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Abstract 

Background: Pathomics facilitates automated, reproducible and precise histopathol-
ogy analysis and morphological phenotyping. Similar to molecular omics, pathomics 
datasets are high-dimensional, but also face large outlier variability and inherent data 
missingness, making quick and comprehensible data analysis challenging. To facilitate 
pathomics data analysis and interpretation as well as support a broad implementation 
we developed tRigon (Toolbox foR InteGrative (path-)Omics data aNalysis), a Shiny 
application for fast, comprehensive and reproducible pathomics analysis.

Results: tRigon is available via the CRAN repository (https:// cran.r- proje ct. org/ web/ 
packa ges/ tRigon) with its source code available on GitLab (https:// git- ce. rwth- aachen. 
de/ laboo ratory- ai/ trigon). The tRigon package can be installed locally and its appli-
cation can be executed from the R console via the command ‘tRigon::run_tRigon()’. 
Alternatively, the application is hosted online and can be accessed at https:// laboo 
ratory. shiny apps. io/ tRigon. We show fast computation of small, medium and large 
datasets in a low- and high-performance hardware setting, indicating broad applicabil-
ity of tRigon.

Conclusions: tRigon allows researchers without coding abilities to perform explora-
tory feature analyses of pathomics and non-pathomics datasets on their own using 
a variety of hardware.
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Introduction
Histologic tissue analysis is vital for investigating disease states, understanding patho-
physiological mechanisms and guiding diagnostics. Recent technological developments 
in digital and computational pathology enabled automated large-scale histopathology 
analyses [1–4]. The expansion of digital pathology has especially been fueled by deep 
learning-based workflows [5–8]. While end-to-end approaches focus on direct clinically 
or diagnostically actionable outputs, pathomics uses large-scale extraction of explaina-
ble, quantitative color or geometric features (e.g., the circularity) from histological struc-
tures identified using semantic segmentation for data mining of histopathology [9–14]. 
This approach is similar to molecular omics approaches and aims to better understand 
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morphology by generating morphometric features for relevant tissue structures, allow-
ing exploratory analyses [15]. The extracted features could be integrated into clinical 
decision-making, e.g., for patient risk stratification [16] or outcome prediction [17, 18]. 
Pathomics data can be generated with comparatively little cost in comparison to other 
omics methods, enabling broad implementation in many research groups. This makes 
pathomics analyses especially interesting for biomedical researchers performing histo-
logical analyses, but the datasets can be challenging for established conventional omics 
workflows due to large outlier variability and missingness caused by inconsistent occur-
rences of analyzed structures. In addition, biomedical researchers who mostly perform 
tissue-based analyses often lack the specific coding skills needed for analyzing pathom-
ics data and streamlining time-intensive data curation processes [19]. For these reasons, 
we have developed an R shiny application  —  tRigon (Toolbox foR InteGrative (path-)
Omics data aNalysis) — to make exploratory pathomics data analyses more open, acces-
sible and feasible to researchers and clinicians. While tRigon was mainly designed for its 
application to pathomics data, it is also suitable for analysis of other high- or low-dimen-
sional data such as molecular omics or medical datasets.

Implementation
tRigon is a Shiny application [20] built in the R framework [21] and is available both 
on CRAN (https:// cran.r- proje ct. org/ web/ packa ges/ tRigon) and GitLab (https:// git- ce. 
rwth- aachen. de/ laboo ratory- ai/ trigon). It includes various functions such as descrip-
tive statistics, statistical tests and visualizations for analyzing large and complex datasets 
(Fig. 1). tRigon was tested on Windows, Linux and MacOS.

Pathomics datasets typically consist of multiple  .csv files, for example generated by 
our previously published framework for large-scale histomorphometry (FLASH) [9]. 

