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Introduction
In the complex cellular environment, proteins regularly interact with each other, form-
ing the foundation for numerous vital biological functions. These interactions, known as 
protein–protein interactions (PPIs), serve as regulatory hubs for a wide range of cellular 
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processes, including gene expression, cell signaling, and metabolic pathways. To iden-
tify and analyze PPIs, various experimental methods have been developed, ranging from 
high-throughput to low-throughput approaches. Nevertheless, these techniques are 
often hindered by their high cost, time-intensive nature, and limited accuracy. The field 
of computational biology has witnessed the emergence of various models for predicting 
PPIs. These computational approaches have the potential to infer a large number of PPIs 
with a high degree of accuracy. A substantial portion of these models is focused on pre-
dicting PPIs solely through protein sequences. Almost all of them fall into three broad 
categories, namely model using (i) deep learning solely on protein sequence representa-
tions; (ii) deep learning on representations of sequences fused with other information, 
e.g., 3D structure, network topology, etc.; (iii) conventional machine learning.

Early-stage models of the first category often utilized deep convolutional neural net-
works and multilayer perceptrons with amino acid embeddings. For example, DPPI [1] 
employed a deep Siamese-like convolutional neural network with random projection 
and data augmentation. It utilized PSI-BLAST [2] to extract evolutionary information 
from protein representations as input. DPPI was known as the first deep learning model 
to achieve state-of-the-art performance in binary PPI prediction. Another approach, 
PIPR [3], utilized a Siamese architecture and a residual recurrent convolutional neural 
network (RCNN) to capture local and sequential features. This provided an automatic 
multi-granular feature selection mechanism, leading to state-of-the-art performance not 
only in binary prediction but also in multi-class and affinity prediction. D-SCRIPT [4] 
is a deep-learning-based model that combines a convolutional neural network (CNN) 
with a pre-trained language model for the extraction of rich feature representations for 
each protein. FSNN-LGBM [5] is a hybrid classifier that combines a functional-link-
based neural network (FSNN) with a LightGBM boosting classifier. DeepTrio [6] uses a 
masked multiscale CNN architecture with multiple parallel filters to capture multiscale 
contextual information from protein sequences.

Regarding the second category, some advanced PPI prediction models have been recently 
introduced. TAGPPI [7] incorporates sequence features, structural information predicted 
from AlphaFold, and proteins’ 3D structure features extracted with a graph representation 
learning method on contact maps. HNSPPI [8] adopts a feature fusion strategy, combin-
ing network topology and sequence information for comprehensive feature extraction. It 
employs a simple classifier for prediction, making it lightweight and efficient. Graph-BERT 
[9] utilizes a language model-based embedding SeqVec to represent protein sequences and 
a graph convolutional neural network with the training strategy of subgraph batches using a 
top-k intimacy sampling approach. The Ensemble Residual Convolutional Neural Network 
(EResCNN) [10] model integrates multiple feature extraction techniques with a Residual 
Convolutional Neural Network (RCNN) for predicting protein–protein interactions. It 
employs an ensemble learning framework that combines RCNN with a tree-based machine 
learning method, significantly enhancing predictive performance. The MARPPI model [11] 
is a multi-scale residual network with a dual-channel and multi-feature approach designed 
for predicting Protein–Protein Interactions (PPIs). It leverages Res2vec for association 
information between residues, utilizing pseudo amino acid compositions, auto-correlation 
descriptors, and multivariate mutual information for comprehensive feature extraction. 
Topsy-Turvy [12] is a model based on D-SCRIPT, which combines both sequence-based 
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and global network-based views of protein interactions. The model incorporates pat-
terns from both views during training, resulting in state-of-the-art performance in PPI 
prediction.

In addition to deep learning-based approaches, there are still some conventional machine 
learning-based models (of the third category) recently proposed. These models have dem-
onstrated promising results in predicting binary PPIs. StackPPI [13] combines a rich set 
of biologically relevant feature encodings with a powerful stacked ensemble classifier con-
sisting of random forest, extremely randomized trees, and logistic regression algorithms. 
It achieves high predictive accuracy through advanced feature selection and dimensional-
ity reduction using XGBoost. Subsequently, GcForestPPI [14] is a novel deep-forest-based 
method for predicting PPIs. It leverages an elastic net for optimizing the process of compre-
hensive feature extraction from pseudo amino acid composition, autocorrelation descrip-
tors, and various position-specific scoring matrices. Its ensemble of XGBoost, random 
forest, and extremely randomized trees within a cascade architecture significantly outper-
forms existing predictors.

In this paper, we introduce xCAPT5, a novel model for predicting protein–protein inter-
actions using solely based on protein sequences. xCAPT5 is based on a multi-kernel deep 
convolutional neural network with a Siamese architecture, followed by XGBoost [15]. Fur-
ther, xCAPT5 applies the Protein Language Model ProtT5-XL-UniRef50 [16] to capture 
various aspects of amino acids in a protein sequence, including contextual, physicochemi-
cal, evolutionary, and functional information. By using a deep multi-kernel CNN, xCAPT5 
captures fine-grained details of individual residues and their neighbors through smaller 
kernels, as well as broader structural patterns of the protein sequences through larger 
kernels. A Siamese architecture allows xCAPT5 to capture the interdependency between 
a pair of protein sequences. During the training phase, xCAPT5 refines these representa-
tions, resulting in discriminative latent representations for protein pair interactions. These 
learned representations are then utilized by XGBoost, an advanced machine learning algo-
rithm that employs an ensemble of decision trees to generate interaction probabilities.

Our contributions are four-fold. Firstly, we introduce xCAPT5, a versatile architecture 
that is applicable to a broad range of pair-wise prediction problems, including but not 
limited to the PPI prediction. Secondly, we demonstrate that the incorporation of embed-
dings based on a protein language model can significantly improve the model performance 
over traditional embeddings. Thirdly, xCAPT5 establishes a new benchmark in PPI pre-
diction performance across various datasets, outperforming over ten state-of-the-art exist-
ing related models in various tasks, including cross-validation and generalized inference 
across different species and on independent datasets with unseen data. Finally, xCAPT5’s 
relatively high recall rate in identifying PPIs makes it a powerful tool for investigating inter-
actomes across both well-studied and lesser-known species, underscoring its utility in gen-
eralization tasks and offering a valuable tool for the scientific community engaged in the 
study of protein–protein interactions.

