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Abstract 

Background: Viral infections have been the main health issue in the last decade. 
Antiviral peptides (AVPs) are a subclass of antimicrobial peptides (AMPs) with sub-
stantial potential to protect the human body against various viral diseases. However, 
there has been significant production of antiviral vaccines and medications. Recently, 
the development of AVPs as an antiviral agent suggests an effective way to treat virus-
affected cells. Recently, the involvement of intelligent machine learning techniques 
for developing peptide-based therapeutic agents is becoming an increasing interest 
due to its significant outcomes. The existing wet-laboratory-based drugs are expensive, 
time-consuming, and cannot effectively perform in screening and predicting the tar-
geted motif of antiviral peptides.

Methods: In this paper, we proposed a novel computational model called Deep-
stacked-AVPs to discriminate AVPs accurately. The training sequences are numerically 
encoded using a novel Tri-segmentation-based position-specific scoring matrix (PSSM-
TS) and word2vec-based semantic features. Composition/Transition/Distribution-
Transition (CTDT) is also employed to represent the physiochemical properties based 
on structural features. Apart from these, the fused vector is formed using PSSM-TS 
features, semantic information, and CTDT descriptors to compensate for the limitations 
of single encoding methods. Information gain (IG) is applied to choose the optimal 
feature set. The selected features are trained using a stacked-ensemble classifier.

Results: The proposed Deepstacked-AVPs model achieved a predictive accuracy 
of 96.60%%, an area under the curve (AUC) of 0.98, and a precision-recall (PR) value 
of 0.97 using training samples. In the case of the independent samples, our model 
obtained an accuracy of 95.15%, an AUC of 0.97, and a PR value of 0.97.

Conclusion: Our Deepstacked-AVPs model outperformed existing models with a ~ 4% 
and ~ 2% higher accuracy using training and independent samples, respectively. 
The reliability and efficacy of the proposed Deepstacked-AVPs model make it a valu-
able tool for scientists and may perform a beneficial role in pharmaceutical design 
and research academia.
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Introduction
Viruses are serious and ubiquitous pathogens that cause several high rates of infections 
and mortality in humans and animals [1]. Viral infections can affect the species for a 
longer time because of their different variations in transmission, genetic variations, and 
effective survival in the host cells [2]. Recently, the prevalence of zoonotic viruses such 
as Zika, Ebola, and the novel SARS-COV-2 causes chronic and killer diseases [3]. Pres-
ently, hundreds of different antiviral medications have been developed for treating other 
families of viruses, i.e., HIV, rhinoviruses, herpes, hepatitis B–C, influenza, etc. [4]. The 
prevention of viral diseases is challenging owing to inadequate antiviral therapies and a 
lack of state-of-the-art viral pathogens. Traditional medications suffer from inefficiency, 
high side effects, and time-consuming procedures [5]. Antiviral peptides (AVPs) are con-
sidered one of the key classes of antimicrobial peptides used in developing novel pep-
tide-based powerful therapeutics for treating different viral infections. AVPs are small 
peptides that can be synthetically obtained using twenty amino acids or chemical clus-
ters into natural peptide samples [6]. AVPs have numerous characteristics, i.e., low side 
effects, high efficiency, low molecular weight, and low toxicity. It can be widely applied 
in producing innovative antiviral therapeutics [7].

