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Abstract 

Background:  Nanobodies, also known as VHH or single-domain antibodies, are 
unique antibody fragments derived solely from heavy chains. They offer advantages 
of small molecules and conventional antibodies, making them promising therapeutics. 
The paratope is the specific region on an antibody that binds to an antigen. Paratope 
prediction involves the identification and characterization of the antigen-binding site 
on an antibody. This process is crucial for understanding the specificity and affinity 
of antibody-antigen interactions. Various computational methods and experimental 
approaches have been developed to predict and analyze paratopes, contributing 
to advancements in antibody engineering, drug development, and immunotherapy. 
However, existing predictive models trained on traditional antibodies may not be suit-
able for nanobodies. Additionally, the limited availability of nanobody datasets poses 
challenges in constructing accurate models.

Methods:  To address these challenges, we have developed a novel nanobody 
prediction model, named NanoBERTa-ASP (Antibody Specificity Prediction), which 
is specifically designed for predicting nanobody-antigen binding sites. The model 
adopts a training strategy more suitable for nanobodies, based on an advanced natural 
language processing (NLP) model called BERT (Bidirectional Encoder Representa-
tions from Transformers). To be more specific, the model utilizes a masked language 
modeling approach named RoBERTa (Robustly Optimized BERT Pretraining Approach) 
to learn the contextual information of the nanobody sequence and predict its binding 
site.

Results:  NanoBERTa-ASP achieved exceptional performance in predicting nanobody 
binding sites, outperforming existing methods, indicating its proficiency in capturing 
sequence information specific to nanobodies and accurately identifying their binding 
sites. Furthermore, NanoBERTa-ASP provides insights into the interaction mechanisms 
between nanobodies and antigens, contributing to a better understanding of nano-
bodies and facilitating the design and development of nanobodies with therapeutic 
potential.

Conclusion:  NanoBERTa-ASP represents a significant advancement in nanobody 
paratope prediction. Its superior performance highlights the potential of deep learning 
approaches in nanobody research. By leveraging the increasing volume of nanobody 
data, NanoBERTa-ASP can further refine its predictions, enhance its performance, 
and contribute to the development of novel nanobody-based therapeutics.
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Introduction
Antibodies are vital components of the human immune system, characterized by their 
exceptional specificity and high affinity. They have extensive applications in disease diag-
nosis, treatment, and prevention. Nanobodies, a unique class of small antibody mole-
cules, differ from conventional antibodies in that they naturally lack light chains [1]. This 
inherent feature renders nanobodies less prone to mutual adhesion and aggregation. 
However, their variable heavy chain (VHH) region exhibits structural stability and anti-
gen binding activity comparable to that of full-length antibodies. Nanobodies are consid-
ered the smallest functional units known to bind target antigens (excluding just the CDR 
peptides). Nanobodies possess the advantages of both conventional antibodies and small 
molecule drugs [2]. Nanobodies are increasingly being recognized as a promising class 
of therapeutic biopharmaceuticals in the field of therapeutic biomedicine and clinical 
diagnostic reagents [3]. However, the design and development of nanobodies remain a 
challenging issue, requiring the resolution of numerous technical hurdles. One key chal-
lenge is accurately predicting the binding paratopes between nanobodies and antigens.

The antibody’s paratope is typically located within complementary determining 
regions (CDRs). The paratope of an antibody interacts with the antigen through non-
covalent interactions such as hydrogen bonds, ionic bonds, van der Waals forces, and 
hydrophobic interactions. Predicting the complementarity-determining regions is a 
method to investigate the characteristics of antibodies and understand their specificity 
and selectivity. Predicting binding sites is crucial for comprehending the specificity of 
antibodies and the antigen recognition mechanism [4]. It provides guidance for vaccine 
design, drug development, and immunotherapy, making it of significant importance. 
Currently, the mainstream prediction methods include structure-based analysis and 
machine learning. Structure-based approaches utilize the three-dimensional structural 
information of antibodies and antigens, employing docking techniques to predict bind-
ing sites. On the other hand, machine learning leverages known antigen–antibody com-
plexes and relevant features to construct models that learn patterns and rules of binding 
sites, enabling predictions for unknown antibodies. Studying the characteristics of nano-
bodies and accurately predicting their binding paratopes holds significant importance.