Methods
Model architecture

In this section, we present the general architecture of our xCAPT5 model, which 
consists of two multi-kernel deep convolutional neural networks (CNN) combined 
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within the Siamese architecture and the extremely boosted model XGBoost for the 
sequence-based binary PPIs prediction. The  xCAPT5’s architecture is depicted in 
Fig.  1. Our model generally encompasses five distinct phases: Amino Acids (AA) 
encoding, protein sequence learning, protein pair learning, intermediate phase, and 
prediction. Each phase plays a crucial role in the overall architecture and functional-
ity of xCAPT5.

• The encoding phase encodes protein sequences as amino acid embeddings via the 
ProtT5-XL-UniRef50 Protein Language Model, adeptly encapsulating a broad spec-
trum of protein characteristics, including evolutionary trends, physicochemical 
properties, and structural nuances.

• The sequence learning phase employs two deep convolutional neural networks 
within the Siamese architecture, utilizing varying kernel sizes to meticulously learn 
and simultaneously capture each protein sequence’s local and global features.

• The third phase focuses on understanding the mutual influence between protein 
pairs by concatenating the individual sequence representations and feeding through 
a deep multi-layer perceptron (MLP). It aims to construct a comprehensive represen-
tation of each protein pair’s interactive dynamics.

Fig. 1 Overview of the xCAPT5 Model Architecture, which encompasses five distinct phases denoted by 
the capital letters in the parenthesis. A Input Stage: The model takes two protein sequences as input. B 
Embedding Phase: The ProtT5-XL-UniRef50 Protein Language Model processes the sequences to produce 
amino acid embeddings. C Single Sequence Learning Phase: Subsequent to embedding, each sequence 
traverses through five convolutional modules. Within each module, four layers are executed in sequence: 
the first performs convolutions with kernel sizes 2 (conv 2), 3 (conv 3, not illustrated in the figure), and 4 
(conv 4), generating varying feature maps. These maps are then activated via the Swish function in the 
second layer. The third layer acts on the activation output, applying average pooling (AP) and max pooling 
(MP) to retain the most important features. The fourth layer (Pooling accumulation by depth), functioning 
as an auxiliary pathway, applies global max pooling and global average pooling on activation output across 
different depths, followed by a multi-kernel concatenation (Multi-kernel concat) to create a comprehensive 
feature profile for each sequence. The concatenated outputs are processed through a two-layer feed-forward 
network incorporating fully connected layers (dense), ReLU activation, and drop out. D Sequence Pair 
Learning Phase: The extracted representations from individual sequences are combined and fed into a 
three-layer feed-forward network to learn the refined features of protein pairs. E Intermediate Phase: The 
XGBoost algorithm is employed to train on these integrated features, optimizing the model’s predictive 
capability. F Prediction Phase: The final output is a probabilistic score given by the trained XGBoost model, 
which predicts the interaction potential between the two input protein sequences
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• The fourth phase serves as an intermediate step, creating a post-training learned rep-
resentation to be fed into an auxiliary classifier for augmenting the original neural net-
work’s predictive accuracy.

• The prediction phase leverages XGBoost, trained on the refined representation to 
enhance the model performance through the extreme boosting technique.

By harnessing the power of a protein language model, our xCAPT5 can achieve a 
nuanced understanding of the complex variances inherent in biological sequences, lead-
ing to the generation of more accurate and informative protein representations. Our 
adoption of multi-kernel convolutional neural networks emphasizes that an increase 
in the number of kernels substantially enhances the model performance. Further, our 
research underscores the value of deeper network architectures, which are shown to be 
more effective in identifying intricate protein sequence patterns, thereby elevating the 
accuracy of PPI predictions. The integration of both Global Average Pooling and Global 
Max Pooling within our xCAPT5 model strategically maximizes feature retention, merg-
ing the benefits of these pooling methods for enhancing the performance.

Single protein sequence learning

Following the encoding phase, the protein sequence learning phase in xCAPT5 delves 
into extracting and comprehending the intricate patterns and representations inherent 
within pairs of amino acid embeddings, X and X ′ . To achieve this, xCAPT5 employs a 
Siamese architecture that utilizes deep multi-kernel convolutional neural networks 
(CNNs) combined with the concatenation of global average pooling (GAP) and global 
max pooling (GMP).

The Siamese architecture is employed to process two protein sequences simultane-
ously, capturing their respective patterns and representations in a shared network. This 
architecture facilitates the learning of the latent relationships and interactions between 
the individual protein sequences. Within the Siamese architecture, the deep multi-ker-
nel CNNs serve as the backbone for extracting meaningful features from the protein 
sequences. These CNNs employ multiple convolutional kernels, each with a different 
size k ∈ [2, 3, 4] , to capture both local and global features. The multi-kernel approach 
enables the network to explore and learn diverse spatial relationships and motifs within 
the protein sequences, enhancing its ability to comprehend the complex characteristics 
embedded within them. To extract and capture the intricate information embedded 
within the rich-information amino acid embeddings, xCAPT5 constructs deep CNNs 
corresponding to each kernel size. The deep CNN within xCAPT5 is structured with five 
blocks consisting of  four sequential layers; the number of blocks represent the  level of 
depth (5) in the network.

The first layer (Convolutional Layer) applies a set of filters with kernel size k to the 
input X (the amino acid embeddings) in the first block or the output of the third layer 
from the previous block dth Zd−1

k  with d ∈ [1, 5] , we denote Z0
k := X . These filters cap-

ture different local patterns and interactions, allowing the network to detect important 
features within the protein sequences

(1)Cd
k = Convk(Z

d−1
k ), d ∈ [1, 5]
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The second layer (Swish Activation Layer), introduces non-linearity into the network via 
the swish activation function [17]. This function enables the model to capture intricate 
relationships and dependencies among the learned features effectively. This layer maps 
the feature maps Cd

k  generated by the convolutional operations in the preceding layer to 
a set of activated feature maps Y d

k .

The third layer (concatenation of average pooling (AP) and max pooling (MP)) receives 
the activated feature maps Y d

k  as input and performs both AP and MP operations fol-
lowed by a spatial dropout operation, referred to as SpatialDrop, a regularization tech-
nique that randomly deactivates entire feature maps during training to prevent the 
model from relying excessively on specific spatial locations or local patterns, thereby 
reducing overfitting. This layer effectively combines global context information derived 
from AP and the most discriminative local features derived from MP. Following the 
pooling operations, another spatial dropout operation is applied to further enhance the 
robustness of the model. The output of this layer is a set of pooled and regularized fea-
ture maps Zd

k .