With huge the growth in genomics data in recent decades, computational intelli-
gence-based data-driven have attained great attention and are considered an alter-
native for predicting various therapeutic functions in bioinformatics. Consequently, 
different machine-learning models have been developed for predicting antiviral 
peptides (AVPs). Initially, Thakur et  al. developed the AVPpred model by applying 
amino acid composition, sequence alignment, physiochemical properties, and motif 
search for feature formulation [8]. The extracted spaces were trained via the SVM 
model using a tenfold cross-validation test. AVPpred was trained and validated using 
two different datasets. Similarly, Chang et al. employed the random forest model by 
incorporating other sequence encoding methods such as compositional, aggregation, 
secondary structured, and physiochemical properties [9]. Later on, AVP-IC50Pred 
applied four different machine learning classifiers using the binary profile, residue 
composition, and structural features for predicting activity related to AVPs [10]. Fur-
thermore, Nath et  al. applied a stacked-ensemble classifier using alignment scoring 
and an evolutionary descriptors-based feature encoding approach [11]. Lissabet et al. 
developed the AntiVPP 1.0 predictor for AVPs [12]. The residue composition and 
relative frequency-based encoding techniques were applied to obtain features from 
peptide samples. The obtained vector was trained and validated using a random forest 
(RF) model. Similarly, the PEPred-Suite model utilized adaptive formulation meth-
ods for peptide samples for predicting eight different functional types of therapeu-
tic peptides [13]. Whereas the two-level feature selection was employed using the 
ensemble RF model. Similarly, HybAVPnet presented a two-step training approach 
for predicting AVPs [14]. The eighteen different encoding techniques were evaluated 
using light-GBM and neural network models. In the training phase of the HybAVPnet 
model, the predicted probabilities of the step-1 classifiers were provided to the SVM 
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model for evaluating resultant outcomes. Akbar et  al. proposed an ensemble clas-
sifier using the transformed-evolutionary and SHAP feature selection-based model 
for predicting AVPs [15]. Meta-iAVP presented a stacking approach using the pre-
dicted scores of SVM, KNN, GLM, RF, regression trees, and XGboost models [16]. 
Different frequency and amphiphilic-pseudo amino acid compositions were applied 
for the numerical representation of peptide samples. Pang et al. developed the AVPI-
den model for predicting the peptide samples with antiviral activities from six differ-
ent virus families with eight types [17]. Additionally, AVPIden used physiochemical 
properties, frequency, and gapped-compositional features for peptide representation. 
Recently, Lin et al. developed AI4AVP for AVPs by training deep convolutional neural 
networks using a variety of formulation methods [18].

After carefully observing all the above-mentioned studies, we found that each 
model performs a significant and active role in predicting AVPs. However, these 
methods are still suffering from reliability and generalization problems. Most existing 
models applied sequential encoding schemes that only target the residue composi-
tion of the individual amino acids without preserving the sequence order informa-
tion. Some models proposed traditional evolutionary feature descriptors, which are 
very time-consuming to calculate for each protein sample by searching databases. 
Additionally, from a training point of view, the existing models were mainly focused 
on traditional machine learning (ML) based trained models. In contrast, recently, 
training models via ensemble learning outperformed traditional ML models in bio-
informatics. Therefore, we choose a stacked ensemble classifier to effectively train the 
model using diverse feature representations. The main advantages of stacking over 
other ensemble classifiers, such as boosting and bagging, include its ability to capture 
diverse patterns in the input data and leverage the strengths of baseline classifiers. In 
the case of small training datasets, the stacked ensemble models have shown better 
performance than boosting and bagging. Moreover, if the relationships between fea-
tures are complex and cannot easily captured by individual learners, then stacking has 
an edge over other ensemble classifiers.

In this paper, we proposed a stacked-ensemble model,  Deepstacked-AVPs, for pre-
dicting AVPs. The peptide sequences were numerically formulated using Composition/
Transition/Distribution with Transition (CTDT) based physicochemical properties and 
a word2vec-based skipgram model for capturing semantic information using different 
k-mer. Apart from these, we developed a novel  Position-Specific Scoring Matrix tri-
segmentation to form an improved evolutionary matrix named PSSM-TS. A multi-fea-
ture is generated using CTDT, K-mer, and PSSM-TS vectors. The Information gain (IG) 
based feature selection is then employed to gather optimal features for effective predic-
tion of the targeted class. The training process of the proposed model consists of two 
phases. Initially, four base models, i.e., random forest (RF), extra tree classifier (ETC) 
XGBoost (XGB), and Deep neural network (DNN), are applied for training individual 
models.  Then, a stacked ensemble-based meta-classifier is formed through logistic 
regression (LR) using the predicted scores of the individual classifiers [19]. The proposed 
Deepstacked-AVPs performed remarkably by exhibiting superior performance on both 
the training and independent datasets. The complete framework of the proposed Deep-
stacked-AVPs model is depicted in Fig. 1.
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Materials and methods
Dataset description

