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Introduction
Non-coding RNAs (ncRNAs) are the vast majority of RNAs in the sequence of the 
human genome that do not code for proteins. Short non-coding RNAs (sncRNAs) are 
non-coding RNAs with less than 200 nucleotides, while long non-coding RNAs (lncR-
NAs) have more than 200 nucleotides [1]. Recent research has demonstrated that lncR-
NAs interact with RNA-binding proteins and play essential roles in biological processes 
[2], including transcription, epigenetic regulation, regulation of cell differentiation, and 
cell cycle function [3]. Moreover, lncRNAs are intricately associated with high-risk 
diseases, including cancer. The interaction between lncRNAs and RNA-binding pro-
teins plays a crucial role in the physiological functions of organisms. Consequently, the 
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precise prediction of RPI is indispensable for comprehending the role of lncRNAs in 
physiological processes.

Previously, some RPI experiments were prohibitively expensive and time-consuming, 
for example, BIACORE, the main components are optical system, liquid sampling sys-
tem and sensor chip. It based on surface plasmon resonance (SPR), provides both equi-
librium and kinetic information about intermolecular interactions, could obtain detailed 
insight into the interaction between RNA and proteins carrying RNA recognition motif 
(RRM) domains [4]. In the past decade, deep learning-based model training has gained 
attention from data scientists due to its effectiveness in handling large data sets, its high 
proficiency in training, and its ability to represent features without human interven-
tion automatically [5]. In recent years, numerous RPI prediction methods have been 
proposed, the majority of which predict RPI using machine learning or deep learning. 
For instance, Li et  al., presented the Capsule-LPI model [6] based on sequence, motif 
information, physicochemical properties, and secondary structure, and then predicted 
RPI via a capsule network. Based on sequence features and secondary structure features, 
Peng et al., presented the RPITER [7] and predicted RPI using convolutional neural net-
works (CNN) [8] and stacked auto encoder (SAE) [9]. In addition, Yu et al., presented a 
model known as RPI-MDLStack [10] that predicted RPI interactions based on sequence 
properties of RNAs and proteins, followed by feature selection by the least absolute 
shrinkage and selection operator (LASSO) [11] approach and integration of multilayer 
perceptron (MLP) [12], support vector machine (SVM), RF and gate recurrent unit 
(GRU). Moreover, Wang et al., presented a model named EDLMFC [13] that predicted 
RPI using CNN and bilateral-long short term memory (BLSTM) based on sequence 
and secondary structure. Furthermore, Zhou et al., presented a model named PRPI-SC 
[14] that predicted RPI using CNN and stacked denoised autoencoder (SDAE) based on 
sequence and secondary structure. In addition, Huang et al., introduced a model known 
as LGFC-CNN [15], which is based on the sequence information of RNA and protein, 
then obtained the secondary structure features through Fourier transform [16], and 
finally predicted RPI using CNN.

Currently, there is a growing array of RPI prediction methods that exhibit enhanced 
precision. The steps of RPI prediction based on computational methods include feature 
extraction, feature fusion, feature selection and classification. While some prior meth-
ods only encode the sequence information of RNA and proteins, our model encodes 
more information, including RNA and protein sequence information, secondary struc-
ture information, physical and chemical property information, and protein-protein 
interaction information. This allows for a fuller capture of the direct RNA-protein 
interaction. Feature selection will be used to acquire superior features and enhance the 
model’s generalization capacity since feature fusion can prolong the training duration of 
features and thereby reduce the model’s predictive capacity. Prior methods that fail to 
incorporate a feature selection process will result in diminished accuracy of the model’s 
RPI forecast. Our model utilizes the RF feature selection algorithm to perform feature 
selection on the feature-encoded data and selects high-quality features to enhance the 
model’s prediction ability. The advent of deep learning has significantly enhanced the 
efficacy of RPI forecasting and diminished its predictive expenditure. There are many 
widely used deep learning techniques, including Graph Convolutional Networks(GCN) 
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[17], Convolutional Neural Networks(CNN), and Long Short-Term Memory(LSTM) 
[18]. Our model utilizes CNN for RPI prediction and achieves excellent results. Due to 
the link between lncRNAs and high-risk diseases like cancer, the interaction between 
lncRNA and RNA-binding protein is crucial for organismal physiological functions. 
Therefore, the future direction of this model is to enhance our knowledge of the bio-
logical functions of lncRNA. Consequently, our study proposes a novel RPI prediction 
method dubbed LPI-MFF, which combines multiple features, such as protein-protein 
interaction (PPI) features, sequence features, secondary structure features, and physico-
chemical properties features, and encodes characteristics using various methods. Subse-
quently, the RF feature selection algorithm was used to filter out and combine important 
feature vectors. Finally, a CNN-based deep learning model was used to predict the 
combined feature information. Thus, a five-fold cross-validation strategy [19] was used 
in this study to assess the performance of LPI-MFF. Accordingly, in the two datasets 
(RPI1807 and NPInter), the average ACC of LPI-MFF reached 97.63%, and the values of 
other evaluation metrics were also higher than those of the majority of RPI prediction 
methods. The following are the primary contributions of LPI-MFF:

• PPI feature, sequence feature, secondary structure feature, and physical and chemical 
property feature were used as the four information sources for prediction, improved 
k-mer (IK) was used to extract sequence information of lncRNA, and the improved 
conjoint triad (ICT) was used to extract sequence information of protein. Subse-
quently, Fourier transform was used to extract secondary structure information of 
lncRNA and protein, and the mapping method of the String database was used to 
obtain the PPI information. Furthermore, PC-PseAAC and DACC of the Pse-in-One 
tool were used to extract the physicochemical properties information of lncRNA and 
protein, respectively. The growth of multi-source information expansion was able to 
improve the prediction accuracy to some degree, as demonstrated by our subsequent 
experiments.