Fig. 1 Overview of the available tRigon functions with their respective appearance in the user interface (ui)
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The datasets include structural morphometric measurements (e.g., diameter, area or 
shape-descriptors) for major histological compartments and structures. For large human 
cohorts or animal experiments, this can be challenging to analyze. Furthermore, the 
data needs to be integrated with additional metadata. For human specimens, all tissue 
pieces on a slide typically belong to the same case and share the same clinical informa-
tion (e.g., two biopsy cores) while some slides from animal experiments contain samples 
from multiple experimental conditions, e.g., multiple specimens from various animals 
or a diseased specimen and its internal or contralateral control tissue on the same slide. 
Additionally, pathomics data can be analyzed on the specimen level (e.g., a single human 
pathology case) or with single structure resolution.

tRigon can aggregate large amounts of pathomics files based on metadata with other 
(e.g., clinical) information of the analyzed samples. Based on the desired analysis the 
application allows for human- or animal-type data workflows and supports specimen or 
structure level calculations.

For the aggregated feature files or own loaded datasets, tRigon provides users with a 
toolbox of different analytical methods, i.e., statistics, data visualizations and machine 

Table 1 tRigon functions with explanations

Section Function Explanation

Data Processing data tRigon can process .csv files of pathomics data together with pro-
vided experiment/clinical data meta files. tRigon aggregates pathom-
ics files and assigns them to the provided labels from the metadata. 
Users can choose between processing human or animal experiment 
data with calculations on specimen or single-structure level

Loading data tRigon can also be used to load other data (e.g., other omics datasets) 
or already processed pathomics files

Statistics Descriptive statistics Based on a provided group label tRigon can calculate summary 
statistics (e.g., mean, median, standard deviation, interquartile range) 
for each chosen feature

Statistical tests tRigon supports a range of simple non-parametric statistical tests 
such as:
(1) pairwise Wilcoxon-rank tests with Bonferroni correction for multi-
ple testing
(2) Kruskal–Wallis tests
(3) differences in median with bootstrapped confidence intervals for 
each desired feature and provided group label

Correlation Simple and multiple correlations based on the Pearson-correlation 
coefficient can be calculated and visualized as a scatter plot or cor-
relation matrix for each chosen feature. Users can also specify a group 
and subgroup for specific correlation analysis

Machine learning For calculation of feature importance tRigon supports random forests 
and recursive feature elimination (RFE) for classification and regres-
sion of chosen features based on a selected dependent variable. For 
RFE users can also specify the number of folds for cross-validation as 
well as repeats

Plots & Visualisation Distribution plots Based on a provided group label tRigon plots selected feature distri-
butions in a variety of plots:
(1) violin plots, with/without box plots
(2) box plots
(3) ridgeline plots

Clustering tRigon supports k-means clustering for selected variables. Groups 
can also be plotted within a separate legend

Logs Markdown reports For each function tRigon users can download a markdown report 
in.html format including all relevant inputs and outputs of the 
application
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learning algorithms (Table 1). Each analysis tool represents a tab in the application and 
consists of an easily understandable user interface (Figs.  2, 3, 4, 5, 6, 7). tRigon users 
can tailor all functions to their specific needs by choosing from various statistical tests, 
distribution plots, machine learning methods and output style options. To effectively 
handle heterogeneous datasets, missingness is automatically reported in the application, 
non-normally distributed features are supported by multiple non-parametric tests and 
outliers can be scaled in plots accordingly. Additionally, the application includes a help 
section with instructions and common pitfalls. All processed data, generated plots and 
computed statistical tests can be downloaded if desired. To enable reproducible analyses 
across user sessions and to keep a record of results tRigon can generate and save mark-
down-based.html-reports including all relevant inputs (e.g., chosen features and group 
column, plot selection, etc.) and outputs for each task (Table 1). A full example analysis 
is provided in the supplementary material (Additional file 9: Table S1–S3 and Additional 
file 9: Figs. S1–S4).