In bioinformatics, selecting an appropriate training dataset is crucial in develop-
ing an automatic intelligent model [20–22]. The benchmark dataset selection sig-
nificantly impacts a computational model’s performance. The training dataset used 
in this study was initially constructed in the AVPpred predictor [8]. However, while 
preparing the dataset, the unnecessary letters such as ‘B’, ‘U’, and ‘X’ were eradicated 
from the peptide sequences. The used training dataset consists of 951 samples, where 
544 are AVPs and 407 are non-AVPs. Moreover, a similar training dataset has been 
applied for developing various models, such as Chang et al. [9], and AntiVPP 1.0 [12]. 
Additionally, an independent dataset was used to examine the reliability and gener-
alization of our training model. The independent dataset comprised unseen samples 
with 60 AVPs and 60 non-AVPs sequences [23]. The selection of independent samples 
ensured no overlapping between the training and independent datasets to validate the 
overfitting of our model.

Feature extraction schemes

Position‑specific scoring matrix using tri‑segmentation (PSSM‑TS)

Position-Specific Scoring Matrix (PSSM) can represent the evolutionary profile 
of the amino acid sequences. However, a simple PSSM vector cannot calculate the 
sequence ordering information of the local residues [24]. Moreover, the recent com-
putational models observed that local residues of the PSSM descriptor represent the 
high discriminative and reliable features that lead to achieving high predictive out-
comes for different biological problems [25–28]. Hence, we developed a tri-segmen-
tation (TS) concept into a PSSM vector [29]. The PSSM information is divided into 
three segments by row with equal dimension size. Then, each segment is individually 

Fig. 1 The framework of deepstacked-AVPs prediction model
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calculated to capture local evolutionary information. At last, all three segments are 
fused into a single evolutionary vector called PSSM-TS. Each segment Seg-PSSM ( ψ ) 
can represented as follows:

where ψ signifies the no; of slices and Fψ denotes the residue type of twenty natural 
amino acid residues in Seg-PSSM. The Tri-segmentation PSSM (TS-PSSM) can be rep-
resented as:

The dimension vector of the proposed TS-PSSM is 60D.

Word2Vec‑based word embedding

In the word2vec approach, the contextual relationships among words are captured, 
yielding distributed representations that encode various linguistic regularities and pat-
terns [30]. Within the protein-encoding process, the segments of k amino acids, com-
monly referred to as k-mer for treating individual lexical units. Each peptide sequence 
was segmented into k-mer using the window method, which has been widely employed 
in natural language processing [31, 32]. In this work, we used a skip-gram model for 
word representations using different k-mers that are used for the prediction of other 
words within the peptide sentence. In a given corpus, the skip-gram model is used for 
training word vectors of each word. For a word (S(a)) within a sentence, skip-gram can 
predict the probabilities P(S(a+ i)|S(a)) of the neighboring words Si(a− k ≤ i ≤ a+ k) 
depending on the probability of the current word S(a) , as shown in Fig.  2. Whereas, 
every word space represents the residue of the neighboring words. The key objective of 
the skip-gram is to maximize the value of E as follows:

(1)Seg-PSSM(ψ) = [FA
, FC

, . . . , Fψ ]1×20

(2)TS-PSSM = [Seg-PSSM(a)+ Seg-PSSM(b)+ Seg-PSSM(c)].

Fig. 2 The architecture of the skip-gram model
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where the parameter k represents the window size,  S(a+ i) ( −k ≤ i ≤ k ) signifies the 
K-words neighboring to the current word S(a) , and the term  n shows the total number 
of words.

