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Background
RNA sequencing (RNA-seq) generates huge amounts of information about the tran-
scriptome of the organism studied. In time-course RNA-seq experiments gene expres-
sion is observed over time with thousands of genes measured simultaneously using only 
a small number of samples. The comparison of several experimental conditions induces 
a three-way data structure. Examples of three-way data are experiments under different 
process conditions, knock-out experiments or the exploration of different strains.

RNA-seq data provide readouts in form of count data, i.e., read counts per gene. Spe-
cific characteristics of the distribution of these counts are non-normality and a depend-
ence of the variance on the mean. The raw count data may be modelled using the Poisson 
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distribution [1] or the Negative-Binomial distribution to account for over-dispersion [2]. 
Instead of a direct analysis of the raw count data, however, in general several pre-pro-
cessing steps are applied before analysing the RNA-seq data [3], e.g., to correct for dif-
ferent sequencing depths, library sizes and gene lengths. Typically, log-fold changes of 
differential expression are calculated and the number of genes is reduced by filtering low 
normalised counts and low differential expression estimates [4]. For these tasks several R 
[5] and Bioconductor [6] packages are available, e.g., TCC [7], DESeq2 [8] or edgeR [9].

Time-course gene expression data are analysed in different ways. One possible 
approach is clustering to find groups of co-expressed genes [10–13]. Different methods 
and algorithms are used for clustering including k-means [14], hierarchical clustering 
[15], biclustering [16, 17], as well as model-based clustering [18]. Model-based cluster-
ing methods embed the clustering problem within a statistical framework and the mix-
ture models used may be adapted in a flexible way to the data structure and clustering 
aims by specifying suitable models for the components of the mixture.

Using the raw counts, finite mixtures of Poisson as well as Negative-Binomial distri-
butions have been considered for clustering RNA-seq data [19]. Mixtures of multivari-
ate Poisson-lognormal distributions have been proposed for clustering transcriptome 
sequencing data [1]. Model-based clustering was also extended to three-way data [20] 
by proposing to use matrix-variate distributions for the components. In this way, the 
experiments may be assumed to be independent whereas time points are assumed to be 
dependent. Taking the three-way structure of RNA-seq data under several experimen-
tal conditions into account, matrix-variate Poisson-lognormal distributions were used as 
components [21]. An alternative method to model-based clustering for grouping three-
way time-series gene expression data results from extending biclustering to triclustering 
[22, 23].

Model-based clustering can also be used after applying suitable pre-processing meth-
ods to the data. In a two-dimensional setting, a possible approach is to pre-process the 
RNA-seq data by calculating so-called normalised expression profiles and then use data 
transformations such as the arcsine or logit transformation before clustering the data 
using Gaussian mixture models [24]. However, both the arcsine transformation as well 
as the logit transformation have the drawback to be rank deficient and the resulting 
data are therefore not suitable for model-based clustering with component distributions 
assuming full rank.

Noting, however, that in fact these normalised expression profiles have similar proper-
ties as compositional data [25], one may resort to methods developed for compositional 
data to analyse the RNA-seq data after normalisation. Compositional data are usually 
modelled using standard statistical methods after suitably transforming the data with 
support on the simplex to RD or RD−1 where the data transformations are supposed to 
then facilitate the use of statistical methods based on Gaussian distributions or relying 
on the Euclidean distance. Aitchison [26] proposed a number of classes of transformed-
normal distributions for data on the simplex.

The additive log ratio (ALR) transform  is particularly suitable when working with 
time-course gene expression data as the first time point can be used as a reference. Finite 
mixture of matrix-variate Gaussian distributions can then be fitted to perform model-
based clustering with a suitable model being selected based on a statistical information 
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criterion. A final partition can be obtained by assigning observations to the component 
with the maximum a-posteriori probability.

For assessing the quality of a clustering several methods have been proposed [27], e.g., 
the separation between clusters or the compactness of a given cluster. Silhouette width 
[28] compares the average distance of one observation to members of its own cluster 
and the average distance to members of its second closest cluster. A modified silhouette 
width based on posterior probabilities was also developed for  model-based unsuper-
vised learning approaches, the density-based silhouette information (dbsi) [29]. The dbsi 
value of an observation is based on the cluster with the largest posterior probability and 
the cluster with the second largest posterior probability. In the context of classification, 
[30] propose a class map to investigate the class-specific performance which takes into 
account farness from the class as well as the predicted class probabilities. Similarly, we 
propose in the clustering context a cluster map which takes into account cluster separa-
tion in the transformed space and compactness in the original space.

In this work we propose the following four-step procedure for clustering three-way 
RNA-seq data: 

Step 1: Pre-processing RNA-seq data where first normalised expression profiles of the 
genes across time points for a biological unit and experiment are obtained, averages 
are taken across biological replicates and finally differentially expressed genes are 
identified to reduce the number of observations.

