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Background
Identification and characterization of potential interactions between drugs and diseases 
are crucial challenges for drug discovery and disease treatment. Conventional methods 
for validating drug–disease associations rely on costly and time-consuming experimental 
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procedures. The average cost of bringing a new drug to market exceeds about 2 billion 
dollars and 10–15 years before it can reach the pharmacy shelf [1–3]. Therefore, finding 
new indications for existing drugs, also known as drug repositioning, is an economically 
viable and time-saving strategy [4, 5]. Computational methods for drug repositioning 
facilitate the identification of potential drug–disease associations by screening large-
scale data sources, enabling more rational design of clinical trials. Such strategies can 
accelerate the drug discovery pipeline and increase the availability of new treatments [6].

The utilization of computational methods for drug repositioning in drug discovery 
has become widespread [7, 8]. During this time, a growing array of methodologies has 
emerged. For example, methods rooted in matrix decomposition, like the one by Cui 
et al. [9] utilize dual-network  L2,1-collaborative matrix factorization for predicting novel 
drug–disease interactions. Fu et al. [10] introduced MFLDA, a method that decomposes 
heterogeneous data sources’ matrices into low-rank forms using matrix tri-factorization, 
thus exploring and exploiting their inherent and shared structure. MFLDA facilitates 
the selection and integration of these data sources by assigning varying weights to each 
source. Matrix factorization diminishes data dimensionality by transforming matrices 
into low-rank structures, extracting crucial features and patterns. However, with exten-
sive or densely high-dimensional matrices, its computational demands might become 
excessive, resulting in reduced efficacy in managing considerable noise.

Network-based drug repositioning models have emerged to confront this challenge, 
striving to capitalize on intricate relational networks among biological entities such as 
drugs and diseases. These models amalgamate varied information sources, encompass-
ing protein–protein interaction networks, gene expression data, and drug compound 
information, to anticipate potential novel drug–disease associations. For instance, 
Zhang et al. [11] proposed NTSIM to predict unobserved drug–disease associations and 
extended it to NTSIM-C for classifying therapeutic associations. Zhang et al. [12] pro-
posed SCMFDD, projecting drug–disease associations into two low-rank spaces, reveal-
ing latent features, and introducing feature-based similarity and semantic constraints. 
Lu et al. [13] proposed heterogeneous information network (HIN) based model, namely 
HINGRL. Zhou et al. [14] introduced NEDD, using varied-length metapaths to explic-
itly capture internal relationships within drugs and diseases and obtain low-dimen-
sional representation vectors. Martínez et al. [15] developed DrugNet, a network-based 
method predicting new drug uses and treatments for diseases. It utilizes a heterogene-
ous network formed from disease, drug, and target information, identifying novel asso-
ciations by information propagation.

Despite the commendable interpretability inherent in network-based methodologies, 
their performance is deemed unsatisfactory. However, the drug–disease association 
network naturally has a graph structure, which enables techniques that leverage graph 
neural networks to adeptly preserve essential information, eliminate noise, and extract 
pivotal patterns and features. Therefore, this enhances the accuracy of information avail-
able for prediction and analysis in graph-based data scenarios. Some methods have been 
proposed to exploit the advantages of graph neural networks for drug–disease associa-
tion prediction. Yu et al. [16] proposed LAGCN, a method that integrates heterogene-
ous networks, employs graph convolutional operations, and incorporates an attention 
mechanism. Yang et  al. [17] introduced a model that infers drug–disease associations 
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by applying network-embedding algorithms alongside a random forest classification 
approach. Gu et al. [18] introduced REDDA, a heterogeneous graph neural network with 
three attention mechanisms for sequential drug disease representation learning. Wu 
et al. [19] proposed EMP-SVD, a novel framework that predicts drug–disease associa-
tions by integrating multiple meta-paths and singular value decomposition. Li et al. [20]. 
proposed the NIMCGCN method, which integrates Graph Convolutional Networks 
(GCN) with Neural Inductive Matrix Completion (NIMC) models to discover associ-
ations between miRNA and diseases. VGAE [21]. introduced by Kipf et al., is a graph 
neural network model based on the Variational Autoencoder (VAE) framework, which 
models node features through an encoder-decoder structure, mapping them to a latent 
space distribution. Meng et al. [22] leveraged deep learning within a heterogeneous net-
work framework to identify potential drugs related to diseases. Their model, DRWBNCF, 
employs weighted bilinear graph convolution operations, intricately fusing information 
about drug–disease associations and drug–disease similarity networks. Tang et al. [23] 
proposed the DRGBCN model, which exploits the embedding of graph convolutional 
layers and local interactions between drugs and diseases, thus significantly improving 
the accuracy and reliability of predictions. Ghasemian et al. [24] applied meta-learning 
methods in network analysis to develop a stacked model that integrates complex predic-
tion algorithms from various domains, effectively mitigating changes in link prediction. 
Additionally, many studies [25, 26] have indicated that collaborative drug combination 
prediction is widely applied in drug repositioning. For instance, the SNRMPACDC 
model proposed by Li et al. [27] combines Siamese convolutional networks and random 
matrix projection to predict collaborative combinations of anticancer drugs. NLLSS [28] 
is a semi-supervised learning-based model that focuses on predicting collaborative drug 
combinations, enhancing the model’s predictive performance through methods involv-
ing non-negative low-rank and sparse structures. They play a crucial role in revealing the 
associations between drugs and biomolecules, as well as in drug repositioning.