As mentioned above, that word2vec can capture the residue relationships of the 
words within the amino acid sample and preserve structural information, we considered 
the k-mers as “words”. Finally, from each sample, a word embedding vector of 100D is 
extracted using the skip-gram model.

Composition/transition/distribution with transition (CTDT) 

CTDT is a physiochemical properties-based global distribution method of the peptide 
sequences [33]. CTDT represents the structural and biochemical characteristics of pro-
tein sequences based on different types of groups. The last T in CTDT signifies the tran-
sition among three groups of amino acid properties: hydrophobic, polar, and neutral. 
More specifically, the occurring frequencies of these groups are computed [34, 35]. For 
two adjacent amino acid residues (r, s) , the CTDT features can be calculated as follows:

where the residue pairs (r, s) ∈ (positive, neutral), neutral, negative , negative, positive  , 
N (r, s) and N (s, r) represents the frequency counts composed of “ r, s ” and “ s, r ” within 
the protein peptide sequence. The analysis was performed using thirteen distinct physic-
ochemical properties. The resultant CTDT feature vector comprises 39 features against 
each sample.

Information gain

In the feature engineering phase, redundant features can affect the predictive accuracy 
of a training model [36]. Therefore, feature selection techniques are commonly employed 
to identify and choose the most relevant features from the extracted space for improving 
the classification rates with minimum computational cost [37, 38]. In this work, we used 
information gain (IG) as a feature selection for identifying the most significant features 
by examining the reduction in entropy by splitting training samples based on a value of a 
random attribute [39]. The high IG value represents the low entropy.

For given training samples denoted by “ S ” with attributes represented by A , the IG 
( S,A ) associated with the attribute A can be defined by reducing the entropy observed 
within the training samples when the attribute A is considered [40]. Which can be 
expressed mathematically represented as follows:

H(S) represents the entropy of the training samples S , and H
(

S
/

A
)

 signifies the 
entropy of the training samples S under the condition that the attribute A has been 

(3)E =
1

n

n
�

a=1





�

−k≤i≤k ,i �=0

log2P(S(a+ i)|S(a))





(4)CTDT (r, s) =
N (r, s)+ N (s, r)

N

(5)IG(S,A) = H(S)−H
(

S
/

A
)
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observed. Which is particularly relevant in the classical scenario of a dichotomous 
classification:

and

here the notation Values(A) denotes the collection of all possible values associated with 
the attribute A . Additionally, Sv stands for the partition of the training dataset that cor-
responds to the specific value “V” of the attribute A . The entropy of this partition is cal-
culated by H(Sv) . The vertical bars (|.|) represent the cardinality operator [40].

In this work, 89 optimal features were selected using IG-ranking-based feature selec-
tion. Where the ranking of the features was established in descending order. This rank-
ing assigns the highest priority to the most substantial Information gain attribute.

UMAP‑based features visualization

To demonstrate the effectiveness of the extracted features of our proposed model, we 
employed a Uniform Manifold Approximation and  Projection (UMAP) based statisti-
cal visualization technique [41].UMAP is a data visualization approach that is used to 
preserve not only local structural information but also global structural relationships. 
In data visualization, the samples of two classes as represented as two different clusters. 
Which is useful for comprehending the relationship among samples of different classes 
used for discrimination of peptides. In this study, we performed the UMAP visualiza-
tion of the extracted features of the training samples i.e., CTDT, Word2Vec, PSSM-TS, 
Hybrid features, IG-based optimal features, and independent samples as shown in Fig. 5.

Model architecture of deepstacked‑AVPs model

The Stacking model used in this study mainly comprises two phases [42]. Initially, the 
baseline models, namely ETC [43], RF [44], XGB [28], and DNN [45], are trained based 
on the extracted vectors from the training dataset. The grid search approach is employed 
to select the optimal model training parameters. In the case of the DNN model, two 
dense layers were added after the input layer to facilitate feature matrix extraction. The 
Rectified Linear Unit (ReLU) activation function is also applied to deal with nonlinearity 
in the two dense layers. The Adam and early stop and dropout strategies are also used to 
reduce the risk of overfitting.