• The RF feature selection algorithm was used to screen the four feature vectors based 
on the Gini index to obtain the optimal. Accordingly, the model’s training pace could 
be accelerated and the interference of invalid features on the model could be reduced, 
thereby increasing the robustness of the model, making it easier for the classifier to 
process the information.

• After features fusion, a CNN-based deep learning method was used to predict the 
feature vectors. This feature reuse method could fully extract the information con-
tained in the effective features after feature filtering, thereby enhancing the accuracy 
of the model.

Materials and methods
Datasets

In deep learning, the collection or development of a valid benchmark dataset is impor-
tant, to train a computational model [20]. The selection of a suitable benchmark has a 
high impact on the performance rates of a model [21]. Our investigation made use of 
two datasets from the PDB database [22] and NPInter v2.0 database [23]: RPI1807 [24] 
and NPInter [25]. RPI1807 was determined by measuring the distance between RNA 
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and protein atoms, it consists of 1807 RPI pairs and 1436 non-RPI pairs, which are rep-
resented by 1078 RNAs and 3131 proteins. NPInter collects the records of lncRNA and 
protein interaction experiments in the NPInter v2.0 database. This database contained 
10,412 RPI pairs and 0 non-RPI pair, which were represented by 4636 RNAs and 449 
proteins. Due to the absence of non-RPI pairs in NPInter, this results in a lack of nega-
tive samples in the training model, so the same number of non-RPI pairs as RPI pairs 
were selected randomly from the proteins and RNAs that excluded the RPI pair.

Simultaneously, an independent dataset known as RPI1168 was introduced to validate 
the model’s generalization performance. The dataset consisted of 1168 RPI and 1168 
non-RPI pairs. The positive pairs were obtained from RPI2241 [26]. Additionally, we 
removed the RPI pairs with RNA sequences (<200nt) in RPI2241 and screened them to 
finally obtain 1168 RPI pairs and 0 non-RPI pair, which were represented by 421 RNAs 
and 1035 proteins, since RPI2241 had no non-RPI pairs like NPInter, this results in a 
lack of negative samples in the training model, the same number of non-RPI pairs as RPI 
pairs were randomly selected from proteins and RNAs that excluded the RPI pairs. The 
dataset used for this study is described in Table 1.

Multimodal features coding

This study predicts RPI using multiple types of information, including PPI information, 
sequence information, secondary structure information, and physicochemical proper-
ties information, to predict RPI. Thus, for various types of data, corresponding feature 
encoding techniques were used. The RPI prediction method LPI-MFF is depicted in 
Fig. 1. The pipeline of this flowchart is as follows: (1) Multi-source information extract-
ing. Utilizing PPI feature, sequence feature, secondary structure feature, and physical 
and chemical property feature as information sources. (2) Feature encoding. Use map-
ping method from the String database to encode the features of PPI information, IK to 
encode the features of the RNA sequence information, ICT to encode the features of 
the protein sequence information, DACC to encode the features of the physicochemi-
cal properties of RNA and PC-PseAAC to encode the features of the physicochemical 
properties of protein, Fourier transform to encode the features of the secondary struc-
ture information. (3) Feature selection. Use the RF feature selection algorithm to screen 
the feature vectors to reduce the interference of invalid feature vectors on the model. (4) 
Model construction. The deep learning method based on CNN is used to concatenate all 
the information together for feature fusion, further improve the accuracy of the model. 
(5) Model evaluation. Five-fold cross-validation is performed on RPI1807, NPInter, and 
RPI1168, respectively, to identify the model’s performance indicators, and compare LPI-
MFF to other RPI prediction methods to demonstrate its superiority. The subsequent 
four subsections introduce the information and the corresponding encoding methods.

Table 1 Describe the datasets that were used in this study

Datasets RPI pairs Non-RPI pairs RNAs Protein

RPI1807 1807 1436 1078 3131

NPInter 10412 10412 4636 449

RPI1168 1168 1168 421 1035
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PPI features

The PPI data used in our study can be accessed from the STRING database [27]. The 
STRING database contains a large amount of biological protein-protein association 
data, which can be accessed by uploading the fasta file. The PPI information is in the 
form of “2AKE-A” id, consequently, LPI-MFF used the mapping method from the 
String database to map. In addition, the PPI information was in the form of a con-
fusion matrix [28]. Each value in the confusion matrix represented the interaction 
strength between two proteins, and the matrix’s dimensions were 400 by 400. Addi-
tionally, the PPI information was expressed as a 400–400 matrix:

High-dimensional feature vectors are affected by the curse of dimensionality, therefore, 
LPI-MFF employed the Principal Component Analysis (PCA) [29] method to reduce the 
dimensionality of the confusion matrix to 100 dimensions for each eigenvector. Accord-
ingly, we used the 100-dimensional “0” as PPI feature data for proteins whose PPI cannot 
be accessed through the String database. Finally, a 400*100-dimensional eigenvector was 
used to represent the PPI information.

Sequence features

LPI-MFF also employed feature encoding methods, IK and ICT, for RNA and protein 
sequences, respectively, which transformed each information type into a fixed-length 

(1)PPI =

1.01,1 0.01,2 0.51,3 . . . 0.01,20
0.02,1 1.02,2 0.02,3 . . . 0.72,20
0.23,1 0.03,2 1.03,3 . . . 0.93,20
. . . . . . . . . . . . . . .

