots show data where liquid-like condensates were formed, the green dots show data where 
gel-like condensates were formed, and the purple dots show data where solid-like condensates were formed
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LLPS behavior. However, no obvious tendencies were identified from the distribution of 
protein and RNA concentrations in RNAPSEC (Fig. 2C). This result suggests that LLPS 
is a complex phenomenon regulated by multiple experimental parameters and proper-
ties of biomolecules. It is also likely that the lack of trends from the distribution is due to 
the limited number of data points.

Evaluation results of the model in predicting the LLPS behavior of a protein and RNA 

under given conditions

Evaluation results of the models predicting LLPS behavior are shown in Fig.  3A. The 
model predicting the LLPS behavior was trained and evaluated using 851 data recorded 
in RNAPSEC, including 294 solute data as negative data and 557 liquid data as posi-
tive data. These 851 data were selected from RNAPSEC by filtering the 1514 data points 
for the following conditions: solute or liquid data point; no missing value in the protein 
concentration, RNA concentration, salt concentration, temperature, and pH of solution; 
and no crowding agents or small molecules. The prediction model takes input features 
derived from a protein, RNA, and experimental conditions. It then outputs a prediction 
on whether the protein-RNA pair can undergo LLPS under the experimental conditions. 
We compared the performances of the prediction models using seven different algo-
rithms, LR, KNN, SVM, GaussianNB, RF, LightGBM, and AdaBoost. The performance 
of each prediction model was estimated by repeated SG10CV using a total of 72 protein 
sequences as group labels. As a result, the AdaBoost model, the SVM model, and the 
LightGBM model showed superior performances, with the AdaBoost model showing 
the highest ROC-AUC of 0.67 (Fig. 3A). Recent studies have reported that peptide com-
positions of LLPS-related proteins are distinctive from the proteome and that Intrin-
sically Disordered Regions (IDRs) could provide the driving force for LLPS [2, 5, 22]. 
To examine the influence of such local sequences in the LLPS behavior, we have also 

Fig. 3 ROC curves and feature importances of ML models in predicting LLPS behavior. A The LR, KNN, 
SVM, GaussianNB, RF, LightGBM, and AdaBoost models were evaluated using repeated SG10CV, and their 
performances were assessed using ROC curves. The average curve for each SG10CV iteration of the repeated 
SG10CV was calculated, and the final result is shown as the total average curve. The values in brackets 
represent the overall average ROC-AUC values. B The top 10 average feature importances of the repeated 
SG10CV for the AdaBoost model are shown in the figure. The average value was calculated for each model 
trained within each SG10CV, and the average across all SG10CVs was calculated for the final result. Error bars 
represent standard deviations within each SG10CV
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developed four similar models that considered di/tri-peptide compositions in the pro-
tein sequences and the sequential features in the IDRs, respectively, as shown in Addi-
tional file 1: Figure S2. The results showed that the ROC-AUCs of the AdaBoost-based 
models were 0.62 and 0.63, which were lower than those of the original model. Further-
more, to confirm the effects of the features in the prediction, feature importances of the 
model that performed the best in the repeated SG10CV were calculated (Fig. 3B). As a 
result, ionic strength, protein concentration, and RNA concentration were significantly 
more important than the other features. In fact, the models based only on the experi-
mental conditions can predict LLPS behavior to some extent (Additional file 1: Figure 
S3). This suggests that the prediction results were heavily influenced by these experi-
mental conditions.

As shown in Fig. 3A, the maximum ROC-AUC obtained in this study was 0.67, indicat-
ing that the models did not perform better compared to previous studies that predicted 
LLPS behavior based on a protein sequence alone. For instance, the performances men-
tioned in the respective papers for PSAP [22] and PSPredictor [24] were an ROC-AUC 
of 0.88 and an accuracy of 94.71%, respectively. The performance of the proposed model 
could be attributed to the complexity of our prediction model, which considers three dif-
ferent factors: a protein, RNA, and experimental conditions. Such added complexity ren-
ders the prediction more challenging compared to considering a protein alone. However, 
given the intricate nature of LLPS behavior—a phenomenon influenced by the interplay 
of these three factors—prediction models should account for all these parameters.

From another perspective, the model performances might have been influenced by the 
composition of the training dataset. RNAPSEC was constructed by expanding the exper-
imental information for each data of RNAPhaSep; therefore, many data with the same 
sequence were included. In general, it is difficult to predict different results from similar 
inputs, and this may lead to a decrease in model performance. For the same reason, the 
importance of the features derived from sequences with small differences in the dataset 
may have decreased, while the importance of experimental conditions with large differ-
ences among the dataset may have increased. To ensure the reliability of the prediction 
model, it is desirable to train on the values used in experiments. It is therefore desirable 
to expand RNAPSEC with unique sequences and experimental conditions to develop 
high-performance models and enable more detailed analyses.