In the second phase, a meta-classifier is formed using logistic regression (LR) by com-
puting the predicted probability scores of the baseline classifiers. The probability scores 
are in the range of (0–1). Where a threshold of 0.5 is used to define the predicted class 
of a protein sample, i.e., the probability > 0.5 will predict label 1, and < 0.5 will predict 
label 0 class. Implementing the LR-based stacked-ensemble classifier has significantly 
increased predictive rates compared to individual baseline models.

(6)H(S) = −
2

∑

l=1

pllog2pl

(7)H
(

S
/

A
)

=
∑

v∈Values(A)

|Sv|
|S|

H(Sv)
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Experimental configuration

Our proposed model is established through the utilization of Intel (R) Xeon(R) @ 
3.3 GHz, providing a RAM of 64 GB. For code implementation, we utilized the Windows 
10 operating system and Python 3.10.6 as the programming language. Additionally, sev-
eral Python libraries were used in the model training process.

Performance evaluation
In bioinformatics and applied machine learning, various performance parameters are 
utilized to assess the predictive capabilities of the training models [46, 47]. Mostly, in 
binary class problems, a confusion matrix is formed to store the prediction outcomes 
of the training models, i.e., True Positives (TP), True Negatives (TN), False Positives 
(FP), and False Negatives (FN). The predictive accuracy is often the primary metric for 
model effectiveness assessment [48, 49]. However, to comprehensively evaluate a model, 
we employed the following performance evaluation metrics to assess our model more 
rigorously.

where Acc, Sn, Sp, and MCC represent the accuracy, sensitivity, specificity, and Mat-
thew’s coefficient correlation, respectively.

Results and discussion
In this study, we evaluated our model using a fivefold cross-validation test, where data 
in each fold was randomly selected [50]. Additionally, to achieve reliable results from 
the random distribution of data among the folds, we selected the mean value of the fold-
CV test by repeating the stratified loop procedure 50 times [50, 51]. In the below sub-
sections, we will thoroughly discuss the classification outcomes of the individual and 
ensemble training models before and after applying feature selection.

Prediction analysis of classification models using training samples

The prediction results of the individual feature vectors using training peptides are given 
in Table 2. We mentioned above that we employed three different extraction methods, 
CTDT, word2vec, and PSSM-TS to numerically transform the peptide samples. At first, 
the extracted vectors were evaluated individually using four machine-learning models: 
RF, ETC, XGB, and DNN. Whereas, the optimal parameters used for training the indi-
vidual machine-learning models are provided in Table 1. In the case of CTDT features 

(8)Acc =
TP + TN

(TP + TN + FP + FN )

(9)Sn =
TP

(TP + FN )

(10)Sp =
TN

(TN + FP)

(11)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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using individual classifiers, RF and DNN obtained better accuracies of 88.07% and 
88.01% than ETC and XGB, respectively. While the stacked-ensemble model achieved 
an accuracy of 89.90% with Sn of 93.93%, Sp of 86.55%, MCC of 0.80, and AUC of 0.95. 
Evaluating the individual classifiers using the evolutionary vector of PSSM-TS, the ETC 
model reported a predictive accuracy of 87.61%, Sp of 90.91%, and AUC of 0.94. While 
PSSM-TS features using a stacked-ensemble model obtained an accuracy of 89.10% with 
an AUC of 0.96. On the other hand, 3-mer of the skip-gram model using RF achieved an 
accuracy of 88.10%, with Sn of 91.88%, and AUC of 0.92. While the ensemble stacked 
learner using 3-mer reported an 89.91%, with sp of 90.23%, and AUC of 0.96. Finally, 
the hybrid vector (CTDT + PSSM-TS + 3mers) using the stacking model obtained an 
improved accuracy of 92.20%, Sn of 90.75%, Sp of 93.91%, MCC of 0.84, and AUC of 
0.96. In comparison with all training models, the Stacked-Ensemble model consistently 
achieved the highest predictive results, demonstrating its exceptional discriminative 
power.