0.020,1 0.620,2 0.020,3 . . . 1.020,20

Fig. 1 The flowchart of LPI-MFF
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feature vector. RNA sequences are composed of four distinct classes of nucleotides: 
A, U, C, and G. LPI-MFF used the IK to encode RNA sequences from 1-mer to 4-mer, 
which means that in addition to calculating the frequency information of 4-mer, we 
also calculate the frequency information of 1-mer, 2-mer, and 3-mer, resulting in the 
acquisition of a 340(41 + 42+43+44)-dimensional feature vector representing RNA 
sequence information. The RNA sequence data was encoded as:

where, fn represents the frequency of each nucleotide combination, and i represents the 
number of nucleotides in each nucleotide combination. Accordingly, this method super-
imposed the feature information of 1-mer, 2-mer, 3-mer and 4-mer. Protein sequences 
are typically composed of twenty different amino acids. Using the volume characteristics 
of amino acids and side chains, we categorized them into seven distinct groups: {A, G, 
V}, {I, L, F, P}, {Y, M, T, S}, {H, N, Q, W}, {R, K}, {D, E}, and {C}. In our study, the ICT 
coding method of protein sequence changed from 1-mer to 3-mer, which means that in 
addition to calculating the frequency information of 3-mer, we also calculated the fre-
quency information of 1-mer and 2-mer, allowing for the acquisition of a 399(71 + 72+73

)-dimensional feature vector representing protein information. The information on the 
protein sequence is expressed as:

where, fn represents the frequency of each amino acid combination, and i represents the 
number of amino acids in each amino acid combination. The method superimposes the 
feature information of 1-mer, 2-mer and 3-mer.

Thus, combining the 340-dimensional RNA sequence feature vector and the 
399-dimensional protein sequence feature vector results in a 739-dimensional 
sequence feature vector. And we add the pseudocode of the IK and ICT to the Addi-
tional file 1.

Physicochemical properties features

Using the Pse-in-One 2.0 tool [30], LPI-MFF extracted the physicochemical information 
of IncRNA and protein. This method is more flexible than Pse-in-One [31] and included 
23 new pseudo-component modes and several new feature analysis techniques.

For RNA, LPI-MFF adopts the “DACC” mode in Pse-in-One 2.0, and selects 22 kinds 
of physicochemical properties, contain content information (Adenine content, GC con-
tent, Purine content, Keto content, Cytosine content, Thymine content, Guanine con-
tent), dynamic information (Tilt, Twist, Roll, Rise, Shift, Slide), energy information 
(Stacking energy, Entropy, Entropy 1, Enthalpy, Enthalpy 1, Free energy, Free energy 1), 
Characteristics (Hydrophilicity, Hydrophilicity 1). For proteins, LPI-MFF used the “PC-
PseAAC” mode in Pse-in-One 2.0 and selects hydrophobicity, hydrophilicity, and mass 
as physicochemical properties. The selection of these physicochemical properties was 
based on their effectiveness in previous RPI prediction methods. Since the feature vector 
representing RNA physicochemical properties had 22 dimensions and the feature vector 

(2)RIK =
[

∑4
i=1f1, ..., f4i

]

(3)PICT =
[

∑3
i=1f1, f2..., f7i

]
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representing protein physicochemical properties had 3 dimensions, combining the two 
feature vectors yielded physicochemical properties feature vectors with 25 dimensions.

Secondary structure features

The secondary structure of RNA and proteins usually arises from helical or folded 
sequences. Just like sequence data, secondary structure information cannot be directly 
utilized as input for the prediction model. Therefore, it is necessary to convert the string 
representation of secondary structure information into digital form, and the length 
problem of the secondary structure features must be resolved.

LPI-MFF employed the RNAsubopt method implemented in ViennaRNA Package 2.0 
for RNA secondary structure [32]. RNAsubopt can acquire the top n secondary struc-
tures with the lowest free energy. Since the value of n has little impact on the predic-
tion result, we set n to 5 for the sake of calculation. In addition, its secondary structure 
output is a string consisting of “.” and “(“ or ”)”. To ensure that the feature vectors of RNA 
secondary structure have the same dimension, we replaced “.” with “0” and “(“ or ”)” with 
“1”, and then combine to obtain a new feature vector. LPI-MFF then applied a Fourier 
transform to the obtained feature vector and selects the first 20 elements of the Fou-
rier series as the new feature vector. LPI-MFF uses the SSpro method implemented in 
SSpro/ACCpro 6 [33] for determining the secondary structure of proteins. The method 
predicts the secondary structure of proteins based on three types of features ( α-helix, β-
sheet, coil), and its protein secondary structure output consists of strings containing “C”, 
“E”, and “H”. Protein secondary structure used a similar method to RNA secondary struc-
ture to solve the secondary structure length problem. LPI-MFF replaces “C” with “0”, “E” 
with “1”, and “H” with 2. Subsequently, the resulting feature vectors were Fourier trans-
formed, and the first 20 elements of the Fourier series were selected as the new feature 
vector. Accordingly, a 20-dimensional feature vector representing the protein secondary 
structure was acquired. The Fourier transform formula is as follows:

where, l represents the length of the feature vector, n represents the number of feature 
vector values, and i represents the number of items for Fourier transformation. This 
method converted the first 20 items of the Fourier series into new feature vectors, and 
the secondary structure information into 20-dimensional feature vectors. Combining 
the feature vectors representing the secondary structure of RNA and protein, LPI-MFF 
had a total of 40-dimensional feature vectors representing the secondary structure.