In addition to running tRigon locally via the R console, the application is freely avail-
able online in the ShinyApps.io workspace (https:// laboo ratory. shiny apps. io/ tRigon), 

Fig. 2 User interfaces of the a load/process data and b descriptive statistics tabs

https://labooratory.shinyapps.io/tRigon
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albeit the memory size for free use is limited to 1  GB of Random-Access Memory 
(RAM). Therefore, users are advised to process and analyze computationally expensive 
files such as large pathomics datasets locally.

Results
Nine datasets from different platforms were acquired to demonstrate the effectiveness, 
versatility, and limitations of tRigon. Five of those are pathomics datasets including four 
human kidney cohorts and one animal experiment for 2,8-dihydroxyadenine crystal 
nephropathy, a mouse model for diet-induced tubulointerstitial fibrosis and scarring 
[22]. The human kidney datasets consist of two in-house biopsy (AC_B) and nephrec-
tomy (AC_N) datasets [9] as well as the freely available Kidney Precision Medicine Pro-
ject (KPMP) [23] and Human BioMolecular Atlas Program (HuBMAP) [24] datasets 
containing kidney biopsies and nephrectomies. Furthermore, we analyzed freely avail-
able aggregated specimen level pathomics data from a recent study on breast cancer, 
replicating their results (Additional file  9: Table  S4 and Additional file  9: Figs.  S5–S9) 
[14]. In total, the four human pathomics datasets include 3,287 instance level files with 
a total file size of 312.7 MB while the 2,8-dihydroxyadenine crystal nephropathy path-
omics dataset consists of 9 files with a total file size of 13.0 MB. The aggregated breast 

Fig. 3 User interface of the a plotting tab. b example box plot and c example ridgeline plot with logarithmic 
scale set to “on”
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cancer histomics data file contains a file size of 7.55 MB. Furthermore, three freely avail-
able non-pathomics medical datasets [25–27] with a total file size of 4.62 MB from the 
Teaching of Statistics in the Health Sciences (TSHS) Resources Portal were included.

Computation time was evaluated using two different settings, representing a high- 
and low-resource setting and three datasets with different sizes (Table 2). Setting A 
refers to running the application on a hybrid tablet-notebook (Intel Pentium CPU 
1.60 GHz with 8 GB RAM) while setting B refers to running tRigon on a workstation 
(Intel Xeon Gold 6128 CPU 3.40 GHz, 128 GB RAM). In general, running tRigon on a 
workstation was faster, but computation times were still quick, and performance was 
smooth when running the app on setting A, even for large datasets (Table 2). Regard-
less of hardware tRigon was especially fast for statistical analysis (summary statistics, 
pairwise Wilcoxon-rank tests, and correlations) and visualizations (distribution plots, 
scatter plots, and correlation matrices). Processing data frames and machine learning 
algorithms remained more time-consuming operations, as expected (Table 2).

Fig. 4 User interface of the a descriptive statistics tab and b example output for the 100-times bootstrapped 
comparisons of medians with 95% confidence intervals for the feature “glom_tuft_shape_circularity” 
stratified by histopathological diagnoses in the AC_B cohort. Additional selectable tests include pairwise 
Wilcoxon-rank test and Kruskal–Wallis test
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Fig. 5 User interface of the a clustering tab. Features to be clustered can be selected, as well as the number 
of clusters and whether data points should be assigned to a group based on a grouping column in the 
metadata

Fig. 6 User interface of the a feature Importance tab. Features can be selected to perform random forest- or 
recursive feature-based importance analysis for classification and regression tasks. b Example feature 
importance plots showing mean decrease accuracy and mean decrease gini for the selected features and 
dependent variable
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Discussion
tRigon is a user-friendly Shiny application for high-throughput, simple and reproduc-
ible analysis of high-dimensional data including pathomics datasets.