Although these methods can extract edge information through extensive informat-
ics learning, they often struggle to fully mine the complex interactions between nodes 
in heterogeneous graphs, which may affect the accuracy of predictions. To address 
these challenges, we propose a heterogeneous information graph representation 
learning method for predicting drug–disease associations, named WMAGT, which 
utilizes weighted multi-aggregate graph convolutional network and graph trans-
former to exploit discriminative node representations. The workflow of the proposed 
method is demonstrated in Fig.  1. Specifically, the proposed WMAGT approach 
first integrates drug–drug similarity networks, disease–disease similarity networks, 
and validated drug–disease association networks to construct a comprehensive het-
erogeneous information network. Then, graph transformer combined with weighted 
multi-aggregate graph convolutional neural network are used to learn efficient char-
acterizations of drugs and diseases from this heterogeneous information network. 
Prior to the predictor, we integrated domain embeddings and interaction embeddings 
through neural collaborative filtering for the final link prediction scoring. To evaluate 
the performance of the proposed method, we cross-validated the predictive perfor-
mance of WMAGT on three benchmark datasets and compared it with four state-
of-the-art methods while conducting ablation experiments. Experimental results 
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provide strong evidence of the effectiveness of WMAGT in discovering drug indica-
tions, which is important for advancing drug repurposing and reducing adverse drug 
reactions in the field of drug discovery. The main contributions and advantages of 
WMAGT include:

1. Proposing a representation learning method based on heterogeneous information 
graphs, which fully utilizes the multi-source information of drugs and diseases and 
considers their multi-level relationships.

2. Adopting a representation learning framework of Graph Transformer and Weighted 
Multi-Aggregation Graph Convolutional Neural Network, effectively eliminating the 
impact of heterogeneity and capturing relationships to learn more effective node rep-
resentations.

3. Demonstrating through experiments on three public datasets that this method has 
broad application prospects in the field of drug discovery. Our approach not only 
outperforms existing models in predictive performance but also shows significant 
improvement in understanding complex biological networks.

Methods
In this study, we propose a novel computational method, WMAGT, for drug repo-
sitioning, aiming to discover new indications for existing drugs by inferring potential 
drug–disease associations. First, we build a heterogeneous network that incorporates 
various types of relations in the data set, such as drug–drug similarity network, disease–
disease similarity network, and drug–disease association network. Then, we utilize an 
end-to-end model to learn the latent features of the network and predict the unknown 
associations.