The Fourth Layer (Pooling Accumulation), not a direct layer in the flow of information 
through the deep CNN, instead it functions as a sidechain module. The GMP (Global 
Max Pooling) and GAP (Global Average Pooling) operations are applied to the output 
from the second layer Y d

k  , producing two vectors that represent the most significant 
(GMP) and average (GAP) features. These two vectors are then concatenated to form 
a comprehensive feature map that carries both global and local information about the 
input, which is then subjected to a dropout operation (denoted by Drop) to reduce 
overfitting.

Consequently, the vectors Gd
k  that are generated at each depth level are accumulated in a 

depth-wise manner. This depth-wise accumulation ensures a comprehensive aggregation 
of information from all levels of the network. As a result, the module efficiently manages 
and integrates the critical feature information that has been extracted and processed 
by the previous layers in the deep CNN. This procedure facilitates a depth-wise under-
standing of the hierarchical representations of the protein sequences, thereby enhancing 
the model’s ability to interpret and learn from complex protein sequence data.

After the depth-wise pooling accumulation for each kernel size k, the resulting vectors 
Gk are concatenated. This comprehensive representation, denoted as G, captures a wide 
array of features from the input sequences. The vector G ∈ R

1200 is a fusion of infor-
mation extracted by convolutional layers with different kernel sizes. We apply the batch 

(2)Y d
k = swish(Cd

k ))

(3)Zd
k = SpatialDrop MP Y d

k , AP Y d
k

(4)Gd
k = Drop

([

GMP
(

Y d
k

)

, GAP
(

Y d
k

)])

(5)Gk =

[

G1
k , ...,G

5
k

]



Page 7 of 20Dang and Vu  BMC Bioinformatics          (2024) 25:106  

normalization (BatchNorm) and the dropout operation as follows to make the training 
more stable and generalize better.

Deep CNN with different multiple kernel sizes working together allows the model to 
capture different scales of spatial relationships in the input data. Smaller kernel sizes can 
capture fine-grained, local features, while larger kernel sizes can pick up on more global, 
abstract features. By concatenating the accumulated vectors for each kernel size, the 
model can retain and leverage these diverse scales of features simultaneously. Upon cap-
turing the features from the protein sequences through CNNs, these features embod-
ied in the vector G are directed into a feed-forward block for further refinement and 
transformation. This process entails the application of linear transformations along with 
non-linear activation functions within the feed-forward block. As a result, the model 
is capable of encapsulating the vital characteristics of the protein sequence more effec-
tively, contributing to a reduction in data dimensionality.

The Siamese architecture ensures that both sequences in the pair go through the 
same processing steps with shared weights. This means that for the second sequence 
in the pair, a feature tensor G′ is created in the same way as G for the first sequence. 
Both sequences are independently fed through the same deep multi-kernel CNNs, 
and the extracted features from each are then passed through the same feed-forward 
sub-network. For each sequence, the output from the feed-forward sub-network is 
a vector S ∈ R

186 or S′ ∈ R
186 , depending on whether it’s the first or second sequence 

in the pair. The feed-forward block comprises three consecutive layers, each with 
a fully connected layer followed by a swish activation function and dropout. Here, 
W1 ∈ R

744×1200, b1 ∈ R
744,W2 ∈ R

372×744, b2 ∈ R
372,W3 ∈ R

186×372, b3 ∈ R
186 denote 

the weights and biases of the first, second, and third layer, respectively.

Sequence pair learning

In the sequence pair learning phase, the goal is to capture the dependencies and char-
acteristics that define the interaction between two protein sequences. To achieve 
this, the processed features of the two sequences, denoted as S and S′ , are com-
bined and fed into a multi-layer perceptron (MLP). This phase is crucial for learn-
ing the latent relationships and interactions between the pair, enabling accurate 
prediction of their interaction. To form a composite feature map, the refined fea-
ture vectors S and S′ are concatenated, resulting in a combined feature map 
P =

[

S2, S
′
2

]

∈ R
372 . This composite feature map captures the information from 

both sequences and their potential mutual information. This concatenated feature 
map is then passed through a MLP, which is composed of two densely connected 

(6)G = Drop(BatchNorm([G2,G3,G4]))

(7)S1 = Drop(swish(W1G + b1))

(8)S2 = Drop(swish(W2S1 + b2))

(9)S = Drop(swish(W3S2 + b3))
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layers, each followed by a swish activation function and a dropout operation. Here, 
M1 ∈ R

328×372, c1 ∈ R
328,M2 ∈ R

164×328, c2 ∈ R
164,M3 ∈ R

1×164, c3 ∈ R denote the 
weights and biases of the first-, the second fully connected layer, and the output layer 
respectively.

These equations illustrate the transformations that the combined feature map under-
goes as it is passed through the MLP. The final output of the MLP, represented as p , is 
obtained by applying a sigmoid function to the output of the final dense layer. This sig-
moid function maps the final output to a range between 0 and 1, thus making it inter-
pretable as the probability of interaction between the protein sequence pair.

The intermediate phase

Subsequent to the initial training phase of the neural network xCAPT5, the derived 
representations from xCAPT5 are put into use. Once training is complete, the dataset 
is passed through xCAPT5 and the model’s penultimate layer representations ( P3 rep-
resentation from section “Sequence pair learning”), denoted as P, are extracted. These 
derived representations, P, are then fed into an XGBoost [15], a powerful gradient 
boosting framework, which proceeds to further refine these representations, enhancing 
the model’s ability to capture complex patterns in the data. This additional layer of pro-
cessing serves to enhance the model’s overall predictive power and accuracy.

Prediction

Once the XGBoost model is fully trained, it can be used to predict PPIs. The model out-
puts a score for each protein pair, which can be interpreted as the predicted probability 
of interaction for that pair. A decision threshold is set, often at 0.5, for binary classifica-
tion tasks. If the predicted probability is greater than this threshold, the model predicts 
that the pair of sequences interact. If the predicted probability is lower than the thresh-
old, the model predicts that they do not interact. By leveraging the strengths of both 
deep learning through xCAPT5 and gradient boosting through XGBoost, the model is 
able to effectively learn from the protein sequence data and accurately predict protein–
protein interactions.