Step 2: Transforming RNA-seq data using ALR on the normalised expression profiles 
which have similar properties as compositional data.

Step 3: Model-based clustering of the transformed three-way RNA-seq data using finite 
mixtures of matrix-variate normal distributions.

• Specify the variance-covariance structure of the components taking into account 
the experimental design and clustering aims.

• Select the number of components based on the integrated completed likelihood 
(ICL; [31]) which takes goodness-of-fit as well as cluster separation into account.

Step 4: Post-processing of the cluster solution for validation based on both, the normal-
ised gene profiles as well as the transformed data, and external additional informa-
tion. Assess the quality of the partition by inspecting the density-based silhouette 
information (dbsi) based on the posterior probabilities of the individual genes alone 
as well as in combination with the distance from the cluster center as a measure of 
compactness in a cluster map. Complement these evaluations with a gene set analy-
sis.

We illustrate this approach on a publicly available fission yeast dataset [32] which has a 
three-way structure. The data consist of global transcription profiles of two strains, the 
fission yeast wild type and atf21 mutant strains, over an osmotic stress time course. The 
experiment aimed at the identification of genes affected by the knockout of the atf21 
gene. We assess the cluster solution obtained using the proposed procedure also in 
combination with biological knowledge about functional annotation from the PomBase 
database [33], the scientific resource for fission yeast. Finally, the proposed three-way 
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clustering approach is compared to a classical two-way approach after flattening out the 
biological units.

Material and methods
Pre‑processing RNA‑seq data

RNA-seq count data are normalised to account for the varying library size (i.e., the total 
number of sequenced reads in a sample) and the varying gene lengths [3]. Normalisation 
of the raw read counts enables the comparison across samples and genes. A comprehen-
sive evaluation of normalisation methods for RNA-seq data is given in [34].

We extend the idea of obtaining normalised expression profiles proposed for the two-
dimensional data setting [24] to three-way data. The normalised expression profile for 
gene i = 1, . . . , n , time point t = 1, . . . ,T  and experiment j = 1, . . . , J  is given by

with xitj the raw read counts of gene i at time point t in experiment j. These normalised 
expression profiles are calculated separately for each gene and experiment and give the 
proportion of reads for gene i in experiment j with respect to the total reads for gene i 
in experiment j across all time points T while accounting for the scaling normalisation 
factors stj which are time point and experiment specific. A constant c is added to avoid 
potential issues due to zeros. This constant often takes the value 1 but other values, e.g., 
half of the minimum of all raw counts, are also possible [35]. The scaling normalisation 
factors stj can be calculated using, e.g., the DESeq2 normalisation [8].

For each gene profile of a specific gene i and experiment j, the individual contribu-
tions of each time point sum up to one. Therefore, the profile of gene i in experiment j 
denoted by pij = (pitj)t=1,...,T has similar properties as compositional data. In the data-
set of the empirical illustration and, more generally, in time-course experiments, the rel-
ative change to time point T0 in gene expression over time is of main interest, implying 
that T0 represents a natural reference time point.

Transforming RNA‑seq data

Compositional data are assumed to be made up of the relative parts of a whole with all 
parts being strictly positive [26]. They follow a vector-space structure on the simplex 
based on log ratios between the compositional parts rather than the usual Euclidean 
geometry. The D-dimensional simplex is defined as

with κ an arbitrary constant which can be set to 1 without loss of generality. The geo-
metrical structure of compositions is referred to as Aitchison geometry [36, 37]. For com-
positional data, interest lies in the relative proportions of the components measured, 
absolute quantities and units are irrelevant. Compositional data require that all entries 
are strictly positive. In case there are components equal to zero in the observed data, 

pitj =
xitj/stj + c

T
t=1 yitj/stj + c · T

,

SD :=

{

x = (x1, . . . , xD) ∈ R
D
|

D
∑

i=1

xi = κ , xi > 0 ∀i

}

,
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one needs to deal with these zeroes – usually viewed as rounded zeroes – and add some 
small positive constant to ensure this requirement [35].

To model compositional data, one can either use a distribution with support on the 
simplex, e.g., the Dirichlet distribution, or use transformed-normal distributions which 
map compositional data with support on the simplex to RD or RD−1 . A number of trans-
formations inducing transformed-normal distributions were proposed for data on the 
simplex [26]: the additive log ratio transform (also known as logistic normal [38, 39]), 
the centred log ratio transform, and the isometric log ratio transform.

Transformations

The additive log ratio transform is given by

where xD is an arbitrary component which usually, however, has a specific meaning. ALR 
leads to a non-orthogonal coordinate system.