Fig. 1 The overall architecture of the proposed WMAGT. WMAGT involves three main steps. First, drug 
and disease similarity networks are jointly encoded using GCN and graph transformer for representation 
projection. In the second step, matrix operations project drug and disease representations in the network, 
generating new information. Lastly, the domain information from the first step and interactive information 
from the second step are utilized in the NCF module, and multiple loss functions along with MLP are 
employed to comprehensively model the drug–disease relationship
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Benchmark datasets

To explore heterogeneous network prediction methods for drug–disease associations, we 
utilized three publicly available real datasets to assess the efficacy of our model. The first 
dataset, Fdataset [29], comprises 313 diseases from the OMIM database [30] and 553 drugs 
from the DrugBank database [31], along with 1933 known associations between them. 
Another dataset, termed as Cdataset [32], consists of 663 drugs from the DrugBank data-
base and 409 diseases from the OMIM database, encompassing 2532 established associa-
tions between drugs and diseases. The third dataset is LRSSL [33], which comprises 763 
drugs from the DrugBank database, 681 diseases from the MeSH database, and a collection 
of 3051 validated associations between drugs and diseases. The essential statistical informa-
tion of these three datasets is presented in Table 1.

The construction of heterogeneous information graph

To predict potential drug–disease associations, this research employed network analysis 
methods based on a known drug–disease association network denoted as G. G is repre-
sented by an n × m binary matrix A, where n and m represent the number of drugs and dis-
eases, respectively. The matrix Aij holds a value of 1 or 0, indicating the presence or absence 
of an experimentally validated association between drug ri and disease dj.

Two additional similarity networks were constructed: a drug–drug similarity network Gr 
and a disease–disease similarity network Gd. These networks are represented by n × n and 
m × m matrices Ar and Ad, respectively. The values Ar(i, j) and Ad(i, j) represent the similari-
ties between drug ri and drug rj, and between disease di and disease dj, respectively. These 
similarities were computed based on various characteristics including chemical, pharmaco-
logical, therapeutic, phenotypic, genetic, and environmental properties of drugs or diseases.

To enhance accuracy and reduce noise, a k-nearest neighbor approach was employed. 
It considered only the k most similar neighbors for each drug or disease. The extended 
k-nearest neighbor sets of drugs or diseases, represented as Ñk , comprised the individual 
entities along with their k nearest neighbors. Ar(i, j) and Ad(i, j) illustrate the similarities 
among drugs or diseases, considering their extended k-nearest neighbor sets Ñk . Mathe-
matical representation:

(1)G = (Aij)n×m

(2)Gr = (Ar i, j )n×n

(3)Gd = (Ad

(

i, j
)

)m×m

Table 1 Details of the three benchmark datasets

Datasets Drugs Diseases Associations

Fdataset 593 313 1933

Cdataset 663 409 2532

LRSSL 763 681 3051
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Considering two sets representing drugs (R) and diseases (D), where each r ∈ R and 
d ∈ D introduces an association label Yr,d signifying the presence Yr,d = 1 or absence 
Yr,d = 0 of an association between drug r and disease d. Consequently, inferring the asso-
ciation label Yr,d for a given drug r and disease d relies on known associations within the 
sets. The expression for the association label Yr,d remains defined as:

This representation aims to establish the foundation of the drug repositioning prob-
lem, framing it as a task of predicting association labels.

Graph convolutional network module

In a drug–disease heterogenous graph, nodes represent various drugs and diseases. Typ-
ically, each node contains its own similarity information, and the edges connecting two 
nodes represent the relationship between them. We employ Graph Convolutional Net-
works (GCN) [34–37] to integrate node information, which usually consists of aggrega-
tion functions and update functions. Aggregation functions are applied to each node/
edge to gather information from their neighbors, while update functions generate new 
representations for each node/edge based on the collected information and the previous 
representation. The update function is defined as follows:

Here, H(l) represents the input features at layer l in the GCN. H(l+1) signifies the output 
features at layer l + 1 after the convolution operation. σ is the activation function (com-
monly ReLU or Leaky ReLU). W(l) is the learnable weight matrix at layer. Ã = A+ In 
represents the adjacency matrix of the graph, where A is the original adjacency matrix, 
and In is the identity matrix. D̃ is the diagonal node degree matrix of Ã.

Node attentions in graph transformer module

Recently, the Transformer model has extended its application beyond the field of natu-
ral language processing to include a wide range of tasks, including link prediction. In 
the information integration module, we have incorporated both the graph transformer 
[38–41] and GCN, thereby enhancing the model’s flexibility and performance. The two 
fundamental components of the Transformer are the dot-product attention mechanism 
and the feedforward network, playing crucial roles in link prediction tasks.