An obvious limitation of tRigon is that it is not designed to generate pathomics data. 
This means it cannot be used to directly investigate whole slide images and users must 
use another software. However, there are tools available that allow researchers, in some 
instances even without coding experience, to perform such analysis [28–31]. Another 
limitation is that tRigon is not designed as a full-scale statistical program, i.e., in-depth 
statistical analyses need to be performed with dedicated tools. However, the app allows 
adding new functionalities, potentially increasing the analytical tools in the future.

Fig. 7 User interface of the a correlation tab. Features can be selected to perform single- or multiple 
correlation showing a single correlation plot as an example output. b Example multiple correlation visualized 
as a correlation matrix
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Conclusion
With tRigon, users can easily and effectively summarize or correlate features, visualize 
distributions, statistically test hypotheses, implement machine learning algorithms and 
cluster data. Markdown reports can help users with documenting each analysis step. 
tRigon can further accelerate pathomics research and facilitate creating valuable read-
outs for large (path-)omics datasets. We will continuously update and expand tRigon in 
the future.

Table 2 tRigon runtime based on data frame size and computational setting

All tasks were monitored with three dataframes (small: 281 rows, 36 columns, 55.9 KB size; medium: 211,287 rows, 53 
columns, 47.7 MB size; large: 2,385,605 rows, 42 columns, 228 MB size) and in two computational settings (A: Intel Pentium 
CPU 1.60 GHz, 8 GB RAM; B: Intel Xeon Gold 6128 CPU 3.40 GHz, 128 GB RAM). The small dataframe is a medical dataset 
(which cannot be processed) while the medium and large dataframes are pathomics datasets

ms milliseconds, log logarithmic, corr. correlation

Task Setting A Setting B

Processing data

 Small – –

 Medium 39,280 ms 20,190 ms

 Large 283,870 ms 114,790 ms

Loading data

 Small 1520 ms 1290 ms

 Medium 5370 ms 4460 ms

 Large 47,550 ms 29,740 ms

Summary statistics (1 feature)

 Small 650 ms 230 ms

 Medium 1320 ms 1200 ms

 Large 13,590 ms 4020 ms

Distribution plots (1 feature, violin plot, no log-scale)

 Small 2410 ms 1290 ms

 Medium 1980 ms 1220 ms

 Large 5780 ms 3280 ms

Statistical tests (1 feature, pairwise-Wilcoxon test)

 Small 170 ms 70 ms

 Medium 290 ms 80 ms

 Large 1180 ms 570 ms

k-means clustering  (6 features, 4 cluster, no groups)

 Small 1450 ms 840 ms

 Medium 2970 ms 730 ms

 Large 5590 ms 1930 ms

Feature importance (classification, 6 features, random forest)

 Small 2000 ms 1040 ms

 Medium 6090 ms 2990 ms

 Large 43,980 ms 22,870 ms

Correlation matrix  (multiple corr., 6 features, no subgroups)

 Small 1220 ms 510 ms

 Medium 1460 ms 460 ms

 Large 1570 ms 710 ms
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Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 024- 05721-w.

Additional file 1. tRigon session report in html-format for a k-means clustering analysis including all inputs, setting 
options and outputs.

Additional file 2. tRigon session report in html-format for a correlation analysis including all inputs, setting options 
and outputs.

Additional file 3. tRigon session report in html-format for loading data into the application including a detailed 
description of the loaded data frame.

Additional file 4. tRigon session report in html-format for processing omics datasets including a detailed descrip-
tion of input files, processing settings and the processed data frame.

Additional file 5. tRigon session report in html-format for descriptive statistics including all inputs, setting options 
and outputs.

Additional file 6. tRigon session report in html-format for a feature importance analysis including all inputs, setting 
options and outputs.

Additional file 7. tRigon session report in html-format for feature plots including all inputs, setting options and 
outputs.

Additional file 8. tRigon session report in html-format for statistical testing including all inputs, setting options and 
outputs.

Additional file 9. Supplementary Material containing Supplementary Tables S1-S4 and Supplementary Figures S1-S9.
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