The centerd log ratio transform is given by

where m(x) is the geometric mean of x . CLR represents a mapping of SD → R
D , i.e., the 

resulting matrix is rank deficient implying that the empirical variance-covariance matrix 
of the data is singular. CLR coefficients cannot directly be associated with an orthogonal 
coordinate system. Hence, an alternative transformation building on CLR was proposed 
[26], the isometric log ratio transform:

where � is an orthonormal basis in the hyperplane. There are infinitely many ways to 
define such an orthonormal basis system, e.g., the use of pivot coordinates [40]. ILR 
coordinates represent a mapping of SD → R

D−1 and also correspond to an isometry, i.e., 
all metric concepts on the simplex are maintained.

Applying the ALR and ILR compositional data transformations facilitates the use of 
statistical methods based on Gaussian distributions or relying on the Euclidean dis-
tance on the transformed data. For time-course RNA-seq data the ALR transformation 
is clearly preferable as differential expression can easily be interpreted relative to T0. By 
contrast, the interpretation of the ILR coordinates is not straightforward. We thus use 
the ALR transformation with T0 as reference in our proposed workflow.

Illustrating the ALR transformation

In the following we illustrate how clusters on the 3-dimensional simplex transform to 
Gaussian clusters in 2-dimensional Euclidean space based on the ALR transformation 
using two different mixture distributions with Gaussian components in Euclidean space. 
Figure  1 illustrates compositional data in the original space and in the transformed 
space after applying the ALR transformation. The compositional data take values on the 

ALR(x) =

(

ln

(

x1

xD

)

, . . . , ln

(

xD−1

xD

))

,

CLR(x) =

(

ln

(

x1

m(x)

)

, . . . , ln

(

xD

m(x)

))

,

ILR(x) = CLR(x)�⊤,
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3-dimensional simplex which are visualised in ternary diagrams on the left. The data are 
transformed using the ALR transformation and then visualised again using a 2-dimen-
sional scatter plot on the right. The visualised datasets contain either four or five Gauss-
ian clusters in the transformed space. Details about the data generating process can be 
found in the Additional file 1.

In the first dataset (top row), three clusters are dominated by one component in the 
compositional vector and therefore these observations are placed in each of the corners 
of the ternary diagram. The fourth cluster has similar weights for component x2 and x3 
and slightly lower weights for component x1 in the compositional vector and therefore 
its observations are placed approximately in the middle of the ternary diagram. The vol-
ume of this pink cluster in the middle is rather comparable to the volumes of the orange 
and blue clusters on the simplex; however, the volume of this cluster is in comparison 
much smaller after ALR transformation in the Euclidean space. Also, the pink cluster has 
a spherical shape on the simplex, but an ellipsoid structure in Euclidean space.

In the second dataset (bottom row), the two greenish clusters in the bottom left and top 
corner of the simplex differ only slightly in their volumes. In Euclidean space, however, their 

Fig. 1 Two examples of artificial data with four (top) and five (bottom) clusters displayed in a ternary diagram 
(left) and after ALR transformation (right)
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volumes differ considerably. The orange cluster in the middle has a large volume on the 
simplex compared to the clusters with observations in the corners or on the edges, while 
in Euclidean space it is a very compact cluster in the center. This behaviour is even more 
pronounced for the purple cluster which is spread over a large area of the simplex whereas 
it has a compact ellipsoid structure in Euclidean space compared to the dark green cluster. 
In contrast, the orange and light green clusters have the same volume in Euclidean space 
whereas the light green cluster is much more compact on the simplex.

Figure 1 illustrates that clusters that are very compact in Euclidean space can have a large 
volume on the simplex. In addition clusters which are dominated by one component might 
have a larger volume in Euclidean space while being very concentrated in one corner of the 
simplex. This suggests the need to allow for different volumes and shapes of the clusters in 
Euclidean space which is not possible using k-means and thus requires the use of mixtures 
of Gaussian distributions where the variance-covariance matrix structure can be specified 
to allow for different shapes and volumes across clusters as well as allow for dependence 
between time points and independence between experiments.

Model‑based clustering

The standard form of a finite mixture model [41] is

where K is the total number of components, πk is the positive component size of the kth 
component with 

∑K
k=1 πk = 1 and θk is the parameter vector corresponding to the kth 

component distribution fk(.; θk).
Matrix-variate distributions for the components offer a natural way to model three-way 

data. This results in a finite mixture model with components distributed as matrix-normal 
[20]:

implying that conditional on component membership, Y = (yjt)j=1,...,J ;t=1,...,T  follows a 
J × T -dimensional matrix-normal distribution (MNJ×T ) with J the number of exper-
iments and T  the number of time points. Please note that T = T − 1 is used here to 
indicate that the number of time points differ between the original space and the trans-
formed space. The parameters of the matrix-normal distribution are the J × T  mean 
matrix M and the J × J  and T × T  variance-covariance matrices � and � . � meas-
ures the variability along rows (experiments) and � measures the variability along col-
umns (time points). A suitable constraint needs to be imposed on � and � to ensure 
identifiability.