Let P = [p1, p2, ..., pn] be the learned representations obtained by passing the train-
ing dataset through the trained neural network xCAPT5, where n is the total number of 
instances in the dataset. Let y = [y1, y2, ..., yn] denote the corresponding labels for these 
instances. For a given dataset D = {(pi, yi)} , (|D| = n, pi ∈ R

m, yi ∈ R) with n instances 
and m features, the prediction process is described as follows:

(10)P1 = Drop(swish(M1P + c1))

(11)P2 = Drop(swish(M2P1 + c2))

(12)P3 = M3P2 + c3

(13)p =
1

1+ e−P3
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where K represents the total number of trees and fk(pi) represents the prediction 
score of the learned representation pi on the kth tree. XGBoost is an ensemble learning 
method which uses the space of regression trees as its base classifiers, so the prediction 
score of the XGBoost algorithm can also be expressed by the above formula, and the 
objective function can be defined as follows:

where l(yi, ŷi) represents the training error of the learned representation pi . In these 
boosting methods, the kth tree is added to complete the tth iteration and the prediction 
function is defined as:

where ŷ(t)i  represents the prediction result of the combined t tree models on the learned 
representation pi , the l(yi, ŷ(t)i ) of the tth tree is a constant, and �(fk) is used to describe 
the complexity of the kth tree as the regularizing term, expressed as follows:

where γ and � are the regularization parameters, and wj is the score of the leaf nodes. 
Then the model can be written as ft(p) = wTq(p),w ∈ R

T for each regression tree. q(p) 
indicates the leaf nodes corresponding to the learned representation p, and T is the 
number of leaf nodes of the tree.

The first derivative gi and the second derivative hi are simultaneously used to approxi-
mate the function using Taylor’s expansion. Then the objective function can be converted 
into the form of the leaf node of the tth tree by combining the above formulas and using the 
equality ft(p) = wTq(p),w ∈ R

T . The solution process is described as follows:

where,

ŷi =

K
∑

k=1

fk(pi)

Obj(θ) =

n
∑

i=1

l(yi, ŷi)+

K
∑

k=1

�(fk)

ŷ
(t)
i =

t
∑

k=1

fk(pi) = ŷ
(t−1)
i + ft(pi)

�(fk) = γT +
1

2
�

T
∑

j=1

w2
j

Obj′(θ) =

n
∑

i=1

l(yi, ŷ
(t−1)
i + ft(pi))+�(ft)+ C

≈

T
∑

j=1

[Gjwj +
1

2
(Hj + �)w2

j ] + γT



Page 10 of 20Dang and Vu  BMC Bioinformatics          (2024) 25:106 

Then, the optimal weights w can be reflected in the first step g and the second step h, and 
obtained as follows:

Model hyperparameters

We use three kernel sizes of 2, 3, 4. For each kernel size, each CNN is designed with a 
depth of 5 (blocks). The network employs a spatial dropout rate of 0.15 and a standard 
dropout rate of 0.05 to prevent overfitting and enhance generalization. We configure the 
hidden layers with 744, 372, and 186 units, while the final multilayer perceptron (MLP) 
after the merge has 328 and 164 units. For the optimization, we employ the Adam opti-
mizer [18] with learning rate 1e-3, Amsgrad setting [19], epsilon 1e-6, and batch size 64.

Regarding the XGBoost, the gbtree booster is used for utilizing gradient boosting 
trees. Regularization is applied via a reg_lambda (L2 regularization term on weights) of 
1 and an alpha value (L1 regularization term on weights) of 1e-7 to prevent overfitting. 
Subsampling of the dataset and column sampling by tree are set at 0.8 and 0.2 respec-
tively. The model utilizes 1000 estimators with a maximum tree depth of 5 to ensure a 
balance between the model complexity and performance. The model also sets a mini-
mum child weight of 2 to avoid overfitting. Furthermore, gamma of 1e-7 is used as a 
minimum loss reduction parameter and eta of 1e-6 as a learning rate to maintain a slow 
and steady model learning process.

Datasets and experiments

In this paper, we did three intensively thorough experiments to evaluate the performance 
of our proposed model, comparing it with recent state-of-the-art PPI prediction models 
on several benchmark datasets. The evaluation metrics used were accuracy, precision, 
recall, specificity, F1-score, and Matthews correlation coefficient (MCC), Area Under 
the Receiver Operating Characteristic curve (AUROC), and Area Under the Precision-
Recall curve (AUPRC).

The first experiment involves evaluating the learning capacity of models by conducting 
five-fold cross-validation on three golden standard datasets. These datasets include the 
Martin H. pylori dataset [20] with 1458 positive pairs and 1365 negative pairs, the Guo 
yeast dataset [21] with 5594 positive pairs and 5594 negative pairs, and the Pan human 
dataset [22] with 27593 positive pairs and 34298 negative pairs.

The second experiment focuses on evaluating the generalized inference capacity of 
models on three tasks: intra-species inference, cross-species inference, and inter-species 
inference. For the training phase, we employs two distinct datasets to ensure a compre-
hensive learning scope: the human Pan dataset, which is characterized by its balanced 
composition, and the human Sledzieski dataset [4, notable for its unbalanced nature. 

Gj =
∑

i∈Ij

gi =
∑

i∈Ij

∂
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i )

Hj =
∑

i∈Ij

hi =
∑

i∈Ij

∂2
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i )

w∗
j = −

Gj

Hj + �
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This strategic dataset choice is designed to test and enhance the models’ generaliza-
tion abilities across varied data distributions. For intra-species evaluation, we use three 
human PPI datasets from Li’s work [23]: HPRD with 3516 PPIs, DIP with 1468 PPIs, and 
HIPPIE HQ (high-quality) with 15489 PPIs, and HIPPIE LQ (low-quality) with 101684 
PPIs. Cross-species evaluation involves testing the models on datasets from other spe-
cies, including mouse, fly, yeast, C. elegans, and E. coli, retrieved from Sledzieski’s data-
sets [4]. These datasets consist of 5000 positive pairs and 50000 negative pairs, except for 
the E. coli dataset, which has 2000 positive pairs and 20000 negative pairs. The inter-spe-
cies evaluation focuses on human-other species PPI test datasets from Yang’s work [24]. 
These datasets are for 8 viruses: HIV (with 9880 positive and 98800 negative pairs), Her-
pes (5966 and 59660), Papilloma (5099 and 50990), Influenza (3044 and 30440), Hepati-
tis (1300 and 13000), Dengue (927 and 9270), Zika (709 and 7090), and Sars-CoV-2 (586 
and 5860 pairs).

The third experiment involves evaluating the learning capacity of xCAPT5 on more 
constrained datasets with different stringent similarities in sequences. Chen’s multispe-
cies dataset [3] is used, with stringent similarity values ranging from 0.01 to 0.4. The 
performance of the models is evaluated using five-fold cross-validation, with higher 
stringent similarity values indicating more challenging datasets.