The graph attention formula is:

where h(l)j  is the i-th node’s feature vector in layer l, W(l) is the layer’s weight matrix, n is 
the graph size, and α(l)

ij  is the attention weight between nodes i and j in layer l, computed 
by

(4)Yr,d =

{

1 if r is associated with d
0 otherwise

(5)H (l+1) = σ

(

D̃− 1
2 ÃD̃− 1

2H (l)W (l)
)

(6)h
(l+1)
i =

n
∑

j=1

α
(l)
ij W

(l)h
(l)
j
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where e(l)ij  is the similarity between nodes i and j in layer l, computed by:

where a(l) is a differentiable similarity function in layer l, such as dot product, bilinear, 
multilayer perceptron, etc.

Layer-wise transformation At each layer of the Graph Transformer, the hidden states 
of nodes are updated using multi-head self-attention and feedforward neural networks. 
The transformation can be summarized as [42]:

Aggregation across heads The outputs from multiple attention heads are aggregated to 
obtain the final node representations:

where H represents the number of attention heads.

Overview of the proposed WMAGT model

As shown in Fig.  1, this section will delve into the detailed description of the model, 
delineating its architecture, methodologies employed, and the intricate components 
contributing to its predictive capability.

Graph representation learning with mixed aggregation parameters

In the context of learning node neighborhood information, a hybrid approach is 
employed utilizing mixed parameters, integrating two distinct graph convolution opera-
tions to acquire meaningful representations of graph data. The fundamental idea of 
hybrid parameters involves a weighted combination of the outputs of two graph convo-
lution operations, thereby generating the final node features.

here, α and β control the relative influence of the two aggregation methods. The Recti-
fied Linear Unit function (ReLU) [43] is employed as activation function, while Pool rep-
resents a customized pooling operation involving specific manipulations of the 
adjacency matrix. This process involves the product of the adjacency matrix and node 
feature matrix, square operations, and some matrix operations. The entire operation can 
be expressed mathematically as follows: Z = (A · XW)2 −

(

A2 ⊙ XW2
)

 . Here, A is the 

adjacency matrix of the graph, XW is the node feature matrix, and Z represents the new 
node representation matrix obtained after the graph pooling operation.

(7)α
(l)
ij =

exp
(

e
(l)
ij

)

∑n
k=1 exp

(

e
(l)
ik

)

(8)e
(l)
ij = a(l)

(

W (l)h
(l)
i ,W (l)h

(l)
j

)

(9)h
(l)
i = MultiHeadAttention

(

h
(l−1)
i

)

+ FeedForward
(

h
(l−1)
i

)

(10)h
(l)
i = concat

(

h
(l,1)
i , h

(l,2)
i , . . . , h

(l,H)
i

)

(11)out = β · ReLU(Pool(XW ,A))+ α · ReLU
(

D̃− 1
2 ÃD̃− 1

2XW
)
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This operation introduces additional information into the graph structure, aiming to 
better capture the relationships between nodes. In general, the introduction of hybrid 
parameters imparts adaptability to the model, allowing it to determine the relative con-
tributions of different graph convolution operations during the learning process and 
thus better adapt to diverse graph structures.

Computing weighted matrices for drug and disease nodes

To compute the weighted matrices for drugs and diseases, we utilize the input feature 
matrix X ∈ R

N×d , where N represents the number of nodes and d denotes the feature 
dimension. The weight matrix, denoted as W ∈ R

d×d′ , corresponds to the output feature 
dimension d′. The graph’s adjacency matrix, A ∈ {0, 1}N×N , demonstrates connections 
between nodes in a symmetric matrix form. The weighted feature matrix is obtained 
from this process, which can be represented as:

the iterative graph convolution concludes with the normalization of the resulting feature 
matrix using a normalization matrix represented as:

Furthermore, an element-wise addition of a bias term is performed to further refine the 
output matrix.

Compute the element‑wise product of drug and disease embeddings

Given an input drug embedding matrix as D ∈ R
Ndrug×d , and a Disease Embedding 

matrix as E ∈ R
Ndisease×d , where Ndrug and Ndisease represent the quantities of drugs and 

diseases respectively, and d represents the embedding dimension.
Projection of Drug and Disease via Linear Mapping:

this involves computing the element-wise product of drug and disease embeddings. For 
instance, let Dij represent the row and jth column element of matrix D, and Eij represent 
the ith row and jth column element of matrix E. The element-wise product P can be 
obtained as: Pij = Dij × Eij . The resulting matrix P captures the element-wise products 
of the drug and disease embeddings. This process facilitates the exploration of interac-
tions between drugs and diseases within a feature space defined by their embeddings.