The matrix-normal distribution is related to the multivariate normal distribution via

h(y;�) =

K
∑

k=1

πk fk(y; θk),

h(Y ;�) =

K
∑

k=1

πk�(Y ;Mk ,�k ,�k),

Y ∼ MNJ×T (M,�,�) ⇔ vec(Y ) ∼ NJT (vec(M),� ⊗�),
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with vec() the vectorisation operator and ⊗ the Kronecker product. Comparing these 
distributions indicates that much fewer parameters need to be estimated in the case of 
the matrix-normal distribution (e.g., for J = 2 and T = 5 we get a block matrix of size 
10× 10 with 2 · 3/2+ 5 · 6/2 = 18 parameters as opposed to 10 · 11/2 = 55 parameters 
in a general variance-covariance matrix). As a result of this more parsimonious compo-
nent specification, more groups of different size, volume and shape can be expected to 
be found.

The following specifications are imposed on the parameters of the components to 
obtain suitable cluster solutions. A general matrix with no constraints is assumed for 
the mean parameter. The variance-covariance matrix measuring variability between 
the experiments, � , is assumed to be a diagonal matrix as no dependence structure is 
expected between them, i.e., the experiments are assumed to be independent. Addi-
tionally, in order to allow for clusters of different volumes and shapes the values in 
the diagonal of � are allowed to vary between dimensions and components. This 
specification ensures that noise clusters with large volume as well as compact clusters 
consisting of very similar expression patterns can be identified simultaneously. This 
represents a major advantage over k-means clustering where only global restrictions 
across all components are possible. Between the time points some correlation struc-
ture is assumed. One can either specify a full correlation structure, i.e., � is a general 
correlation matrix, or restrict � assuming an autoregressive model of order 1 (AR1), 
resulting in a more parsimonious parameterisation which assumes conditional inde-
pendence between time points more than one time point apart conditional on inter-
mediate time points [42]. Other component distributions could also be considered, 
e.g., the t-distribution of skewed distributions, to allow for more flexible shapes of the 
clusters. However, using normal distributions has the advantage that the symmetry 
and the light tails imply that all observations in the cluster might well be represented 
by the mean, in particular if the cluster is compact.

To select the number of components, a penalised goodness-of-fit criterion such as 
the Bayes information criterion (BIC) or the ICL is typically used. These criteria are 
determined by

where ℓ(.| ˆθK ) is the log likelihood evaluated at ˆθK  , which is the maximum likelihood 
estimate of θK  , νK  is the number of free parameters in the mixture model with K compo-
nents and n is the number of genes. The difference between BIC and ICL is the penalty 
factor, i.e., the entropy which is added for the ICL and which measures the ability of the 
K-component model to provide a well separated partition of the data. A simulation study 
on artificial data showed that BIC and ICL had an excellent performance for selecting 
the number of clusters for mixtures of matrix-variate Gaussian distributions [20]. This 
is in line with the literature indicating that the BIC in general performs well in model-
based clustering despite not satisfying the regularity conditions [18]. These criteria may 
also be used to select among different models or transformations [24, 43].

BIC(K ) = −ℓ(.| ˆθK )+
νK

2n
ln(n),

ICL(K ) = −ℓ(.| ˆθK )+
νK

2n
ln(n)+ entropy,
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We use the ICL in our proposed workflow because this criterion aims not only at 
selecting a solution which provides a good fit to the data, but it also takes cluster 
separation into account. Hence, the selected solution is supposed to provide better 
results in a clustering context, in particular given that biologists perform cluster anal-
ysis to find groups of co-expressed genes where the functionality and the co-regula-
tion is still unclear. Therefore, rather than identifying the true number of underlying 
clusters in a dataset, it is of interest to identify small compact groups of genes with 
similar expression patterns across experiments.

Post‑processing of the cluster solution

The selected mixture model can be used to obtain a partition of the data by assigning 
each observation to the component where the posterior probability of belonging to 
the component given the observation is maximum. Different methods have been pro-
posed to assess cluster solutions using internal as well as external criteria.

Silhouette information [28] allows to evaluate the quality of a partition based on 
a distance metric. The silhouette width is determined as the average distance of one 
observation yi = (yitj)t=1,...,T ,j=1,...J  to the other members of its own cluster a(yi) and 
the minimum average distance to members of its second closest cluster b(yi).