Our proposed xCAPT5 model is compared with eleven recent state-of-the-art models, 
including PIPR (2019) [3], FSNN-LGBM (2021) [5], GCForestPPI (2021) [14], D-SCRIPT 
(2021) [4], Topsy-Turvy (2022) [12], DeepTrio (2022) [6], TAGPPI (2022) [7], Graph-
BERT (2023) [9], HNSPPI (2023) [8], EresCNN (2023) [10] and MARPPI (2023) [11].

Results
Cross‑validation performance

On the Martin data set (Table 1), xCAPT5 exhibits a consistently superior performance 
across various performance metrics. The model leads with an outstanding accuracy of 
97.27%, significantly 1% higher than its closest competitor, FSNN-LGBM of 96.49%. 
xCAPT5 also excels in other metrics such as precision of 97.30%, specificity of 97.44%, 
F1-Score of 97.19%, and Matthews Correlation Coefficient (MCC) of 94.82%. Interest-
ingly, while HNSPPI shows a marginally better recall score of 99.39%, it falls short in 
other metrics like precision and MCC. This suggests that while HNSPPI is excellent at 

Table 1 5-Fold cross-validation performances of methods on Martin dataset

NA denotes that data is not available. Report with mean and standard deviation. The bold is the best performance in each 
metric

Method Accuracy (%) Precision (%) Recall (%) Specificity (%) F1‑Score (%) MCC (%)

PIPR (2019) 80.84 ± 0.44 81.44 ± 0.69 81.55 ± 0.85 80.32 ± 0.67 81.43 ± 0.45 61.69 ± 0.89

FSNN-LGBM 
(2021)

96.49 ± 0.13 96.03 ± 0.26 97.23 ± 0.04 95.69 ± 0.29 96.62 ± 0.12 92.98 ± 0.25

GcForestPPI 
(2021)

89.26 88.95 89.71 NA 88.33 78.57

MARPPI (2023) 91.80 ± 1.16 90.69 ± 2.68 94.51 ± 1.13 91.22 ± 1.25 NA 83.74 ± 2.32

HNSPPI (2023) 93.21 ± 0.35 88.47 ± 0.53 99.39 ± 0.21 NA 93.59 ± 0.32 93.21 ± 0.35

EresCNN (2023) 87.89 87.84 87.96 NA 87.90 75.81

Our xCAPT5 97.27 ± 0.12 97.30 ± 0.24 97.07 ± 0.20 97.44 ± 0.11 97.18 ± 0.25 94.82 ± 0.20
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identifying true positives, it may not be as well-rounded as xCAPT5, which exhibits high 
performance in multiple metrics simultaneously.

Experimental results on the Guo data set demonstrate that xCAPT5 outperforms all 
compared models by significant margins across multiple key metrics. With a remark-
able accuracy of 99.76%, xCAPT5 eclipses its nearest competitor, HNSPPI, which scored 
98.57% in accuracy (Table  2). In terms of precision, xCAPT5 maintains its dominion 
with a score of 99.76%, compared to FSNN-LGBM’s 98.73%, once again indicating supe-
rior specificity. The model’s recall rate is 99.75%, making it the leader in identifying true 
positive cases as well; the closest competitor here is HNSPPI at 98.85%. The same trend 
is evident in the specificity, F1-score, and Matthews Correlation Coefficient (MCC) cat-
egories, where xCAPT5 posts scores of 99.77%, 99.37%, and 99.52%, respectively.

Furthermore, on the Pan dataset (Table 3), xCAPT5 significantly outperforms its clos-
est competitors across all metrics, showcasing an accuracy of 99.77% with an exception-
ally low standard deviation of 0.02%. The closest competitor, FSNN-LGBM, has a slightly 
lower accuracy of 99.50% but with a notably higher standard deviation of 0.28%, indicat-
ing less consistent results. The gap between xCAPT5 and its competitors is also signifi-
cant. While FSNN-LGBM lags by a narrow margin of 0.27% in accuracy, this difference 
is amplified by the variation indicated by standard deviations. In precision, recall, and 
other metrics, xCAPT5 consistently ranks highest, almost always surpassing the 99.5% 
threshold with minimal variance.

Statistical analyses of the models’ performance across three distinct datasets reveal 
that xCAPT5 consistently outperforms other methods in terms of accuracy. Specifi-
cally, the adjusted p-values, derived from Welch’s t-tests [25] and controlled for false 

Table 2 5-Fold cross-validation performances of methods on Guo dataset

NA denotes that data is not available. Report with mean and standard deviation. The bold is the best performance in each 
metric

Method Accuracy (%) Precision (%) Recall (%) Specificity (%) F1‑Score (%) MCC (%)

PIPR (2019) 96.47 ± 0.21 96.31 ± 0.23 96.67 ± 0.22 96.65 ± 0.22 96.48 ± 0.20 92.45 ± 0.42

FSNN-LGBM 
(2021)

98.46 ± 0.20 98.73 ± 0.25 98.18 ± 0.18 98.74 ± 0.25 98.45 ± 0.20 96.92 ± 0.39

MARPPI (2023) 96.03 ± 0.76 98.12 ± 0.98 93.51 ± 1.22 98.82 ± 0.25 NA 91.83 ± 1.32

TAGPPI (2022) 97.81 98.10 98.26 98.10 97.80 95.63

HNSPPI (2023) 98.57 ± 0.11 98.30 ± 0.22 98.85 ± 0.13 NA 98.57 ± 0.11 NA

Our xCAPT5 99.76 ± 0.05 99.76 ± 0.04 99.75 ± 0.07 99.77 ± 0.04 99.37 ± 0.27 99.52 ± 0.10

Table 3 5-Fold cross-validation performances of methods on Pan dataset

NA denotes that data is not available. Report with mean and standard deviation. The bold is the best performance in each 
metric

Method Accuracy (%) Precision (%) Recall (%) Specificity (%) F1‑Score (%) MCC (%)

PIPR (2019) 98.26 ± 0.02 98.68 ± 0.04 97.40 ± 0.04 97.93 ± 0.03 98.04 ± 0.02 96.49 ± 0.03

FSNN-LGBM 
(2021)

99.50 ± 0.28 98.48 ± 0.12 99.39 ± 0.54 99.58 ± 0.10 99.43 ± 0.32 98.98 ± 0.57

Graph-BERT 
(2023)