To normalize the association matrix P,  L2 normalization is applied row-wise post ele-
ment-wise product computation. Each row’s  L2 norm is computed, and its elements are 
divided by this norm, ensuring unit  L2 norm per row. The normalization formula is: 
Pnormij =

Pij
√

�N
k=1P

2
ik

 , Where N denotes the column count, and the summation extends 

(12)
XW = X ·W

(13)
out = norm · out

(14)out = out + self .bias

(15)y = x1 · P1

(16)y = x2 · P2
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over the row’s elements. This yields a matrix Pnormij with standardized rows, enhancing 
association representation and minimizing dataset bias.

Neural collaborative filtering for drug and disease expression

Neural Collaborative Filtering (NCF) [44] is a neural network-based collaborative fil-
tering algorithm designed for learning relationships between users and items for 
recommendation purposes. The implementation of NCF in our model involves key com-
ponents: Neighbor Embedding Process, defines the neighbor embedding process, and 
integrating information from neighbors of drugs and diseases to better capture relation-
ships between nodes. Interaction Embedding Process, defines the interaction informa-
tion between drugs and diseases. This section mainly involves calculating interaction 
embedding through element-wise multiplication and normalization operations. Decod-
ing Process, defines the decoder, transforming embedded node representations into final 
prediction scores. This process primarily involves linear transformations and non-linear 
activation functions.

In summary, in the forward method of the model, node embedding representations 
are first obtained through processes such as neighbor embedding and interaction 
embedding. Subsequently, the decoder yields the final prediction scores. The core idea 
of Neural Collaborative Filtering involves learning implicit relationships between drugs 
and diseases through processes such as embedding, neighbor embedding, interaction 
embedding, and decoding.

Neighbor‑weighted interaction decoding

In this module, the descriptions of drug–disease associations, drug proximity, and dis-
ease proximity are amalgamated into a unified vector h̃r,d using the concatenation opera-
tion ⊕ , defined as:

Here, the operator ⊕ signifies concatenation, facilitating the formation of an encom-
passing representation that merges established associations with contextual information 
drawn from drug and disease proximities.

Subsequently, linear transformations and ReLU activation were utilized in processing 
the hidden layers. In each hidden layer i where i ranges from 1 to the length of hidden_
dims, the use of linear transformations and ReLU activation generated zi. Afterwards, at 
the output layer, linear transformations and Sigmoid activation were applied to handle 
the outputs from the hidden layer zlen(hidden_dims) , producing the output y. The overall 
model output Y can be interpreted as probabilities for specific categories.

MLP‑based prediction

The introduction of Multilayer Perceptron (MLP) is motivated by its ability to capture 
intricate nonlinear relationships, extract advanced features, manage sparse data, and 
exhibit a flexible architecture adaptable to various data traits. Within drug–disease 
association studies, integrating MLP aims to enhance the accurate prediction and inter-
pretation of complex drug–disease associations, thereby providing deeper insights into 
correlation studies within the pharmaceutical domain.

(17)h̃r,d = hr,d ⊕ hr,d ⊕ h̃r ⊕ h̃d
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Forward propagation in an MLP involves multiple layers, each with numerous neurons. 
Assuming inputs X, H neurons in the hidden layer, output Y, weight parameters W, and 
biases b, the forward propagation can be represented as:

Parameters setting

Hyperparameter settings are crucial for fine-tuning the neural collaborative filtering model, 
covering dimensions like node embedding, neighbor embedding, and decoder hidden 
layers. Specifically, the node embedding dimension is set at 64, the neighbor embedding 
dimension at 32, and the decoder hidden layer dimension is specified as (64, 32). The learn-
ing rate is set to 5e − 4, and the dropout rate is 0.3. Additionally, a comprehensive set of 
loss functions is utilized, encompassing binary cross-entropy loss, focal loss, mean squared 
error loss, and ranking loss. For the focal loss, parameters are configured with α set to 0.5 
and γ set to 2.0. The graph transformer network parameter is defined as λ = 0.8. Through-
out the training process, a holistic consideration of these loss functions is conducted, aim-
ing to comprehensively optimize the model. These configurations are designed to strike 
a balance between model complexity and performance, ensuring optimal predictive out-
comes across diverse facets.