Prediction analysis of classifiers using information gain based feature selection

In bioinformatics-based machine learning models, feature selection performs a key role 
by proposing a cost-effective computational model. Selecting highly relevant features 

Table 1 Hyper parameters of classifiers learning model

Methods Parameter Optimal value

DNN Activation function ReLu, sigmoid

Learning rate 0.01

Number of hidden layer Neurons 64,32,16

Optimizer Adam

Regularization L1 0.001

Dense layers 3

Dropout 0.25,0.5

RF n_estimators 200

Random_state 42

Max features Auto

Max_depth 32

Bootstrap TRUE

min_samples_leaf 4

min_samples_split 10

XGB n_estimators 200

LEARNING rate 0.001

Max depth 15

reg_lambda 2

Objective function Binary-logistic

Gamma 1

Booster Gbtree

reg_alpha 1

ETC Random_state 42

n_estimators 150

Criterion Entropy

Max_features Sqrt
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from the training vector improves performance [52, 53]. As described in Table  2, the 
hybrid vector achieved higher results than the individual vectors. Hence, we applied 
information gain (IG) for selecting highly relevant features from the hybrid vector. 
The hybrid vector (CTDT + 3-mer + PSSM-TS) contains 199 features with 39 features 
of CTDT, 100 features of 3-mer, and 60 features were obtained using PSSM-TS. After 
employing IG feature selection, only 50 optimal features were selected from the whole 
hybrid vector. Like the training samples, the selected feature vector was also evaluated 
using RF, ETC, XGB, and DNN classifiers. The evaluation results of the chosen vector are 
provided in Table 3, which have effectively shown their contribution by accurately dis-
criminating the targeted classes. In the case of individual learning models using selected 
features, the ETC, XGB, and DNN achieved accuracies of 89.44%, 89.16%, and 89.90%. In 
comparison, the RF training model performed well by reporting an accuracy of 91.28% 
and an AUC of 0.96. Furthermore, the Stacked-Ensemble model boosted the results by 
obtaining an accuracy of 96.60%, with sensitivity, specificity, and MCC values of 94.85%, 

Table 2 Predictive outcomes of the training dataset via different feature descriptors

Encoding method Classifier Acc (%) Sn (%) Sp (%) MCC AUC 

CTDT RF 88.07 90.90 85.71 0.76 0.95

ETC 72.47 79.79 66.38 0.46 0.80

XGB 82.11 78.78 84.87 0.63 0.90

DNN 88.01 83.19 88.89 0.76 0.93

Stacked-ensemble 89.90 93.93 86.55 0.80 0.95

PSSM-TS RF 87.15 83.19 91.91 0.74 0.93

ETC 87.61 84.87 90.91 0.75 0.94

XGB 77.06 83.19 69.69 0.53 0.84

DNN 86.23 89.07 82.82 0.72 0.91

Stacked-ensemble 89.10 87.39 90.90 0.78 0.96

Word2vec (3mer) RF 88.10 84.87 91.88 0.76 0.92

ETC 74.31 78.99 68.61 0.47 0.76

XGB 78.44 76.47 80.81 0.57 0.85

DNN 87.61 84.48 91.90 0.76 0.92

Stacked-ensemble 89.91 89.97 90.23 0.79 0.96

Hybrid vector RF 88.91 85.71 92.92 0.78 0.94

ETC 88.07 83.19 93.93 0.76 0.94

XGB 87.61 88.23 86.85 0.75 0.93

DNN 88.53 93.93 84.03 0.77 0.95

Stacked-ensemble 92.20 90.75 93.91 0.84 0.96

Table 3 Predictive outcomes of the hybrid vector of training samples after applying information 
gain