99.02 ± 0.13 98.94 ± 0.88 99.15 ± 0.95 98.57 ± 1.19 99.04 ± 0.10 98.00 ± 0.28

Our xCAPT5 99.77 ± 0.02 99.75 ± 0.03 99.75 ± 0.02 99.80 ± 0.02 99.62 ± 0.06 99.55 ± 0.03
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discovery rate using the Benjamini-Hochberg procedure [26], underscore the statistical 
significance of these results (Table 4). In the Martin dataset, both MARPP and FSNN-
LGBM show p-values indicating significant differences, yet the extremely low p-values 
for HNSPPI and PIPR suggest an even more pronounced difference in accuracy com-
pared to xCAPT5. For the Guo dataset, TAGPPI and FSNN-LGBM exhibit highly sig-
nificant improvements with p-values reaching 8.20× 10−8 and 1.79× 10−8 respectively. 
Similarly, PIPR also shows a significant difference in this dataset. Notably, the compari-
sons on the Pan dataset are limited but still present compelling evidence of xCAPT5’s 
superior accuracy, with Graph-BERT showing a significant difference, although FSNN-
LGBM does not exhibit a statistically significant variation.

Generalized inference evaluation

We evaluated the generalization capacity of xCAPT5 and compared models by train-
ing them on human-centric data sets and subsequently testing them on independent 
datasets. Our assessment encompasses a diverse range of test scenarios, spanning intra-
species (human), cross-species (model organisms), and inter-species (human-virus) PPI 
datasets. The foundational training on human datasets equipped the models with dis-
cern patterns and features intrinsic to human protein interactions. By subjecting them 
to disparate test datasets, we aimed to ascertain the models’ proficiency in extrapolating 
their predictions beyond the confines of their training data. This rigorous analysis offers 
insights into the models’ competence in reliably predicting PPIs across varied biological 
contexts. Furthermore, it paves the way for the potential extrapolation of these models 
to species with scant or non-existent PPI data. In scenarios where specific PPI data is 
absent but protein sequence information is available, the models’ foundational training 
on human datasets can be harnessed to facilitate informed predictions.

Intra‑species inference

The intra-species inference analysis presents the evaluation results of different methods 
on two distinct training datasets: the balanced training dataset Pan and the imbalanced 
training dataset Sledzieski. The performance of the methods is measured in terms of 
recall percentage on various test datasets.

Additional file  1: Table  S1 shows the evaluation results for the intra-species dataset 
trained on the balanced Pan dataset. Across all test datasets (HPRD, DIP, HIPPIE HQ, 

Table 4 Statistical significance of accuracy differences between xCAPT5 and other models across 
three datasets

NA denotes that data is not available for the comparison

Model Martin Dataset Guo Dataset Pan Dataset

MARPP (2023) 6.32× 10
−5

9.20× 10
−4 NA

TAGPPI (2022) NA 8.20× 10
−8 NA

HNSPPI (2023) 1.81× 10
−8 1.55× 10

−5 NA

PIPR (2019) 1.81× 10
−8 8.90× 10

−7
1.23× 10

−5

Graph-BERT (2023) NA NA 1.23× 10
−5

FSNN-LGBM (2021) 1.13× 10
−3

1.79× 10
−8

7.76× 10
−2
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HIPPIE LQ), xCAPT5 consistently achieves the highest recall. For instance, on the 
HPRD dataset, xCAPT5 achieves a recall of 96.16%, outperforming both PIPR (91.95%) 
and FSNN-LGBM (94.28%). The same trend is observed for other test datasets as well, 
with xCAPT5 consistently outperforming the other methods. xCAPT5 ranks first in 
terms of recall percentage for all of these datasets.

Additional file 1: Table S2 presents the evaluation results for the intra-species dataset 
trained on the imbalanced Sledzieski dataset. Despite the imbalance in both the train-
ing dataset and the test datasets, xCAPT5 again demonstrates superior performance. 
It achieves the highest recall on most test datasets. For example, on the DIP dataset, 
xCAPT5 achieves a recall of 67.64%, surpassing the recall of PIPR (30.79%) and FSNN-
LGBM (48.71%). It achieves the highest recall on most test datasets, including HPRD, 
DIP, and HIPPIE HQ. However, it is worth noting that Topsy-Turvy achieves a slightly 
higher recall of 51.22% on the HIPPIE LQ dataset compared to xCAPT5’s 40.92%.

Cross‑species inference

The cross-species inference analysis shows the evaluation performance of differ-
ent methods on cross-species datasets trained on two different training sets: Pan and 
Sledzieski. The test datasets represent various species: E.  coli, Fly, Mouse, Worm, and 
Yeast.

In Additional file 1: Table S4, where models are trained on the balanced training set 
Pan, we observe varying performance across the different methods and test datasets. 
D-SCRIPT consistently demonstrates the highest Precision, with values ranging from 
70.64% (Yeast) to 85.47% (Mouse). It also achieves competitive F1-Scores, ranging from 
33.88% (Yeast) to 53.68% (Fly), indicating a good balance between Precision and Recall. 
D-SCRIPT also performs well in terms of AUROC and AUPRC, achieving high values in 
most test datasets. Our model xCAPT5 shows the highest Recall values in several test 
datasets, such as Fly (83.08%) and Worm (71.02%). However, its Precision is relatively 
lower compared to D-SCRIPT.

In Additional file 1: Table S3, where models are trained on the unbalanced training set 
Sledzieski, we can observe a decrease in overall performance compared to the first table. 
The Precision values of all methods are generally lower, indicating a higher number of 
false positives. However, xCAPT5 still shows the highest Precision, ranging from 9.18% 
(E. coli) to 9.45% (Yeast). Notably, the Recall values are consistently high across all meth-
ods and test datasets, ranging from 85.62% (Yeast) to 99.55% (E. coli) for xCAPT5.

Inter‑species inference

In Additional file  1: Table  S5, the evaluation inference performance of our proposed 
model xCAPT5 and compared models on inter-species datasets trained on the balanced 
training set Pan is presented. The test datasets include Dengue, HIV, Hepatitis, Herpes, 
Influenza, Papilloma, SARS-CoV-2, and Zika.

Experimental results indicate that xCAPT5 generally performs the best across differ-
ent test datasets. For example, in the Dengue test dataset, xCAPT5 achieves a precision 
of 9.21%, recall of 97.19%, F1-score of 16.83%, AUROC of 50.73%, and AUPRC of 9.44%. 
Our model demonstrates competitive performance across most test datasets. It achieves 
the highest Precision on the Hepatitis and Papilloma datasets and the highest Recall 
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on the HIV dataset. Additionally, xCAPT5 achieves the highest F1-Score on the Zika 
dataset.