Feature selection algorithm based on RF

High-dimensional feature vectors can lead to the curse of dimensionality, potentially 
causing overfitting in predictive models and extended calculation times. In order to pre-
vent issues caused by high dimensions, such as overfitting, LPI-MFF used RF [34] to per-
form feature selection based on the Gini index, the variable importance measures (VIM) 
[35] were computed using the Gini index, and the feature vector with the highest VIM is 
selected for input into the prediction model. The Gini index has the following formula:

(4)Xi =
√

2

l

l
∑

n=0

Xn cos

[

π

l

(

n+
1

2

)(

i +
1

2

)]

, i = 0, 1, 2, ..., 19
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where n represents the number of categories, Pik represents the category k on the i node. 
The formula for the VIM is as follows:

where GIi represents the GI of the node, GIl represents the GI of the left subtree of the 
node, and GIr represents the GI of the right subtree of the node. When N decision trees 
are present, the formula for the VIM is represented as follows:

where n represents the number of decision trees, and the final value of VIM is the sum of 
the VIMs of each tree.

Finally, the selected feature vector representing PPI had 320*100 dimensions, the fea-
ture vector representing sequence had 591 dimensions, the feature vector representing 
physicochemical properties had 20 dimensions, and the feature vector representing sec-
ondary structure had 32 dimensions. The hyperparameters for RF are in the Additional 
file 1.

Design of model

Deep learning models are critical in predicting results, particularly in RPI prediction. 
Previous RPI prediction algorithms focused solely on RNA and protein sequence and 
secondary structure features. As an enhancement, LPI-MFF employed not only the 
sequence and secondary structure features of RNA and protein but also their physic-
ochemical property and PPI features. In this study, a parallel architectural model LPI-
MFF with four characteristics was, therefore, developed. In addition to the PPI feature, 
the remaining three feature vectors integrate the protein feature vector with the RNA 
feature vector, thereby strengthening the link between the protein and the lncRNA. 
After feature selection, LPI-MFF inputs the four feature vectors into the three-layer con-
volutional (Conv) layer with a convolution kernel size of 3*3, and then extracts the corre-
sponding features. Most model features are typically fed into a single activation function, 
such as sigmoid or tanh. Therefore, we employed the two activation functions of batch 
normalization (BN) [36] and rectified linear units (ReLU) [37] in order to further accel-
erate the training speed, improve the classification effect, and prevent overfitting. The 
feature vector was first input into the ReLU activation function, which prevented the 
overfitting and enhanced the computing efficiency. Subsequently, the feature vector was 
input into the BN activation function, and the distribution of each hidden layer was nor-
malized to the standard normal, which prevented the gradient from disappearing and 
overfitting. Next, the features that had passed through the activation function layer were 
sent to the pooling layer to eliminate redundant features, reduce the dimension of fea-
tures, and retain relevant features. The feature was then traversed again to the Conv, 
activation function, and pooling layers. We used the concatenate method to obtain a fea-
ture vector for future predictions, as the recently obtained feature vectors correspond to 
distinct features. The as-obtained feature vectors were then input into the Flatten layer 
to make them one-dimensional. The feature vector was then fed into the fully connected 

(5)GI =
∑n

i=1

∑

i �=1Pik2

(6)VIM = GIi − GIr − GIl

(7)VIM =
∑n

i=1VIMi
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(FC) layer of the three layers, where the respective neuron sizes were 16, 8, and 2. Finally, 
the softmax activation function was used as the final step in binary classification. If the 
obtained value was greater than 0.5, it was determined to be an RPI pair, otherwise, it is 
determined to be a Non-LPI pair. In this study, we used backpropagation to minimize 
the loss function and Adam and stochastic gradient descent (SGD) to train each feature 
module. The hyperparameters for LPI-MFF are in the Additional file 1.

Model evaluation

The evaluation index, which compares multiple models using the same evaluation crite-
ria, is a persuasive criterion for comparing our model to other RPI prediction methods. 
In our study, we evaluated the model using five-fold cross-validation, randomly dividing 
the samples into five non-repetitive subsets. Four of these subsets were utilized as the 
training set, while the remaining subset was used as the test set. We repeated this pro-
cess until each subset had been used as the test set. Finally, the average of the five experi-
mental outcomes was used as the result. The seven distinct evaluation indicators used 
for the evaluation criterion were: accuracy (ACC), sensitivity (SEN), specificity (SPE), 
precision (PRE), F1-score (F1), Matthews correlation coefficient (MCC), and area under 
the curve (AUC) [38]. Their formulas are listed below:

where TP is the number of correctly projected positive samples, TN is the number of 
correctly forecasted negative samples, FP is the number of incorrectly predicted positive 
samples, and FN is the number of incorrectly predicted negative samples. Additionally, 
P denotes the positive sample set, N denotes the negative sample set. and |P| denotes the 
number of elements in the positive sample set. Pri shows the rank position of element 
i in the entire set (P+N) based on its anticipated score, from small to large. The final 

(8)ACC =
TP + TN

TP + TN + FP + FN

(9)SEN =
TP

TP + FN

(10)SPE =
TN

TN + FP

(11)SPE =
TN

TN + FP

(12)F1 =
2× PRE × SEN

PRE + SEN

(13)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

(14)AUC =
∑

i∈Pri −
|P|×(|P|+1)

2

|P| × |N |
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result was determined by calculating the outcomes of each evaluation indicator using 
five-fold cross-validation and averaging the values obtained.

Result
The effect of epochs on training and testing results

Epoch is a significant notion that represents the total number of times the model has 
gone over the entire dataset during training. Over the course of several epochs, the 
model progressively adjusts to the training data, enhances its performance, and evalu-
ates its capacity to generalize by examining its verification performance. Properly deter-
mining the number of epochs is a crucial hyperparameter in deep learning, which must 
be fine-tuned based on the particular problem and dataset. We performed tests to assess 
the influence of epoch size on the accuracy and loss in both the training set and test set 
using the RPI1807 dataset. The results are depicted in the Fig. 2.