To avoid the need of specifying a suitable distance metric, an alternative silhouette 
information was developed based on posterior probabilities which is thus applicable 
to assess the partition obtained from a mixture model [29]. The density-based silhou-
ette information (dbsi) of yi is defined as

where k0 is the cluster with the largest posterior probability τk(yi) and k1 is the group 
index for the second largest posterior of observation i. In order to avoid numerical insta-
bilities, the posterior probabilities were winsorized to be between 0.00001 and 0.99999 
in the numerical implementation. A large value of the dbsi for a given data point is an 
indicator that this data point firmly belongs to its assigned cluster whereas a small dbsi 
value indicates that there is some ambiguity in assigning this data point to one cluster. 
The dbsi metric allows to assess the separation between clusters in the transformed data 
space.

The dbsi information plot visualizes for each gene the dbsi value obtained grouped 
by cluster, with the values within each cluster being in decreasing order. This plot 
provides insights into the cluster sizes as well as the separation of the clusters. Based 
on this plot, one can assess how well the fitted mixture model allows to classify the 
observations into the clusters. For each cluster, one can also assess how easily which 
proportion of the genes can be assigned to this cluster.

s(yi) :=
b(yi)− a(yi)

max(a(yi), b(yi))

dbsi(yi) =
log(

τk0
(yi)

τk1
(yi)

)

maxι=1,...,n| log(
τk0

(yι)

τk1
(yι)

)|
,
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The dbsi information plot focuses on cluster quality in the transformed space based on 
the mixture model. We complement this information by combining the dbsi values with 
a measure of closeness to the cluster center in the original space based on the Euclidean 
distance. We build on a two-dimensional visualisation method recently proposed for a 
detailed diagnostic of the quality of a classification procedure where true class mem-
berships are known (class map; [30]). In this diagnostic plot, the probability of the best 
alternative class is plotted for each observation against the “farness” from the given class.

A similar approach can also be used in an unsupervised setting. To allow for a joint 
assessment of the solution in the original as well as the transformed space, we propose a 
cluster map which is obtained by plotting the dbsi from the mixture model fitted to the 
data in the transformed space against the distance to the cluster center in the original 
space with observations split into different facets based on cluster membership. The dis-
tance to the cluster center is determined using a scaled version of the Euclidean distance 
such that the values are in [0, 1]:

where pi is observation yi in the original space and c(pi) is the transformed estimated 
mean of the component with the largest posterior. The distance indicates how compact 
a cluster is in the original space, whereas dbsi allows to assess cluster separation in the 
transformed space based on the mixture model.

The cluster map plot consists of scatter plots of distance versus dbsi values for each of 
the clusters in facets. To better identify the regions of points and facilitate comparison 
across clusters, we suggest to add convex hulls for the observations of each cluster. From 
a biological point of view we are interested in well separated and compact clusters allow-
ing for easy interpretation of the functionality of the contained genes. This implies that 
an ideal cluster would be one where observations assigned to the cluster have high dbsi 
values and a low distance to the cluster center and hence, all observations are located in 
the top left corner of this scatter plot.

Overall, the dbsi information plot as well as the cluster map scale well in the number 
of experiments, the number of time points and the number of clusters and are therefore 
well suited for high-dimensional data containing many observations. Traditional visuali-
sations of the clusters in the transformed and original space can become quite challeng-
ing as the dimensionality, especially the number of experiments, increases.

In addition to evaluating cluster solutions based on internal criteria, cluster solutions 
on genomic data are also typically assessed using external information, e.g., taking into 
account functional groupings of the genes such as gene ontology (GO) terms. Individual 
clusters are evaluated regarding gene set enrichment of functional groups. For fission 
yeast, the gene association file containing GO term information is available from Pom-
Base [33].

Software implementation

The procedure can be implemented combining several R packages. Package coseq [24, 
44] implements calculation of the normalised expression profiles (Step 1). Package 

dpi ,c(pi) =

√

∑J
j=1

∑T
t=1(pitj − c(pi)tj)

2

maxι=1,...,ndpι,c(pι)
,
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robCompositions [25] implements data transformations of compositional data includ-
ing the ALR and the inverse ALR (Step 2). Package MatTransMix [45] implements the 
matrix-variate normal mixture model (Step 3), assuming a general variance-covari-
ance matrix � . The restricted autoregressive version of order 1 (AR1) is fitted with an 
implementation of the expectation-maximisation algorithm using code available at the 
GitHub project page. For fitting the restricted version, the best solution obtained using 
MatTransMix with the general specification for � is used for initialisation. The restricted 
version is thus obtained in a subsequent refinement step given the solution for a gen-
eral variance-covariance matrix � . To fit mixture models to a two-dimensional version 
after flattening out the biological units, packages mclust [46] and Rmixmod [47] can 
be used for maximum likelihood estimation of finite mixtures of multivariate normal 
distributions.

Code for the proposed workflow including also the visualisation methods for post-pro-
cessing the cluster solution (Step 4) is available at the GitHub project page. The reposi-
tory contains the R code for the newly developed cluster map, the dbsi plot and scripts 
for reproducing the entire data analysis performed in this study.