Loss Function Formula:

Here, α controls the balance of weights between positive and negative samples, and γ 
regulates the focus of the focal loss. We use the Adam [45] optimizer to update model 
parameters, ensuring efficient training. A cyclic learning rate scheduler dynamically 
adjusts the learning rate, enhancing training effectiveness. Additionally, the model 
incorporates two graph neural network layers (Graph Transformer and Graph Convolu-
tion Network), employing different neighbor sampling quantities during training.

Evaluation metrics

We adopted six widely used indicators to measure the predictive performance of the pro-
posed model, including accuracy (Acc), Area Under the Precision-Recall Curve (AUPR), 
Area Under the Receiver Operating Characteristic Curve (AUC), F1 score, Precision and 
Recall. Since AUPR and F1 are more sensitive to severe imbalances data. Micro metrics are 
used for AUPR and AUC, while macro metrics are used for other measurements. The defi-
nitions of these indicators can be described as follows:

(18)Y = σ
(

Woutput · σ(Whidden · X + bhidden)+ boutput
)

(19)Focal Loss = −α · (1− p)γ · log(p)

(20)Acc =
TP + TN

TN + TP + FN + FP

(21)precision =
TP

TP + FP
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where the TN, PN, FN and FP denote the number of correctly predicted positive and 
negative samples, wrongly predicted positive and negative samples, respectively. In addi-
tion, we use the Micro mode to calculate AUC and Recall, which treats each element 
of the label indicator matrix as a label. In contrast, F1 calculates each label in a Macro 
mode and finds their unweighted average.

Baseline methods

NIMCGCN [20]. This study introduces a novel approach named Neural Inductive 
Matrix Completion with Graph Convolutional Network (NIMCGCN), amalgamat-
ing Graph Convolutional Networks (GCNs) and Neural Inductive Matrix Completion 
(NIMC) models to forecast the association between miRNAs and diseases. By optimiz-
ing parameters through supervised learning and demonstrating its superiority in predic-
tion accuracy and forecasting new diseases during experimental validation, the method 
serves as an effective computational tool for swiftly identifying disease-associated 
miRNAs.

DRWBNCF [22]. This study introduces a new method called DRWBNCF for drug 
repositioning, addressing limitations of traditional latent factor models. Leveraging 
deep learning techniques and a heterogeneous network framework, DRWBNCF infers 
potential drugs for diseases. By amalgamating drug–disease association information 
and drug–disease similarity networks, employing a weighted bilinear graph convolution 
operation, and utilizing a multi-layer perceptron combined with α-balanced focal loss 
function and graph regularization, DRWBNCF demonstrates effectiveness in predicting 
unknown drug–disease associations.

Ghasemian ‘s model [24]. Ghasemian et al. employed a meta-learning approach within 
network analysis to devise a stacked model, amalgamating various sophisticated predic-
tion algorithms. This approach successfully mitigated the variations observed in link 
prediction across diverse domains of networks.

VAGE [21]. Variational Graph Auto-Encoders (VGAE) is a graph neural network 
model built upon the framework of Variational Autoencoders (VAE). VGAE integrates 
the encoder-decoder structure of VAE, modeling node features into latent space distri-
butions and reconstructing them back to the original feature space. Key features include 
probabilistic modeling, representing node embeddings as Gaussian distributions using 
reparameterization techniques and KL divergence, while also considering graph struc-
ture through graph convolutional networks (GCNs) to efficiently capture local structural 
information.

DRGBCN [23]. DRGBCN presents an approach that utilizes bilinear attention net-
works and local interactive learning to improve performance in drug repositioning tasks. 
Significant performance gains are achieved by emphasizing local association and deep 
learning applications in the medical domain.