In recent years, with the advancements in artificial intelligence and deep learning tech-
nologies [5], training antibody models using large-scale antibody data has emerged as a 
novel approach for antibody design and optimization. Compared to traditional antibody 
research methods, deep learning techniques offer reduced time and cost requirements. 
With the assistance of computers, antibody researchers can handle larger datasets, pre-
dict the properties and functions of unknown antibodies, significantly improving the 
accuracy of antibody research. Currently, the mainstream methods in deep learning for 
antibodies are language models and graph neural network models. Graph neural net-
work models can learn the relationships between antibody residues and represent the 
structure of paratopes, enabling tasks such as antibody docking, pairing, and paratope 
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prediction [6]. Language models, on the other hand, can learn sequence data from a 
large volume of data, facilitating tasks such as antibody sequence generation, recovery, 
and paratope prediction.

In this work, we developed a training model called NanoBERTa-ASP, which achieved 
outstanding results of nanobody on smaller training datasets compared to other mod-
els. Our pre-training dataset consisted of approximately 31 million human heavy chain 
BCR sequences. The fine-tuning dataset comprised around 2200 annotated examples, 
including 1300 nanobody annotations and 900 antibody heavy chain annotations. 
NanoBERTa-ASP was built upon the model architecture of RoBERTa [7], a widely used 
generalized model. While RoBERTa was initially designed for handling textual data, 
antibody sequences are also composed of strings of amino acids. Therefore, it is feasi-
ble to apply the RoBERTa model to analyze and predict antibody data. In recent stud-
ies, researchers have successfully employed RoBERTa in the field of antibody research, 
achieving promising results. These endeavors demonstrate the potential utility of RoB-
ERTa in antibody-related investigations, showcasing its effectiveness in tasks such as 
antibody sequence analysis, antigen–antibody interaction prediction, and other relevant 
studies.

Experimental procedures
The flowchart of NanoBERTa-ASP was shown as Fig. 1

Pretrain dataset

To pretrain NanoBERTa-ASP, we downloaded 70 research-based human unpaired anti-
body heavy chain sequences from the Observed Antibody Space (OAS) database on 
April 16, 2023. [8] We removed sequences containing unknown amino acids. To ensure 
that the model could better capture sequence features, we selected sequences with a 
minimum of 20 residues before the CDR1 region and a minimum of 10 residues after 
the CDR3 region. Subsequently, We partitioned the entire collection of 31.01 million 

Fig. 1  The flowchart of NanoBERTa-ASP
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unpaired heavy chain sequences into mutually exclusive sets for the purpose of training, 
testing, and validation. This was done to ensure that there was no overlap between the 
sequences included in each set.

The pretraining dataset consisted of approximately 24.8 million heavy chain sequences, 
while the pretrained validation and test sets each contained around 3.1 million heavy 
chain sequences.

Finetune dataset

Due to the limited availability of nanobody data, we augmented the nanobody dataset 
by incorporating heavy-chain antibodies into the training set. we downloaded 7255 anti-
body PDB files from The Structural Antibody Database (SAbDab) on April 17th, 2023 
to fine-tuning our model for binding site prediction [9]. We initially filtered 5134 crys-
tal structures with an accuracy of 3.0 Å or higher. Structures that were defined as hap-
ten binding in IMGT (International ImMunoGeneTics) were removed as they did not 
meet the binding requirements of our nanobodies. We extracted information on anti-
body and antigen from IMGT-numbered PDB files. Using Biopython, we constructed 
a NeighborSearch object based on the antigen information, which was employed to 
search for antibody residues adjacent to the antigen. We iterated through each nanobody 
residue atom’s three-dimensional coordinates, using a threshold of 4.5 Å to determine 
whether neighboring atoms were found within the antigen.[10, 11] Residues that had 
antigen atoms detected within this threshold were identified as contact sites. Eventually, 
we selected 1070 sequences of labeled nanobodies and 4400 heavy chain sequences. To 
ensure that the trained model was applicable specifically to nanobodies, we only used 
nanobody data in both the validation and test sets. Therefore, we approximately divided 
the nanobody data into six equal parts (60% of all fine-tuning dataset) and selected four 
parts (40% of all fine-tuning dataset) for the training set. To balance the dataset, we 
added an equal number of heavy-chain antibody data (40% of all fine-tuning dataset) to 
the training set along with the nanobodies.