Results
Analysing the fission yeast dataset

We applied the proposed workflow to a dataset collected in a study where global changes 
in transcript and protein levels in the fission yeast stress response were investigated [32]. 
The fission yeast data can be downloaded from the Gene Expression Omnibus and is 
also available in the Bioconductor package fission. The data comprises global transcrip-
tion profiles of two strains, the fission yeast wild type (WT) and the atf21 mutant (Mut) 
strains, over an osmotic stress time course following treatment with 1  M sorbitol at 
0, 15, 30, 60, 120 and 180 minutes. Strand-specific single end sequencing of total RNA 
was performed in biological triplicates on the Applied Biosystems SOLiD 5500xl Genetic 
Analyzer System. In total there are n = 7039 genes, T = 6 time points and J = 2 dif-
ferent experimental units for 3 biological replicates. The yeast samples were exposed to 
oxidative stress, and half of the samples contained a deletion of the gene atf21 (at locus 
SPNCRNA.1164). One of the goals of the fission yeast data analysis is to find groups of 
co-expressed genes over time by additionally taking into account the information about 
the different experiments.

The raw read counts of each of the six experiments were used to calculate the nor-
malised expression profiles using the coseq package. After taking the means over the 
biological replicates, the normalised expression profiles were transformed to ALR coor-
dinates using the robCompositions package. In Fig. 2, the data associated with each of 
these pre-processing steps are visualised for the knockout gene atf21. The raw counts are 
shown in the top left panel for all six experiments. In the top right panel the normalised 
expression profiles are given which sum up to one for each experiment and all values are 
therefore in the range between zero and one. In the bottom panels the corresponding 
mean profiles (left) and ALR coordinates (right) are displayed.

A differential expression analysis for gene filtering was performed using DESeq2. Fol-
lowing the DESeq2 workflow [48], a design formula was used that models the strain dif-
ference at time point T0 = 0, the difference over time, and any strain-specific differences 



Page 12 of 21Scharl and Grün  BMC Bioinformatics           (2024) 25:90 

over time. Differentially expressed genes between the strains at any two time points were 
selected by taking only genes with an adjusted p-value below 0.01 and an absolute log2 
fold change larger than 1. These thresholds correspond to the defaults usually employed 
and yield a subset of 769 differentially expressed genes. Selecting different thresholds 
would result in a different set of differentially expressed genes. Given that cluster-
ing aims at suitably partitioning the set of given objects, clearly a different set would 
also induce a different cluster solution. In this subset, the most abundant GO terms are 
GO:0005634 (nucleus, 361 genes), GO:0005829 (cytosol, 284 genes), GO:0005737 (cyto-
plasm, 147 genes) and GO:0005515 (protein binding, 111 genes).

Model-based clustering of the transformed three-way data was performed using R 
package MatTransMix. Models with the number of components between 1 and 20 were 
fitted using a diagonal variance-covariance matrix for the experiments and a full correla-
tion matrix over time. ICL selects the 10 components solution for the ALR transformed 
data. This is in line with the BIC which would also point to the 10 components solution. 
These solutions are used to initialise the fitting of the restricted version based on AR1 
to account for temporal correlation. For the restricted versions, both ICL and BIC also 
suggest to use the solution with 10 components given that the criteria show a consider-
able decrease up to 10 components and are quite flat afterwards. Based on these criteria, 
these AR1 restricted solutions are preferable to the full versions. In the following, we 
consider the 10-component solution obtained with the AR1 restriction.

Figure 3 provides the dbsi information plot for the cluster solution obtained, with the 
clusters sorted by their average silhouette width. The cluster sizes range from 26 to 181 
genes indicating there is not a single cluster which would contain the majority of genes. 
Clearly, in general, clusters with high average dbsi values are those which contain only 
few genes. Clusters 1 and 2 contain only a rather small number of genes and show a 
very good separation for all genes contained resulting in high average dbsi values. By 
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contrast, cluster 10 has the smallest average dbsi value and therefore the worst separa-
tion. The overall average dbsi is 0.59 which is a moderate value for the dbsi. Results thus 
indicate that in the transformed space some clusters were identified where the observa-
tions can be clearly assigned to these clusters, whereas for other clusters assignment is 
rather ambiguous.

In order to get a more detailed view on the quality of this cluster solution, we inspect 
the cluster map in Fig. 4. For the cluster solution obtained, we can see that even though 
clusters 1 and 2 have very similar average dbsi values, they differ considerably in the dis-
tance to their cluster centers. Cluster 2 is a rather compact cluster as indicated by dis-
tance, whereas cluster 1 shows the overall largest average distance of the corresponding 
genes to their cluster center. Cluster 10 on the other hand has a very small average dbsi 
value but is a very compact cluster in the original space. The same is true for cluster 5.