The effect of various feature combinations on predicted results

In general, the sequence information and secondary structure information of proteins 
and RNAs are the feature information utilized by the majority of LPI prediction algo-
rithms [39]. LPI-MFF included PPI and physicochemical properties information in addi-
tion to RNA and protein sequence and secondary structure information. Therefore, in 
order to determine whether the four features have an effect on the prediction results and 
to select the optimal solution, these four features are combined in 11 combinations, and 
experiments were conducted to evaluate the impact of the different feature combina-
tions on the prediction results. Table 2 depicts the prediction results of various RPI1807 
data set combination permutations.

According to Table  2, the feature combination consisting of PPI and physical and 
chemical qualities had the highest sensitivity, yielding 97.09%. Moreover, the combina-
tion of sequence, secondary structure, and PPI information had the highest F1 and MCC 

Fig. 2 The ROC curve of different feature combinations on RPI1807
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values, 95.51% and 0.9769, respectively. Furthermore, the feature combination consisting 
of sequence, secondary structure, physical and chemical characteristics, and PPI infor-
mation had the highest ACC, SPE, PPV, and AUC values, which were 97.73%, 99.49%, 
99.47%, and 99.55%, respectively. Moreover, PPI information and physicochemical prop-
erties information could improve RPI prediction outcomes when using the four features 
employed in this study. Furthermore, the greater the number of features included in the 
feature combination, the greater the effect. Accordingly, the feature combination con-
sisting of sequence information, secondary structure information, PPI information, and 
physicochemical properties information demonstrated the highest four evaluation indi-
cators out of seven evaluation indicators, correspondingly, this feature combination was 
selected.

In addition, we evaluated the impact of feature combinations on RPI prediction from 
other perspectives, Fig.  3 depicts the ROC curve with different feature combinations 
[40].

As shown in Fig. 3, the AUC value for the combination of sequence information, sec-
ondary structure information, PPI information, and physicochemical properties infor-
mation was the highest, reaching 0.9958. The AUC values of the feature combinations 
containing all feature information are slightly higher than those of the other feature 
combinations, indicating that this feature combination performs the best among the 11 
sets of feature combinations.

The effect of feature selection algorithms on predicted results

Most RPI prediction models contain feature selection algorithms, which aid in 
enhancing computational efficiency, removing redundant data, and preventing over-
fitting. If LPI-MFF did not employ the feature selection algorithm, the dimensions 
of the last four feature fusions would exceed 1000, which is likely to result in dimen-
sional issues such as overfitting. In order to determine the optimal feature selection 
approach for this model, LPI-MFF identified five potential methods: spectral embed-
ding (SE) [41], logistic regression (LR) [42], RF, LASSO and elastic net (EN) [43]. To 
ensure adherence to the concept of a single variable, each feature selection method 
screened 50% of the feature vectors. Except for the change to the method of feature 

Table 2 Comparison of prediction results with different feature combinations on RPI1807

Bold values represent the maximum value of the corresponding evaluation indicator

Combination of Features ACC (%) SEN (%) SPE (%) PPV (%) F1 (%) MCC AUC (%)

PPI,PC 94.17 97.09 91.25 92.94 89.15 0.9465 99.31

Str, PPI 96.40 94.43 98.37 98.34 92.90 0.9633 99.14

Str, PC 97.47 95.72 99.23 99.21 95.01 0.9743 99.52

Seq, PPI 97.39 95.89 98.88 98.85 94.81 0.9735 99.17

Seq, PC 96.87 96.06 97.68 97.66 93.76 0.9685 99.25

Seq, Str 96.87 95.20 98.54 98.50 93.81 0.9682 99.22

Str, PPI, PC 97.56 95.71 99.40 99.39 95.19 0.9751 99.41

Seq, PPI, PC 94.08 96.23 91.93 93.59 88.93 0.9456 98.85

Seq, Str, PPI 97.60 96.10 99.31 99.29 95.51 0.9769 99.52

Seq, Str, PC 97.51 95.89 99.14 99.12 95.08 0.9747 99.48

Seq, Str, PPI, PC 97.73 95.72 99.49 99.47 95.27 0.9755 99.57
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selection, all other model parameters remain unchanged. Four evaluation indicators 
(ACC, SEN, SPE, and MCC) were used in Table 3 to demonstrate the effect of feature 
selection methods on the RPI1807 prediction results.

As listed in Table 3, the SE feature selection algorithm had the highest SPE value, 
reaching 98.62%. Nonetheless, the RF feature selection algorithm has the high-
est ACC, SEN, and MCC values, achieving 97.60%, 95.72%, and 0.9755 respectively. 
Although the SE feature selection algorithm had the highest value of one evaluation 
indicator, the RF feature selection algorithm demonstrated the highest value of three 
evaluation indicators, which were significantly higher than the other four feature 
selection methods, accordingly, the RF feature selection algorithm can be determined 
to be the best. Thus, for this research model, the RF feature selection algorithm is the 
optimal choice.

Fig. 3 The ROC curve of different feature combinations on RPI1807

Table 3 Comparison of prediction results with different feature selection algorithms on RPI1807

Bold values represent the maximum value of the corresponding evaluation indicator

Feature selection 
algorithms

ACC(%) SEN(%) SPE(%) MCC

SE 96.48 94.34 98.62 0.9639

LR 96.31 94.17 98.45 0.9622

RF 97.60 95.72 98.49 0.9755
LASSO 96.95 95.88 98.02 0.9692

EN 91.51 85.93 97.08 0.9098
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In addition, we evaluated the influence of feature selection algorithms on RPI predic-
tion from other perspectives, ROC and PR curves for various feature selection algo-
rithms [44] are shown in Fig. 4.