(22)Recall =
TP

TP + FN

(23)F1 =
2× precision× recall

precision+ recall
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Results and discussion
Comparison of WMAGT and state‑of‑the‑art methods under tenfold cross‑validation

To evaluate the performance of the WMAGT model, we conducted extensive experi-
ments on three benchmark datasets, comparing WMAGT with five state-of-the-art 
methods under tenfold cross-validation. Table  2, Figs.  2, 3 and 4 present the perfor-
mance of comparison models, including NIMCGCN, DRWBNCF, Ghasemian’s model, 
VAGE, WMAGT and DRGBCN, across different datasets (Fdataset, Cdataset, LRSSL).

Notably, while VAGE achieved a slightly higher AUROC of 0.9551 on the Cdataset 
compared to our proposed model’s 0.9458, and DRGBCN attained an AUROC of 0.9437 
compared to our proposed model’s 0.9434 on the LRSSL dataset, WMAGT model con-
sistently demonstrated the highest average AUROC value 0.9415 across all datasets. 
Despite DRGBCN exhibiting a secondary performance in AUROC 0.9405, WMAGT 

Table 2 Performance of WMAGT and other compared methods on three benchmark datasets

The bold indicates the best performing method on each metric

Datasets NIMCGCN DRWBNCF Ghasemian’s 
model

VAGE DRGBCN WMAGT 

AUROC

Fdataset 0.7428 ± 0.0276 0.8781 ± 0.0192 0.8902 ± 0.0328 0.9163 ± 0.1052 0.9326 ± 0.013 0.9353 ± 0.012

Cdataset 0.7928 ± 0.0248 0.8928 ± 0.0154 0.9114 ± 0.0292 0.9551 ± 0.0842 0.9454 ± 0.0091 0.9458 ± 0.0114

LRSSL 0.8661 ± 0.0165 0.8297 ± 0.0161 0.8791 ± 0.0359 0.8856 ± 0.0536 0.9437 ± 0.005 0.9434 ± 0.0083

Average 0.8006 0.8669 0.8936 0.9189 0.9405 0.9415

AUPR

Fdataset 0.0558 ± 0.0106 0.4638 ± 0.0548 0.4046 ± 0.0683 0.0589 ± 0.0429 0.4087 ± 0.0281 0.5231 ± 0.0487

Cdataset 0.0751 ± 0.0138 0.5801 ± 0.0332 0.4881 ± 0.1047 0.0608 ± 0.0355 0.4517 ± 0.0423 0.6 ± 0.0429

LRSSL 0.1807 ± 0.0204 0.4033 ± 0.0201 0.4925 ± 0.1166 0.0381 ± 0.0144 0.2558 ± 0.033 0.3651 ± 0.026

Average 0.1039 0.4824 0.4617 0.0526 0.3721 0.4961

Fig. 2 The performance of WMAGT and other compared methods under tenfold cross-validation on 
Cdataset
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surpasses DRGBCN by more than 10% in terms of AUPR on each dataset. VAGE, Gha-
semian’s model, DRWBNCF, and NIMCGCN models secured the third, fourth, fifth 
and sixth positions with AUROC values of 0.9189, 0.8936, 0.8669, 0.8006, respectively. 
AUPR, particularly sensitive to imbalanced datasets of positive and negative samples, 
serves as an indispensable evaluation metric. The WMAGT model excelled in AUPR 
performance, boasting the highest average AUPR value 0.4961, indicating its robust per-
formance under the precision-recall curve. In contrast, the AUPR performances of the 
other five models were as follows: NIMCGCN 0.1039, DRWBNCF 0.4824, Ghasemian’s 

Fig. 3 The performance of WMAGT and other compared methods under tenfold cross-validation on Fdataset

Fig. 4 The performance of WMAGT and other compared methods under tenfold cross-validation on LRSSL
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model 0.4617, VAGE 0.0526 and DRGBCN 0.3721. Average performance is a crucial 
indicator for assessing the overall effectiveness of models. In this regard, WMAGT dem-
onstrated relatively superior average performance in both AUROC and AUPR, high-
lighting its effectiveness across various datasets. After statistical testing and analysis, 
the proposed WMAGT shows significant performance improvement compared to com-
pared models.

Ablation study

In this section, we delve deeply into the far-reaching impacts of two pivotal modules on 
our experimental framework:

• ’w/o Transformer’: Our investigation goes beyond, scrutinizing the specific effects of 
excluding the transformer mechanism on model performance. This involves under-
standing how the model handles information, learns representations, and ultimately 
predicts drug–disease relationships.