We complement the evaluation of the cluster solution and assessment of the quality 
of specific clusters by also inspecting the gene expression patterns of the individual 
clusters both in the transformed and original data space. Some selected clusters are 
visualised in Fig.  5 with the third dimension, i.e., the experiments wild type (WT) 
and mutant (Mut), shown side by side. This implies that the x-axis represents the 
dimension of time as well as the experiments. Note that such a visualisation is easily 
possible for this analysis because of the rather low-dimensional nature of the three-
dimensional dataset. In the top panel, the ALR transformed data are given for the 
WT and MuT experiment next to each other. In the bottom panel the corresponding 
mean profiles in the original space are shown. Cluster 1 which contains genes with 
good cluster separation but bad compactness is given on the left. As expected, the 
gene expression profiles vary a lot in their magnitude. Cluster 2 on the other hand is 
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a very compact cluster with good cluster separation. Similar, clusters 5 is again a very 
compact cluster, whereas cluster 7 is less compact. Cluster 7 also contains gene atf21 
which is shown in Fig. 2. This cluster contains 87 genes which show the highest gene 
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Fig. 4 The cluster map plot for the cluster solution with 10 components with facets for each cluster and 
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expression 30 min after start of the experiment. The corresponding genes show a very 
similar expression pattern in the wild type strain (left) and the mutant (right). The 
composition of the known functionality of these genes is very similar to the global 
functionality, i.e., GO:0005634 (nucleus, 42 genes), GO:0005829 (cytosol, 46 genes), 
GO:0005737 (cytoplasm, 14 genes) and GO:0005515 (protein binding, 15 genes).

To highlight the advantages of the three-way clustering approach we also investigate 
clustering results obtained for the transformed data when using two-way clustering 
methods as well as k-means. For two-way clustering the fission yeast data, we flatten 
out the third dimension and use a traditional two-way clustering with package mclust. 
We impose an unconstrained variance-covariance specification to the component dis-
tributions because we want to allow for varying volume, orientation and shape across 
clusters. Flatting out the third dimension, i.e., the experimental conditions, yields a 
dataset with 769 genes and 10 variables after ALR transformation. Comparing models 
fitted with 1 to 20 components, a cluster solution with 4 components was selected by 
ICL (where BIC would have selected 5 components).

The dbsi information plot as well as the cluster map plot of the two-way cluster-
ing solution are given in Fig.  6. The dbsi information plot indicates that in general, 
the dbsi values are comparable for the two-way and three-way clustering approaches. 
Cluster 1 is a very large cluster containing a lot of genes with high dbsi values indi-
cating good cluster separation and also some genes with very bad cluster separation. 
Clusters 2 and 3 are characterised by containing observations where the dbsi values 
vary considerably. Cluster 4 is generally a cluster with very low dbsi values. The clus-
ter map plot on the right also allows to inspect the compactness of the clusters in 
the original space. This shows, that in particular cluster 1, which has a good cluster 
separation according to the dbsi values, contains a lot of genes with large distance 
to its cluster center. This can also be seen in Fig. 7. Cluster 2 on the other hand is a 
very compact cluster where the corresponding genes have only a small distance to the 
cluster center and the gene expression profiles are easily interpretable.
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The adjusted Rand index [49] between the three-way cluster solution and the two-way 
cluster solution is 0.15. This indicates only a rather low congruence between the parti-
tions, most likely due to the difference in number of clusters. The contingency table of 
the two cluster solutions is given in Table 1 on the left. Good agreement between the 
cluster solutions is inherent for cluster 9 of the three-way clustering and cluster 4 in the 
two-way clustering (where only 3 genes were put into different clusters). All genes of 
cluster 5 in the three-way clustering are contained in cluster 2 of the two-way cluster-
ing. However, cluster 2 of the two-way clustering also contains cluster 8 of the three-way 
clustering and some more genes. This comparison shows that while there is clearly some 
congruence between several clusters obtained with the two methods there is also a lot of 
difference between the partitions.

Finally, also the k-means algorithm [14] was used for clustering the fission yeast data. 
The flattend out data to two dimensions was used. Note that this also corresponds to 
a three-way version of k-means which implies isotropic clusters. The number of clus-
ters were selected based on the maximum of the averaged Silhouette width [15] which 
resulted in three clusters. The comparison of the three-way clustering and the k-means 
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Table 1 Contingency table of the three-way versus two-way cluster solution (left) and the k-means 
cluster solution (right)
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clustering solution gives an adjusted Rand index of 0.14 (see Table 1 on the right). In 
this case an even stronger hierarchical nesting of the clusters of the three-way clustering 
in the k-means partition can be discerned. All observations in clusters 3, 5, 7 and 9 of 
the three-way clustering are completely contained in one single cluster of the k-means 
solution. For k-means clustering, however, no posterior probabilities are available and 
therefore no dbsi plot and cluster map can be used to investigate the cluster solution in 
more detail.