Figure 4 demonstrates that RF had the highest AUC and AUPR values, with values of 
0.9957 and 0.8333, respectively. Although the AUC value of RF was slightly higher than 
the AUC value of the other four feature selection algorithms, the AUPR value of RF was 
significantly higher than the AUPR value of the other four algorithms. Through the ROC 
and PR curves, it can be seen that, of the five feature selection algorithms, only RF can 
filter out the optimal feature vector and achieve the best RPI prediction performance.

Feature selection ratio’s influence on prediction results

Although the choice of feature selection methodology has an effect on the outcome of 
the prediction, the proportion of features selected has an equal impact. Thus, screen-
ing out feature vectors with the correct proportions can not only prevent dimensional 
issues such as overfitting, but it can also improve the model’s prediction results to some 
extent. In order to investigate the effect of the feature selection ratio on the prediction 
results, LPI-MFF utilized various feature selection ratios [39] and four evaluation indica-
tors (ACC, SEN, SPE, and MCC) to investigate the effect of feature selection ratios on 
the prediction results. Furthermore, LPI-MFF utilized a distinct feature selection ratio 
for the sequence feature vector and a unified feature selection ratio [45] for the PPI, 
physicochemical properties, and secondary structure feature vectors. Table 4 illustrates 
the impact of the feature selection ratio on the prediction results in the RPI1807 dataset 
based on four evaluation indicators (ACC, SEN, SPE, and MCC).

As shown in Table 4,When the feature selection ratio of the sequence feature vector 
was 20% and the feature selection ratios of the PPI, physicochemical properties, and sec-
ondary structure were 80%, the SEN value reached a maximum of 95.54%. Additionally, 

Fig. 4 The ROC curves with different feature selection algorithms on RPI1807, and the PR curves with 
different feature selection algorithms on RPI1807



Page 14 of 22Liang et al. BMC Bioinformatics          (2024) 25:108 

when the feature selection ratio of the sequence feature vector was 80% and the fea-
ture selection ratios of the PPI, physicochemical properties, and secondary structure 
were 80%, the ACC value, SPE value, and MCC value were the highest, reaching 97.5%, 
99.83%, and 0.9750, respectively. This suggests that when the feature selection ratio of 
the sequence feature vector was 80% and the feature selection ratios of the PPI, physico-
chemical properties, and secondary structure feature vectors were also 80%, the predic-
tion result could be significantly improved, and the optimal feature selection ratio for the 
model could be determined.

Impact of feature fusion methods on prediction results

Four distinct feature vectors were utilized in LPI-MFF. Thus, in order to maximize the 
utility of the feature vectors, LPI-MFF utilized feature fusion to combine the four feature 
vectors in order to improve prediction results and enhance operation efficiency. In order 
to determine the best feature fusion [46] method for this model, LPI-MFF selected two 
feature fusion methods, concatenate [47] and stacking, for comparison. Concatenate was 
used to connect four types of information, and fused the connected information, and it 
could alleviate dimensional problems such as gradient disappearance, whereas stacking 
was used to connect four types of information in series, it could effectively combat over-
fitting and does not require too much parameter adjustment. Combine the prediction 
results of the training set and the test set as the new training set and test set respec-
tively. Table 5 illustrates the impact of these two feature fusion strategies on the predic-
tion results for the RPI1807 dataset via four evaluation indicators (ACC, SEN, SPE, and 
MCC).

As shown in Table  5, ACC, SEN, SPE, and MCC values of the concatenate method 
were higher than those of the stacking method, reaching 97.60%, 95.72%, 99.49%, and 
0.9755, respectively, as shown in Table  5. Since the concatenate method yielded the 
highest values for all evaluation indicators, the concatenate method is best suited for this 
model.

Table 4 Comparison of prediction results with different feature selection ratios on RPI1807

Bold values represent the maximum value of the corresponding evaluation indicator

The number after b reflects the proportion of feature screening and retention for sequence, and the number after s 
represents the proportion of feature screening and retention for PPI, physicochemical properties and secondary structure

Feature selection ratio ACC (%) SEN (%) SPE (%) MCC

b2s2_re 97.39 95.46 99.23 0.9734

b2s8_re 97.43 95.54 99.40 0.9738

b8s2_re 97.17 94.95 99.02 0.9711

b8s8_re 97.56 95.29 99.83 0.9750

Table 5 Comparison of prediction results for different feature fusion strategies on RPI1807

Bold values represent the maximum value of the corresponding evaluation indicator

Feature fusion algorithms ACC(%) SEN(%) SPE(%) MCC

Concatenate 97.60 95.72 99.49 0.9755
Stacking 96.41 94.31 98.77 0.9631
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Interpret the model using LIME and SHAP

Biologically relevant feature extraction is not a simple process. Deep learning-based 
training models are commonly referred to as “black boxes” due to their intricate mechan-
ics. Calculating the contribution of each feature in the model is a challenging task. We 
employ the Local Interpretable Model-Agnostic Explanation (LIME) and Shapley Addi-
tive Explanation Algorithm (SHAP) [48] in our research to provide explanations for LPI-
MFF. These methods investigate the contribution of the extracted features by visualizing 
the high contributory features from the whole feature set using machine learning algo-
rithms [49]. The essence of LIME lies in utilizing the initial input features and model 
prediction values to elucidate the prediction value of each individual sample by means of 
the local surrogate model. We randomly selected a feature to perform LIME analysis on 
it, as shown in the Fig. 5, 25% of the forecasts are for non-RPI, and 75% of the forecasts 
are for RPI. Our feature dimension is very high and has been normalized, so the value 
of each feature is very small, and some are in the range of 1.0e− 4, so 0.00 is displayed. 
SHAP is an interpretation technique that draws on game theory ideas. SHAP quanti-
fies the influence of individual features by computing the incremental effect of each fea-
ture in the model, and thereafter elucidates the functioning of the black-box model. The 
Shapley Value in SHAP refers to the marginal contribution. As shown in Fig. 6, SHAP 
analysis shows the top 20 significant features. Every feature is allocated a SHAP value, 
which indicates the distribution of the SHAP value for that the feature and reflects its 
effect in the trained model. Where a red dot signifies a higher feature value and a blue 
dot indicates a lower one. These colors display the direction of the features based on 
their predicted probabilities toward a specific class.