• ’w/o NCF’: Further discourse is dedicated to the model’s performance in the absence 
of collaborative filtering. This decision plays a crucial role in determining the model’s 
effectiveness in handling user-item associations, particularly in our specific applica-
tion scenario.

In WMAGT model, we employed a simplified approach, omitting the steps of neigh-
bor embedding and interaction embedding, directly feeding the node representations 
obtained from the graph convolution module into the decoder. The rationale behind this 
decision and its implications on model performance necessitate a broader contextual 
understanding. The results of the ablation study in Fig. 5 showcase the consequences of 
these decisions. Notably, both the transformer module and the NCF module contrib-
ute significantly to enhancing the performance in predicting drug–disease relationships, 
with the NCF module being particularly noteworthy. This indicates that, when consid-
ering multiple embeddings and the transformer comprehensively, the model can more 
accurately capture latent relationships between drugs and diseases, thereby improving 
the predictive accuracy of drug–disease relationships. This finding provides profound 
insights for future model optimization and further research endeavors.

Case study

To assess the practical applicability of WMAGT, a case study was conducted with the 
aim of predicting drug candidates for Parkinson’s disease. Specifically, the model was 
trained using all known drug–disease associations in the F dataset, and a descending 
order ranking was performed after obtaining the probabilities of all drug–disease asso-
ciations. In this process, the top 10 drug candidates associated with Parkinson’s disease 
were selected for in-depth investigation. Parkinson’s disease is a chronic neurological 
disorder typically characterized by symptoms such as movement disorders, muscle stiff-
ness, and tremors. The primary cause of this disease is the loss of dopamine-produc-
ing neurons in the brain, where dopamine functions as a neurotransmitter controlling 
movement. Currently, the treatment focus for Parkinson’s disease primarily revolves 
around alleviating symptoms, and the exploration of new drug treatment directions has 
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been a crucial area of scientific research. Encouragingly, the relevance of seven of these 
drugs was further confirmed by additional literature, as depicted in Table  3. This dis-
covery not only enhances the reliability of our model but also indicates that WMAGT 
successfully identifies potential drug–disease pairs by learning multi-source information 
about drugs and diseases.

Conclusions
In this study, we propose a heterogenous information graph-based method for predict-
ing drug–disease associations, named WMAGT. WMAGT innovatively integrates Graph 
Transformer Networks and Neural Collaborative Filtering, with a core improvement 
lying in the deep aggregation of local neighbors around nodes to enhance traditional 

Fig. 5 The performance of WMAGT and other variants under tenfold cross-validation on three benchmark 
datasets
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graph convolution operations. Simultaneously, the model autonomously learns to select 
weights for different types of convolutional networks, resulting in a significant perfor-
mance improvement compared to a singular graph convolution network. Extensive experi-
ments were conducted to thoroughly assess the performance and robustness of WMAGT. 
WMAGT exhibited superior performance on three benchmark datasets, better than other 
compared state-of-the-art models. Ablation studies further verified the importance of dif-
ferent modules introduced in the proposed framework. In addition, the case study show 
that WMAGT has high practical predictive power, e.g., in Parkinson’s potential drug min-
ing, 7 of the top 10 drugs we predicted have been relevantly demonstrated. This study not 
only introduces methodological refinements but also substantiates their feasibility and 
superiority through rigorous experimentation and empirical validation. It’s anticipated that 
these results can serve as valuable references for fostering further drug development and 
disease treatment.
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Table 3 The top 10 WMAGT-predicted candidate drugs for Parkinson’s disease

Rank Candidate drugs (DrugBank IDs) Evidence (PMID)

1 Bupivacaine (DB00297) NA

2 Hydromorphone(DB00327) NA

3 Clotrimazole(DB00257) 12679339

4 Methylphenidate(DB00422) 18978488

5 Modafinil(DB00745) 12489899

6 Atenolol(DB00335) NA

7 Ropinirole(DB00268) 9270567

8 Metformin(DB00331) 32854858

9 Guanidine(DB00536) 9548197

10 Olanzapine (DB00334) 11815682

https://github.com/ShiHHe/WMAGT
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