NanoBERTa‑ASP pre‑training

NanoBETRa is a pre-trained model based on a modified version of the RoBERTa model. 
The vocabulary used for training consists of 24 tokens, including 20 amino acids and 
4 identification tokens (<s>, </s>, <mask>, <pad>). The entire sequence is treated as a 
sentence, with the sequence being identified by the start token <s> and the end token </
s> . The MLM(Masked Language Modeling) method was chosen for training, with 15% 
of the amino acids being perturbed. Similar to the RoBERTa setup, within these 15% of 
the amino acids, 80% of the tokens were replaced with <mask> , 10% were replaced with 
randomly selected amino acids, and 10% were left unchanged. During pretraining, the 
model predicts what kind of residue it is on the masked position. For seq in each batch, 
the loss is defined as:

Loss = −
1

batch
seq ∈ batch i∈mask

log p̂ si S\mask
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p̂
(

si
∣

∣S\mask
)

 represents the prediction probability of the model for sequence (s) at 
the i-th residual position, under the condition that the other parts of the sequence (S) 
masked.

NanoBERTa‑ASP fine‑tuning

We consider the task of paratope prediction as a binary token classification task, where 
NanoBERTa-ASP predicts whether each residue in a nanobody sequence is a paratope or 
not. To achieve this, we add a binary classification head on top of the pre-trained model 
to label the sequences. During training, the model uses cross-entropy loss function to 
calculate the difference between the predicted probability p and the true label y, then 
updates the model parameters using backpropagation algorithm. The loss during fine-
tuning is defined as:

Result
Attention mechanism can focus on the structure of the sequence

As a RoBERTa-based model, NanoBERTa-ASP also habours the same multi-head atten-
tion mechanism as RoBERTa. The attention heads of NanoBERTa-ASP can focus on 
different parts of the sequence. NanoBERTa-ASP exhibits a higher degree of attention 
towards the highly variable CDR3 region. For example, when we input the nanobody 
Nb-ER19 into the model and output the attention layers in the form of a heatmap, we 
can observe that the sixth head of the twelfth layer of the model has a special atten-
tion on the positions of ASN32 and VAL33 in CDR1, LEU98 in CDR3 (PDB:5f7y [12]) 
(Fig. 2A). By observing in PyMOL, it was found that there was a interaction at this posi-
tion (Fig. 2B), and LEU98 is also part of the paratope. This indicates that the model can 
learn certain structural features of antibodies through the annotated sequences.

LBCE = −
1

batch

∑batch

i=1

∑length

j=1
yi,j logpi,j + (1− yi,j)log(1− pi,j)

Fig. 2  A Self-attention heatmap from NanoBERTa-ASP’s 12th layer, the sixth attention head for Nb-ER19 in 
PDB:5f7y; B The schematic diagram of the 3D structure of Nb-ER19 in PDB:5f7y show interaction displayed by 
PyMOL
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Performance of the NanoBERTa‑ASP

Our model can predict binding sites in both CDR and non-CDR regions. Figure 3B and 
D show the predicted binding sites of NanoBERTa-ASP, compared with annotated para-
tope positions from the crystal structures via Biopython and PDB file shown in Fig. 3A 
and C. NanoBERTa-ASP can accurately identify the binding sites on the nanobody 
sequence, as demonstrated by comparison with the annotation from the crystal struc-
tures via Biopython and PDB file (5f7y [12] and 2wzp [13]).

To verify the generalization ability of the model, we conducted tenfold cross-validation 
on the model [14]. We conducted the test using two different datasets: one consisting 
solely of nanobody sequences for testing, and another consisting of the same number of 
heavy chain sequences added to the training set for training. To ensure that our evalu-
ations were focused solely on the ability of the model to perform with respect to nano-
bodies, we used only nanobody sequences in our testing set. The AUC and precision 
obtained from the mixed dataset (AUC = 0.952, precision = 0.778) were higher than 
those from the pure nanobody dataset (AUC = 0.947, precision = 0.766). Through analy-
sis of the results data, NanoBERTa-ASP shown high stability in cross-validation (Addi-
tional file 1: Fig. 2).

We also compared our model with currently available models for predicting bind-
ing sites, including ProtBERT, Paraperd, and Paragraph (Figs.  4 and 5). As Paraperd 
and Paragraph only predict binding sites in the CDR region, we extracted the CDR 
part of the predicted results from the complete sequence predictions of ProtBERT and 
NanoBERTa-ASP for comparison [15–17].