Compared to other RPI predicting methods

In this work, we also compared LPI-MFF with current RPI prediction algorithms using 
the RPI1807 and NPInter datasets. RPITER, IPMiner, EDLMFC, and lncPro [50] were 
the most prevalent RPI prediction methods currently available for comparison. Table 6 
displays the performance of different RPI prediction models on RPI1807 and NPInter as 
measured by seven evaluation indicators (ACC, SEN, SPE, PPV, F1, MCC, and AUC).

Table  6 reveals that in the RPI1807 dataset, RPITER had the highest SEN value of 
97.94%, EDLMFC had the highest F1 value of 95.59%, and LPI-MFF had the highest 
ACC, SPE, PRE, MCC, and AUC values of 97.60%, 99.49%, 99.47%, 0.9755, and 99.57%, 

Fig. 5 LIME analysis of LPI-MFF



Page 16 of 22Liang et al. BMC Bioinformatics          (2024) 25:108 

respectively. Additionally, RPITER had the highest SEN value in the NPInter dataset at 
98.02%, IPMiner had the highest PRE and F1 values at 95.66% and 95.89%, and LPI-MFF 
had the highest ACC, SPE, MCC, and AUC values at 97.67%, 94.83%, 99.47%, and 0.9192, 

Fig. 6 SHAP analysis of LPI-MFF

Table 6 Performance of LPI-MFF and other previous RPI prediction methods on RPI1807 and 
NPInter

Bold values represent the maximum value of the corresponding evaluation indicator

Dataset Method ACC (%) SEN (%) SPE (%) PPV (%) F1 (%) MCC AUC (%)

RPITER 96.87 97.94 95.54 96.50 95.31 0.9369 99.29

IPMiner 96.80 96.51 97.82 95.56 94.87 0.9350 96.61

RPI1807 EDLMFC 93.35 96.62 83.71 94.60 95.59 0.8225 96.89

lncPro 47.34 44.51 50.62 53.24 51.23 − 0.049 50.64

LPI-MFF 97.60 95.72 99.49 99.47 95.27 0.9755 99.57
RPITER 95.35 98.02 92.67 93.05 94.01 0.9083 98.56

IPMiner 95.70 95.64 94.77 95.66 95.89 0.9140 95.77

NPInter EDLMFC 96.14 97.19 92.13 93.63 94.35 0.9135 98.59

lncPro 50.84 73.92 27.60 50.56 48.76 0.0170 51.72

LPI-MFF 97.67 97.58 94.83 93.35 94.41 0.9192 98.81
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respectively. Moreover, both RPITER and EDLMFC had one evaluation index that is the 
highest in the RPI1807 data set, however, LPI-MFF had five evaluation indices that are 
the highest, accordingly, the LPI-MFF method should be used. Similarly, in the NPInter 
dataset, RPITER had one evaluation index that was the highest, IPMiner had two evalu-
ation indices that were the highest, while LPI-MFF had four evaluation indices that were 
the highest, therefore, the RPI prediction effect using the LPI-MFF method was deemed 
superior. Thus, LPI-MFF is a good candidate for LPI prediction since it achieves superior 
prediction results on both datasets.

Prediction of the independent dataset and Mus musculus RPI network

As evident from Table 7, in the RPI1168 dataset, RPITER had the highest SPE and F1 
values, with respective values of 92.15% and 90.56%, IPMiner had the highest MCC 
value, reaching 0.7915, and LPI-MFF had the highest ACC, SEN, PRE, and AUC values, 
with respective values of 84.96%, 92.10%, 79.51%, and 88.97%. In the RPI1168 dataset, 
RPITER had two of the highest evaluation indicators, IPMiner had one of the highest 
evaluation indices, and LPI-MFF had four of the highest evaluation indicators, therefore, 
LPI-MFF was deemed the most effective predictor of RPI. Thus, LPI-MFF is a good can-
didate for LPI prediction because it achieves superior prediction results on RPI1168 and 
has high generalization ability.

In order to further test the generalization of LPI-MFF, we selected 77 Mus musculus 
RPI pairs from the NPInter v3.0 database [51], including 15 proteins and 36 lncRNAs, 
and tested the Mus musculus dataset using the LPI-MFF trained by RPI1807. As illus-
trated in Fig. 7, the ellipse represents lncRNA, the rectangle represents protein, the solid 
black line represents the accurate prediction of RPI by LPI-MFF, and the dashed red 
line represents the inaccurate prediction of RPI by LPI-MFF. As depicted, there were 70 
black solid lines and 7 red dotted lines in the lncRNA–protein network of this study. This 
suggested that LPI-MFF correctly identified 70 pairs of RPIs and incorrectly predicted 7 
pairs of RPIs, for a prediction accuracy of 90.91%, indicating that LPI-MFF’s prediction 
of the Mus musculus RPI network is still good. Additionally, the prediction of the RPI 
network enabled us to comprehend the role of RNA and protein in biological processes 
and conduct more in-depth research on the process of life processes [52], which was 
advantageous for drug discovery and cancer research. In this study, the protein Q8VE97, 
which interacted with the greatest number of lncRNAs in the lncRNA–protein network, 
inhibited the splicing of MAPT/Tau exon 10 by regulating the selection of alternative 
splicing sites during pre-mRNA splicing [53]. The protein P84104, which interacted with 