Construction of phase diagrams using the prediction model provides insight 

into LLPS‑related experiments

The prediction model developed above can immediately predict the LLPS behavior and 
is useful for the rapid construction of a phase diagram showing the LLPS behaviors 
under various conditions. In Fig. 4, predicted phase diagrams were displayed separately 
according to the accuracy score calculated from the prediction results of experimental 
data recorded in RNAPSEC for each protein-RNA pair. Figure 4A represents examples 
where the accuracy was 1.0, Fig. 4B represents examples where the accuracy was 0.5–
1.0, and Fig. 4C represents examples where the accuracy was 0. In Fig. 4A, the orange 
squares were more common in areas with the red rhombuses, and the light blue squares 
in areas with the blue rhombuses. Intriguingly, in experiments where only liquid-like 
condensates were observed, the LLPS behaviors were predicted to be altered by shifting 
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the input values of protein concentration and RNA concentration (Fig. 4A c, d). Under 
these conditions, the actual LLPS behavior may show similar changes to the predic-
tion results. Similar to Fig. 4A, the boundary of the prediction results in Fig. 4B almost 
aligns with the experimental results. This suggests that it may be possible to construct 
a reliable phase diagram, even with an accuracy of less than 1. Moreover, RNAPSEC 
contains a large amount of data regarding the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) nucleoprotein, and many of these phase diagrams are appropri-
ate (Additional file 1: Figure S4A). Furthermore, in the examples where the behavior of 
LLPS changed with shifting the RNA concentrations, similar predictions were obtained 
(Fig. 4B b-d). This result shows that the prediction model can predict the LLPS behav-
iors considering the influence of RNA concentration. Therefore, our model, which was 
trained on the data consisting of individual experiments, has the potential to predict 
LLPS behavior under a wide variety of experimental conditions.

Fig. 4 Examples of phase diagrams constructed by the results of the prediction model. Phase diagrams 
were generated from the prediction results of samples in which the protein and RNA concentrations 
were shifted at regular intervals. A Examples of phase diagrams where the accuracy score calculated from 
the predictions of the corresponding experimental data was 1. B Examples of phase diagrams where the 
accuracy score calculated from the predictions of the corresponding experimental data was between 0.5 and 
1 (not including 1). C Examples of phase diagrams where the accuracy score calculated from the predictions 
of the corresponding experimental data was 0. In each phase diagram, the orange squares represent the 
samples predicted as non-LLPS, the light blue squares represent the samples predicted to form liquid-like 
condensates, the red rhombuses represent the samples where no LLPS occurred in experiments, and the 
blue rhombuses represent the samples where liquid-like condensates were formed in experiments
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However, as shown in Figs.  4C and Additional file  1: S4B, there were some cases in 
which the prediction results deviated significantly from the experimental results. This 
indicates that it is difficult to achieve completely accurate predictions for all scenarios 
with the current model. Future efforts to expand the number of unique biomolecules and 
the amount of data included in RNAPSEC are expected to improve the performance of 
the model and enable its application to the comprehensive screening of LLPS conditions.

Evaluation result of the model in predicting experimental conditions for a protein and RNA 

to undergo LLPS

Furthermore, we developed a model that predicts the required experimental conditions 
to undergo LLPS using the classifier chains model based on AdaBoost, which showed 
the best performance in the previous prediction task. Each AdaBoost model was trained 
with the default hyperparameters and evaluated using 557 liquid data from RNAPSEC. 
The model takes the input features derived from protein and RNA sequences and out-
puts pH, temperature, protein concentration, RNA concentration, and ionic strength. 
The performance of the prediction model was evaluated by G10CV using protein 
sequences were treated as group labels. The macro-averaged value of the ROC-AUCs for 
pH was above 0.71 (Fig. 5A) and showed relatively better performance in predicting each 
class (Fig. 5B). However, for other factors, each ROC-AUC was around 0.50 and showed 
that the predictions accuracy of each class was close to random chance. Therefore, it is 
difficult for the model to accurately predict the experimental conditions based on the 
current dataset.

Conclusion
In this study, we developed two prediction models that consider three elements: 
protein, RNA, and experimental conditions. Our study represents an initial step 
toward developing an LLPS prediction model that considers all these factors. To 
achieve this, we first constructed a dataset called RNAPSEC, which comprises 1514 

Fig. 5 Performance of the classifier chains model with the AdaBoost models in predicting five experimental 
conditions. A The model performance was evaluated using the G10CV and the results are shown in the 
macro-averaged ROC curves. Each curve shows the result of the model predicting the experimental 
condition for the corresponding color in the legend. Values in the brackets represent the macro-average of 
the ROC-AUCs for each class shown in Table 1. B Confusion matrices built from the predictions of the G10CV. 
Axis labels correspond to the classes in Table 1
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data points about to LLPS-related experiments involving a single protein and RNA. 
Within RNAPSEC, each individual experiment was recorded as a single data point, 
providing information on LLPS-related experiments under various conditions. Using 
RNAPSEC, we developed two different models related to LLPS. The first model was 
able to predict the LLPS behavior of a given protein and RNA under given experimen-
tal conditions, which had not been considered in previous studies, with an ROC-AUC 
of 0.67. This model allows large-scale screening and the construction of phase dia-
grams, which are expected to be useful in planning experiments. The second model 
can predict the experimental conditions under which a given protein and RNA will 
undergo LLPS. This is the first model to output the experimental conditions required 
for LLPS. The ROC-AUCs of the model were 0.50, 0.52, 0.56, 0.59, and 0.71 for the 
five experimental conditions, ionic strength, protein concentration, RNA concentra-
tion, temperature, and pH, respectively. Although further improvements in predic-
tion accuracy and applicability domain are required, these models are highly reliable 
in predicting experimental conditions because they were trained on individual exper-
imental data. Expanding the scope of RNAPSEC and enhancing model performance 
will enable more detailed analysis and prediction of the complex relationships among 
proteins, RNA, and environmental factors in LLPS. This will contribute to a fur-
ther understanding of LLPS by uncovering the complex interplay among these three 
factors.
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