Fig. 3  NanoBERTa-ASP accurately predicts the binding sites of nanobodies. A Annotated paratope 
positions from the crystal structures via Biopython, PDB id:5f7y; B Prediction of PDB id:5f7y binding sites by 
NanoBERTa-ASP; C Annotated paratope positions from the crystal structures via Biopython, PDB id:2wzp; D 
Prediction of PDB id:2wzp binding sites by NanoBERTa-ASP. Binding sites calculated by NanoBERTa-ASP are 
represented by green letters, and binding sites calculated by Biopython are represented by blue letters

Fig. 4  Comparison of NanoBERTa-ASP with Other Models Based on PR AUC (left) and AUC (right)
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NanoBERTa-ASP exhibits superior performance compared to publicly available tools 
in terms of the complete sequence of nanobodies and the CDR region. As the CDR 
region is a highly variable region that is harder to predict, and also the main region where 
binding sites exist, the model is more focused on predicting positive samples, which may 
result in a lower AUC score for the CDR region than for the complete sequence, but a 
higher precision score in the CDR region (Figs. 4 and 5). Our results demonstrated that 
NanoBERTa-ASP exhibits exceptional performance even with limited data, highlighting 
its significant potential for accurately predicting binding sites of nanobodies.

NanoBERTa-ASP, trained on a dataset of 31 million heavy chains, achieved compa-
rable performance to ProtBERT, which was trained on a much larger dataset of 217 
million proteins. This suggests that NanoBERTa-ASP is an effective model for nano-
body sequence analysis, even with a smaller dataset (see Figs. 4, 5 and Additional file 1: 
Table 1).

Conclusion and discussion
We evaluated NanoBERTa-ASP’s performance on nanobody binding site prediction and 
compared it to existing methods. When benchmarking, the test dataset containing only 
nanobody sequences was input into each model to obtain predicted binding results. 
PRAUC and ROC values were then calculated from these predictions and the annotated 
binding sites for quantitative assessment.

To enable comparison between full-sequence and CDR-only predicting models, we 
also extracted the CDR region predictions. As expected, ROC values were relatively 
higher and PRAUC values lower when evaluating full sequences compared to isolated 
CDRs. This is because non-CDR regions typically contain a larger proportion of negative 
samples (non-binding sites), introducing imbalance that impacts how ROC and PRAUC 
measure performance [16].

Traditionally, Area Under the Receiver Operating Characteristic Curve (AUROC/
AUC) is used to evaluate prediction quality. However, in imbalanced datasets like bind-
ing site prediction where positive sites (binding sites) are the minority, Precision-Recall 
AUC (PRAUC) provides a more sensitive measure of how well a classifier identifies these 
rare cases [16]. PRAUC incorporates precision at different recall levels, emphasizing 
prediction of the minority class which in our case are binding sites.

Fig. 5  NanoBERTa-ASP outperformed other models in predicting binding sites Based on A Precision-Recall 
Curve and B ROC Curve
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Moving forward, several approaches may help further improve NanoBERTa-ASP. During 
pre-training, heavy chain clustering and upweighting CDR regions could enable the model 
to better capture nanobody characteristics. Larger datasets and batch sizes from emerging 
cryo-EM data may also enhance performance when training with more abundant informa-
tion. Moreover, using techniques like surface plasmon resonance for precise binding site 
mapping could provide higher-quality annotations to train on.

In the last few years, algorithms based on BERT [17–19], RoBERTa [7, 11, 20] or graph 
networks [15, 16] have achieved state-of-the-art performance for various protein predic-
tion tasks [15, 16]. While each tool has its niche, NanoBERTa-ASP excels specifically for 
nanobody analysis thanks to our self-supervised pre-training approach strategically devel-
oped for the nanobody domain. As nanobody datasets grow exponentially, we expect 
NanoBERTa-ASP’s advantage over other methods will continue expanding to drive new 
discoveries.

In summary, NanoBERTa-ASP represents a significant advancement in nanobody bind-
ing site prediction through effective exploitation of limited data via self-supervision. Its 
outstanding performance demonstrates the approach’s great potential for advancing com-
putational nanobody design. NanoBERTa-ASP’s capabilities have only begun to evolve and 
we are confident it will continue playing an instrumental role in progressing the field.
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