Table 7 Performance of LPI-MFF and other previous RPI prediction methods on RP1168

Bold values represent the maximum value of the corresponding evaluation indicator

Dataset Method ACC (%) SEN (%) SPE (%) PPV (%) F1 (%) MCC AUC (%)

RPITER 69.82 54.81 92.15 70.10 90.56 0.4451 57.14

IPMiner 77.43 73.55 88.17 69.28 56.14 0.7915 77.20

RPI1168 EDLMFC 81.46 87.85 76.14 72.39 84.15 0.6894 85.27

lncPro 61.20 51.14 69.25 63.97 50.67 0.4115 46.12

LPI-MFF 84.96 92.10 77.24 79.51 85.97 0.7214 88.97
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a single lncRNA, n690, is a splicing factor that promoted exon inclusion during alterna-
tive splicing [54]. Consequently, the prediction of these RPIs by LPI-MFF contributed 
to the study of alternative splicing and site replacement mechanisms. Furthermore, by 
making predictions within the lncRNA–protein network, we can gain a deeper under-
standing of the biological processes and functions of RNA-binding proteins.

Discussion
Previous RPI prediction results were obtained through complex mathematical calcula-
tions. Consequently, the field of RPI forecasting necessitates a faster solution. In recent 
years, numerous RPI prediction calculation methods utilizing machine learning or deep 
learning have been introduced. These methods expedite the calculation process and 
reduce associated costs. This study therefore proposes LPI-MFF, a prediction method for 
the RPI based on deep learning. In this study, a comparative experiment was conducted 
to determine the effect of 11 feature combinations on the predictive performance of the 
model. Ultimately, PPI features, sequence features, secondary structure features, and 
physicochemical properties were used to predict. Use improved IK to extract sequence 
information of lncRNA, ICT to extract sequence information of protein, Fourier trans-
form to extract secondary structure information of lncRNA and protein, the String 
database mapping method to obtain PPI information, and PC-PseAAC and DACC in 
the Pse-in-One tool to extract the physicochemical properties information of lncRNA 
and protein, respectively. Appropriate feature coding strategies are used to fully express 
distinct feature information, thereby increasing the evaluation index of model predic-
tion RPI. Comparing the impact of various feature selection strategies on the accuracy of 
predictions led us to conclude that RF is the most effective feature selection strategy for 

Fig. 7 Prediction of RPI in Mus musculus dataset by LPI-MFF
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this research model. Concurrently, we also conducted comparison experiments on the 
effect of the feature selection ratio of the feature vector on the prediction results, and we 
concluded that the model has the best predictive effect when the feature selection ratio 
of all feature vectors is 80%. In order to maximize feature vector utilization and improve 
calculation performance, we perform feature fusion on the four types of feature vectors 
present in this research. In this study, a parallel architectural model with four charac-
teristics is designed. The four feature vectors are fused via the convolution layer, acti-
vation function layer, and pooling layer, respectively, prior to being fed to the softmax 
activation function via the fully connected layer for binary classification. On the basis 
of studies comparing LPI-MFF to other RPI prediction methods, we conclude that LPI-
MFF has superior performance and the majority of assessment indicators are superior 
to those of existing RPI prediction methods. Despite the fact that this study has yielded 
relatively satisfactory results, there are still some shortcomings. For instance, the data 
set used for comparative experiments is comparatively small, the proportion of feature 
selection is not more specific, and the network structure is still overly complex.

Conclusion
RPI prediction is essential to the study of physiological processes and the function 
of RNA and proteins in  vivo. There have been numerous RPI prediction methods 
based on deep learning or machine learning in recent years. This study developed a 
deep learning-based LPI-MFF model for predicting RPI. First, four types of feature 
information, including PPI features, sequence features, secondary structure charac-
teristics, and physicochemical attributes, are compiled. Second, encode the pertinent 
RNA feature information or protein feature information using mapping, ICT, DACC, 
PC-PseAAC, and Fourier transform, six feature encoding methods. Use RF as the 
feature selection algorithm of LPI-MFF, use RF to execute feature selection based on 
the Gini index, use the Gini index to calculate VIM, and choose the feature vector 
with the highest VIM to obtain the optimal feature vector. Utilize the concatenate 
feature fusion algorithm to perform feature fusion on the four feature vectors, maxi-
mize the use of feature vectors, and improve computational efficiency, and use the 
softmax activation function for binary classification. In this study, the accuracy of the 
LPI-MFF model was 97.60%, 97.67%, and 84.96% for RPI1807, NPInter, and RPI1168 
respectively, which were all superior to other methods. The lncRNA–protein net-
work achieved an accuracy of 90.91%, which is also quite good. Overall, LPI-MFF is 
a superior RPI prediction method. However, our model still has inherent limitations 
that require ongoing improvement for more precise predictions. Given the opportu-
nity, we will expand the RPI dataset and curate higher-quality RPI and non-RPI pairs. 
Additionally, future comparative experiments will involve a larger set of feature selec-
tion ratios, as the current number is relatively small. Moreover, the network structure 
of our model is intricate and distinctive. To enhance the accuracy of our RPI predic-
tion model, we plan to reconfigure the network topology, eliminate redundant mod-
ules, and integrate a state-of-the-art deep learning technique.
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