The comparison of the three-way clustering solution with the two-way and k-means 
clustering solutions clearly indicates the advantage of using the three-way clustering 
approach which results in a more parsimonious while still flexible parametrisation of 
each of the components in the mixture model and hence allows to identify more clusters 
and thus for a more fine-grained analysis.

Simulation study

We investigate the performance of the proposed three-way clustering approach in a sim-
ulation study using artificial data and compare results to those obtained using two-way 
clustering and k-means clustering. We focus in particular on the ability to determine a 
suitable number of clusters based on the criteria considered in the application on the 
fission yeast dataset as well as on the congruence of the partition obtained with the true 
classification of the observations based on the adjusted Rand index.

We proceed as follows. We generate 100 artificial three-way datasets with the same 
structure as the fission yeast dataset, i.e., 2 experiments, 5 time points, and 769 genes. As 
data generating process we use the mixture model estimated to the fission yeast dataset 
in the three-way clustering procedure, i.e., the 10-component mixture of matrix-variate 
Gaussian distributions imposing the AR1 restriction on the column-wise covariance 
matrix. We draw class assignments based on the component sizes and—given class 
assignment—we draw observations from the matrix-variate Gaussian distribution with 
mean and variance-covariance matrices estimated for the component.

For each dataset, we use four different methods to cluster these observations: three-
way clustering using a full column-wise covariance matrix, three-way clustering using 
AR1, two-way clustering and k-means clustering. For the three model-based approaches 
we select the suitable number of clusters using the ICL and consider the BIC as well to 
assess its performance. For k-means we use the maximum average Silhouette width as 
criterion to select the number of clusters as well as fixed the number of clusters to 10, 
the true number of clusters.

The adjusted Rand index between the true cluster memberships and the eight differ-
ent clustering solutions are given on the left of Fig. 8. The results clearly indicate the 
superiority of the three-way clustering to obtain similar partitions to the true clas-
sification than two-way clustering or k-means clustering. Three-way clustering using 
AR1 slightly outperforms classical three-way clustering using a full column-wise 
covariance matrix. For k-means only assuming that the number of clusters is known 
leads to some reasonable congruence with the true classification, while results are 
poor if the number of clusters are selected based on the Silhouette width criterion. 
Regarding the use of either ICL or BIC to select the number of clusters in a model-
based clustering context, the simulation study results show that this choice has only 
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a very minor impact on the performance. Figure  8 on the right shows the number 
of clusters selected by the procedures. Clearly for three-way clustering, the selected 
number of clusters are quite close to the true number regardless of if the full or the 
AR1 restricted variants are considered. Two-way clustering and k-means select con-
sistently a much lower number of clusters which is also in line with the results in the 
application on the fission yeast dataset.

The results of the simulation study clearly indicate that the three-way clustering 
procedure performs well and using the ICL (but also the BIC) for selecting the num-
ber of clusters is a reasonable choice. Regarding the use of two-way clustering and 
k-means one might expect to clearly underestimate the true number of clusters pre-
sent in a dataset.

Conclusions
In this work we proposed a new workflow for analysing three-way RNA-seq data, 
i.e., where genes are investigated over time under different experimental conditions. 
The four-step procedure consists of (1) pre-processing RNA-seq data, (2) transform-
ing RNA-seq data, (3) model-based clustering using matrix-variate component dis-
tributions and (4) post-processing the cluster solution obtained. For pre-processing, 
we propose to calculate normalised expression profiles over time which have similar 
properties as compositional data. After applying the ALR data transformation, one 
may assume a matrix-variate normal distribution for the clusters in the data. We thus 
propose to fit a finite mixture model with components distributed as matrix-normal. 
A new visualisation method was developed for post-processing of the cluster solution. 
The cluster map visualises the density-based silhouette information (dbsi) calculated 
from the posterior probabilities in the transformed space and the distance of a gene to 
its cluster center in the original space. The proposed workflow was applied to a data-
set from fission yeast which has a three-way structure. We also compared results from 
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the three-way clustering with a two-way clustering approach and k-means cluster-
ing after flattening out the experiments. Results indicate that the three-way approach 
allows for a more detailed view on the data and encourages the detection of groups 
of genes with similar temporal expression patterns over time across the different 
experiments.

The application focused on three-variate data consisting only of two experiments in one 
dimension. In the future we want to extend our approach to datasets with more than two 
experiments. In such situations it might be worthwhile to investigate the use of a more 
parsimonious specification of the mean vectors based on a regression model where the 
covariates characterise the experimental units. Additionally, it would also be interesting to 
compare the presented three-way clustering approach to triclustering.
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