In Additional file 1: Table S6, the evaluation inference performance of different meth-
ods on inter-species datasets trained on the unbalanced training set Sledzieski is pre-
sented. The test datasets are the same as in the S5. Experimental results indicate that 
xCAPT5 performs well in most test datasets. For example, in the Dengue test dataset, 
xCAPT5 achieves a precision of 23.36%, recall of 35.66%, F1-score of 28.22%, AUROC of 
54.90%, and AUPRC of 14.71%. Among the compared models, xCAPT5 consistently out-
performs others in terms of Precision, Recall, and F1-Score on most test datasets. Nota-
bly, xCAPT5 achieves the highest Precision on the Hepatitis and Herpes datasets and 
the highest Recall on the HIV and Hepatitis datasets. It also obtains the highest F1-Score 
on the HIV and Influenza datasets.

Stringent similarity evaluation

In this section, we assess the ability of our proposed model xCAPT5 to generalize to 
datasets with varying constraints on sequence similarity (Table 5). xCAPT5 stands out 
with its exceptional performance. It consistently achieves an accuracy of 99.72% and an 
F1 score of 99.61% across various sequence identities. This performance remains stable 
even when the sequence identity threshold tightens from 40% to just 1%. Such consist-
ency indicates that xCAPT5 consistently delivers accuracy rates above 99.70% and F1 
scores over 99.50%.

On the other hand, while PIPR, TAGPPI, and DeepTrio show commendable results, 
there’s a noticeable pattern: their performance metrics slightly decrease as the sequence 

Table 5 5-Fold cross-validation performances of methods on stringent Chen multispecies datasets

Report with mean. The bold is the best performance in each metric

Similarity Methods Accuracy (%) F1‑Score (%)

Any PIPR (2019) 98.19 98.17

DeepTrio (2022) 98.20 98.20

TAGPPI (2022) 99.15 99.15

Our xCAPT5 99.72 99.61
≤ 40% PIPR (2019) 98.29 98.28

DeepTrio (2022) 97.83 97.98

TAGPPI (2022) 99.10 99.16

Our xCAPT5 99.76 99.60
≤ 25% PIPR (2019) 97.91 98.08

DeepTrio (2022) 97.52 97.75

TAGPPI (2022) 98.99 99.06

Our xCAPT5 99.74 99.61
≤ 10% PIPR (2019) 97.54 97.79

DeepTrio (2022) 97.32 97.62

TAGPPI (2022) 98.97 99.08

Our xCAPT5 99.70 99.53
≤ 1% PIPR (2019) 97.51 97.80

DeepTrio (2022) 97.11 97.47

TAGPPI (2022) 98.89 98.89

xCAPT5 99.73 99.60
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identity requirements become stricter. This indicates that these models might face chal-
lenges when adapting to less familiar sequence spaces. The fluctuations in accuracy and 
F1-Score of xCAPT5 are minimal, with the most significant change being a mere 0.06% 
in accuracy. This consistent performance, even under tightening sequence similarity 
constraints, underscores xCAPT5’s robustness and superior generalization capabilities. 
Unlike many models that might falter under strict conditions, xCAPT5’s resilience is 
evident, suggesting that it’s adept at handling a broad spectrum of sequence identities 
without significant performance degradation.

Hyperparameter effect

In this section, we assess the impact of hyperparameters on the performance of the 
xCAPT5 model, with a specific focus on the neural network architecture of xCAPT5. 
We employed a 5-fold cross-validation method on the Guo dataset to assess the neural 
architecture of xCAPT5 under different hyperparameter configurations.

We note that increasing the number of kernel sizes from 2 to 3 leads to a significant 
performance improvement across multiple metrics. This suggests that a wider range of 
kernel sizes enables the model to detect a broader spectrum of patterns in the input data, 
enhancing overall performance. However, further increasing to four results in a decline 
in performance (Additional file  1: Figure S1). This deterioration can be attributed to 
increased complexity, making it harder for xCAPT5 to learn and generalize effectively. 
The model becomes more susceptible to capturing noise and irrelevant details, hinder-
ing its ability to discern relevant patterns and leading to decreased performance.

The depth of a Convolutional Neural Network (CNN), traditionally defined by the 
number of layers, plays a pivotal role in the model’s learning capacity. However, in the 
context of the xCAPT5 model, the depth is uniquely characterized by the number of 
blocks, with each block representing a level of depth. The xCAPT5 model is composed 
of five such blocks, signifying a depth of five. As the depth of the network increases, 
denoted by the number of blocks in the xCAPT5 model (Additional file 1: Figure S2), 
there is a corresponding improvement in the model’s performance. The optimal perfor-
mance is observed when the network comprises five blocks. This optimal depth is influ-
enced by certain parameters, such as the padding of the sequence length to 1200 and the 
use of a pooling size of 4.

Furthermore, our investigation encompasses the comparison of xCAPT5’s perfor-
mance using different amino acid embeddings. In this regard, we discovered that lev-
eraging the large protein language models like ProtT5-XL-U50, ProtT5-XL-BFD, 
ProtBert-BFD [16], and PlusRNN [27] provides superior results compared to traditional 
approaches like one-hot encoding and physicochemical concatenated with Skip-Gram 
embedding (Additional file 1: Figure S3). This highlights the importance of incorporating 
advanced protein language models in enhancing the predictive capabilities of xCAPT5. 
Our examination also reveals that a hybrid model, which combines a machine learning 
algorithm with a neural network, yields a marked performance enhancement (Addi-
tional file 1: Figure S4). Specifically, the integration of a machine learning model leads 
to a significant accuracy increase of nearly 10% for the Martin dataset, approximately 2% 
for Guo, and just under 1% for Pan, highlighting the substantial benefits of this approach 
over a standalone neural network model.
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Discussion
In this study, we examine the design of models for predicting protein–protein interac-
tions (PPIs) solely based on protein sequences. This approach is grounded in the hypoth-
esis that protein sequences inherently contain sufficient information for PPI prediction, 
a concept increasingly recognized in contemporary research. Our methodology is nota-
ble for being among the pioneering efforts to apply a deep and wide convolutional neu-
ral network to amino acid embeddings derived from a protein language model for PPI 
prediction. This approach has demonstrated notable efficacy, outperforming traditional 
methods that rely on embeddings from non-protein language models, including those 
based on universal amino acid embeddings such as Skip-Gram or one-hot encoding, as 
well as protein sequence embeddings utilizing generic protein feature descriptors. The 
use of a protein language model facilitates a nuanced comprehension of the intricate var-
iations and complex characteristics of biological sequences. This results in more precise 
and informative protein representations. Notably, among various protein language mod-
els evaluated, ProtT5-XL-UniRef50 emerged as the most effective, showcasing superior 
predictive performance in our analyses.