Dataset Classifier Acc (%) Sn (%) Sp (%) MCC AUC 

Training dataset RF 91.28 90.75 91.90 0.82 0.96

ETC 89.44 89.91 88.81 0.78 0.95

XGB 89.16 88.33 90.10 0.78 0.96

DNN 89.90 88.23 91.91 0.79 0.95

Stacked-ensemble 96.60 94.85 97.35 0.92 0.98
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97.35%, and 0.92, respectively. The performance of the individual features, hybrid fea-
tures, and optimal features using training samples are compared in Fig.  4. The higher 
predictive results show the effectiveness of selecting highly discriminative features via 
IG feature selection. Moreover, the proposed method is validated using an independ-
ent dataset to show its generalization power as provided in Table 4. The instance-based 
AUC and precision-recall (PR) analysis of the training and independent features are pro-
vided in Fig. 3.

Comparison of deepstacked‑AVPs model with existing predictors

To assess the efficacy of our study, we conducted a comparative analysis of our pre-
dictor with existing models using training and independent datasets as shown in 
Table  5. In the case of training samples, the AVPpred model using sequential and 
physiochemical properties based motif descriptors ACC of 85%, with Sn, Sp, and 

Table 4 Predictive outcomes of deepstacked-AVPs model using independent dataset

Classifier Acc (%) Sn (%) Sp (%) MCC AUC 

RF 90.83 90.00 91.66 0.81 0.96

ETC 88.33 86.66 90.00 0.76 0.96

XGB 84.16 85.81 82.50 0.68 0.93

DNN 87.50 81.80 92.30 0.74 0.95

Stacked-ensemble 95.15 96.27 94.91 0.90 0.97

Fig. 3 A ROC analysis of Training samples, B PR analysis of Training samples, C ROC analysis of independent 
samples, D PR analysis of independent samples



Page 12 of 16Akbar et al. BMC Bioinformatics          (2024) 25:102 

MCC of 82.20%, 88.20%, and 0.70, respectively [8]. Similarly, Chang et al. trained the 
RF model using the same training samples using compositional residue encoding, 
aggregation, and secondary structured features [9]. Their model achieved an ACC of 
85.10%, Sn of 86.60%, Sp of 83%, and MCC of 0.70. Meta-iAVP used physiochemi-
cal properties based on computational features by applying the stacking concept 
[16]. The predicted probabilities of six machine learning models were provided to 
the stacking algorithm, and obtained an ACC of 88.20%, Sn, Sp, and MCC of 89.20%, 
86.90%, and 0.76, respectively. Further, the FIRM-AVP predictor obtained the optimal 
ranking based on numerical features using the structural and physicochemical prop-
erties of peptides [54]. FIRM-AVP reported an ACC of 92.40%, Sn of 93.30%, Sp of 
91.10%, and MCC of 0.84. In contrast, our proposed Deepstacked-AVPs model out-
performed by improving the predictive rates of 4.2%, 6.25%, and 0.08 higher ACC, Sp, 
and MCC, respectively. Apart from these, using an independent dataset, the AVPpred 
model obtained 92.50% ACC, with 93.30% sn, 91.70% sp, and MCC of 0.85 [8]. Chang 
et al. reported an ACC of 93.30%, and sp of 95% [9]. Likewise, Meta-iAVP achieved 
an ACC of 94.90%, Sp of 98.30%, and MCC of 0.90 [16]. Furthermore, AntiVPP 1.0 
using independent samples achieved an ACC of 93%, Sp of 97%, and MCC of 0.87 
[12]. While our proposed Deepstacked-AVPs model surpassed the existing model, by 