Our use of multi-kernel CNNs marks a significant departure from previous studies 
that relied on single-kernel networks. We found that increasing the number of kernels 
enhances the model performance, suggesting that a multi-kernel design is beneficial in 
this context. Additionally, our study also reveals that deeper network architectures cor-
relate with the  improved performance, effectively capturing complex protein sequence 
patterns and boosting protein–protein interaction predictions. Furthermore, the inte-
gration of Global Average Pooling and Global Max Pooling in our xCAPT5 model 
optimizes the retention of crucial features, combining the strengths of both pooling 
methods. On top of that, we leveraged the strengths of a neural network for repre-
sentation extraction, followed by feeding these learned features into a machine learn-
ing algorithm. This strategy effectively boosted the overall performance of our model, 
capitalizing on the neural network’s ability to extract nuanced features and the machine 
learning algorithm’s proficiency in utilizing these features for enhanced outcomes.

In our comprehensive evaluations, the xCAPT5 model underwent cross-validation 
against three gold-standard benchmark datasets, confirming its robustness and relia-
bility—a cornerstone practice for machine learning model validation. xCAPT5 demon-
strated state-of-the-art performance, with accuracy rates of 97.27%, 97.76%, and 99.77% 
on the Martin, Guo, and Pan datasets, respectively. Considering the field’s maturity 
and the multitude of advanced models already in existence, the notable achievement 
of xCAPT5 surpassing the second-best models by an average of 1% across all metrics 
marks a significant stride in predictive model development. The average standard devia-
tion of xCAPT5 across the datasets is the lowest at 0.06%, indicating the most stable 
performance among all models considered.

To rigorously evaluate the xCAPT5 model’s ability to learn and infer across differ-
ent biological contexts, we adopted balanced Pan and unbalanced Sledzieski training 
set on humans and then tested on unseen data categorized into intra-species (human 
PPIs across four datasets), cross-species (PPIs from five other model organism data-
sets), and inter-species (human and virus PPIs from eight datasets). xCAPT5 consist-
ently outperformed the compared SOTA models on most test datasets regardless of 
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the training dataset, showing exceptional generalization capabilities in predicting 
PPIs across these categories. This is particularly noteworthy in the context of compu-
tational biology research, where models often face diverse datasets and training sets.

The experimental analysis of the xCAPT5 model, focusing on generalized infer-
ence capabilities, reveals notable distinctions in performance based on the nature of 
the training dataset. When trained on the balanced Pan dataset, xCAPT5 exhibits a 
remarkably high recall rate, averaging around 95.50%. This is particularly significant 
in biological research, where the comprehensive detection of protein–protein interac-
tions is crucial, especially in contexts where only genomic data are available, such as 
in lesser-studied species. The high recall indicates the model’s proficiency in identify-
ing true positive interactions, a critical aspect in exploring the interactome of these 
species. In contrast, training on the unbalanced Sledzieski dataset results in lower 
recall but higher precision, F1-Score, AUROC, and AUPRC. This suggests a more 
refined accuracy in the predictions, albeit with a possible trade-off in missing certain 
interactions. The choice between these training approaches depends on the research 
objectives: high recall is vital for exploratory studies aiming to map unknown inter-
actomes comprehensively, while higher precision and balanced metrics are preferable 
for validating specific hypotheses or in well-characterized research areas.

In the context of protein–protein interaction predictions, the stringent similar-
ity evaluation of xCAPT5 is particularly important as it addresses a key challenge: 
the decline in model performance with decreasing sequence similarity. Typically, as 
sequence similarity lowers, the prediction task becomes more challenging, adversely 
affecting most models’ accuracy. However, xCAPT5 demonstrates a notably smaller 
decline in performance compared to other models like PIPR, TAGPPI, and DeepTrio, 
maintaining high accuracy (99.73%) and F1-scores (99.60%) even at the challenging 
≤ 1% similarity threshold.

While the xCAPT5 model excels in generalization and robustness across various 
datasets, it’s important to recognize its limitations. Particularly, in handling unbal-
anced datasets, such as Sledzieski, it is observed that models like Topsy-Turvy and 
D-SCRIPT surpass xCAPT5 in the Precision metric, highlighting a critical area 
where the xCAPT5’s Recall-oriented approach may compromise its efficacy, espe-
cially in scenarios where minimizing false positives is paramount. This inclination 
towards recall over precision reflects a strategic trade-off that might not align with 
the demands of applications requiring stringent accuracy.

Additionally, the model’s performance fluctuates with the class imbalance, signal-
ing a potential gap in its capacity to uniformly manage diverse dataset characteristics. 
Moreover, the complexity of xCAPT5 could hinder interpretability, a crucial aspect in 
fields necessitating transparency and understanding of predictive mechanisms. The 
model’s intricate architecture necessitates extensive hyperparameter tuning, which 
can be a complex and time-intensive process, potentially hindering rapid develop-
ment and deployment. Finally, the model emphasizes prediction accuracy without 
providing insight into the discriminative quality of its internal representations, such 
as the absence of analysis on how these representations cluster when subjected to 
dimensionality reduction techniques like PCA. This omission suggests a gap in the 
exploration of the underlying feature space that the model has learned.
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Conclusion
Our research introduces xCAPT5, a groundbreaking classifier that harnesses the power 
of the T5-XL-UniRef50 protein language model to produce rich amino acid embeddings 
from protein sequences. At its heart, xCAPT5 utilizes a multi-kernel deep convolu-
tional siamese neural network, adept at capturing complex interaction features on both 
micro and macro scales. This is further enhanced by integrating the XGBoost algorithm, 
which significantly boosts the classification performance of protein–protein interactions 
(PPIs). xCAPT5 stands out by concatenating max and average pooling features depth-
wise, allowing it to learn vital features while maintaining low computational costs. This 
study marks one of the first attempts to leverage informative amino acid embeddings 
from a large protein language model through a deep and wide convolutional network. 
The experimental results are compelling, showing that xCAPT5 surpasses recent state-
of-the-art methods in binary PPI prediction. Its exceptional performance is consistent 
across various tests, including cross-validation on multiple benchmark datasets and 
robust generalization in intra-species, cross-species, inter-species, and stringent similar-
ity contexts.
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