Table 5 Performance comparison of deepstacked-AVPs method with existing models

Dataset Predictor Acc (%) Sn (%) Sp (%) MCC

Training dataset AVPpred [8] 85.00 82.20 88.20 0.70

Chang et al. [9] 85.10 86.60 83.00 0.70

Meta-iAVP [16] 88.20 89.20 86.90 0.76

Chowdhury et al. [54] 92.40 93.30 91.10 0.84

Deepstacked-AVPs 96.60 94.85 97.35 0.92

Independent dataset AVPpred [8] 92.50 93.30 91.70 0.85

Chang et al. [9] 93.30 91.70 95.00 0.87

Meta-iAVP [16] 94.90 91.70 98.30 0.90

AntiVPP 1.0 [12] 93.00 87.00 97.00 0.87

Deepstacked-AVPs 95.15 96.27 94.91 0.90

Fig. 4 Comparison of individual, hybrid, and optimal vectors using A Training samples, B Independent 
samples
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achieving higher prediction outcomes with 2.17% ACC, 9.27% Sn, 2.91% Sp, and 0.03 
improvement in MCC value (Figs. 4, 5).

Discussion
AVPs are one major class of antimicrobial peptides used for developing novel peptide-
based therapeutics to treat various viral infections. Existing traditional laboratory-based 
methods are laborious and inefficient due to their limited reliability. In this study, we 
introduce a stacked ensemble model namely, Deepstacked-AVPs, for the accurate dis-
crimination of AVPs and non-AVPs. Initially, four different baseline models were trained 
using PSSM-TS-based improved evolutionary features, CTDT-based physiochemi-
cal properties, and word2Vec-based features. The predicted probability scores of the 
baseline models are provided for logistic regression to form a stacked ensemble model. 
To further investigate the extracted features, the hybrid vector is examined using the 
stacking model, resulting in an ACC of 92.20%, Sp of 93.91%, and AUC of 0.96. The 
hybrid vector has shown substantial improvement in terms of all evaluation parameters 
by compensating for the weakness of the individual vectors as shown in Fig.  6. How-
ever, to develop a fast training model with minimal computational cost, IG is applied 
to choose 89 optimal features. The optimal feature set has shown further improvement 
by achieving an ACC of 96.60%, Sp of 97.35%, and AUC of 0.98. Our proposed model, 
using training samples, reported 4% higher ACC, 6% higher Sp, and 8% higher MCC 
than existing state-of-the-art predictors, as provided in Table 5. The generalization and 
overfitting of the Deepstacked-AVPs model is validated using independent samples and 
reported improved ACC, Sn, Sp, and MCC of ~ 2%, 9%, 2%, and 3%, respectively. Hence, 
representing the peptide samples using a multi-informative vector, specifically formu-
lating segmented local features using the novel PSSM-TS approach, and leveraging the 
powerful training abilities of the stacked-ensemble model significantly improved the 

Fig. 5 UMAP visualization of training samples using A CTDT, B Word2Vec, C PSSM-TS, D Hybrid features, E 
IG-based optimal features and F independent samples
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performance. Hence, the improved predictive outcomes of the stacking training model 
are due to the diversity of applied baseline classifiers. Moreover, the stacking model 
provides flexibility in selecting baseline models, and its generalization capabilities help 
in mitigating model overfitting, leading to producing robust and reliable predictions. 
However, the stacking model still suffers from several issues such as the risk of model 
dependency, computational cost, and hyperparameter tuning. In the future, we will 
focus on handling these issues.

Conclusion
In this paper, we developed a Deepstacked-AVPs model to predict antiviral peptides 
effectively. Keeping the limitations in the existing feature formulation techniques, we 
numerically represented the amino acid samples using word2vec-based word embed-
ding, PSSM-TS-based improved evolutionary features, and CTDT-based physiochemi-
cal properties methods. A multi-informative vector is formed by fusing Word2vec, 
PSSM-TS, and CTDT vectors. An information gain scheme is applied to develop a 
computationally-effective model by choosing the optimal feature space from the hybrid 
vector. Subsequently, the Deepstacked-AVPs meta-model was trained using the prob-
ability scores of the individual classifiers. The Deepstacked-AVPs model exhibits con-
sistency and stability by achieving superior accuracy of 96.60% on the training samples 
and 95.15% on the independent dataset. Our model has outperformed state-of-the-art 
methods and will significantly contribute to antiviral peptides-related drug design and 
the pharmaceutical industry.
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