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Introduction
Numerous genetic variants have been reported as risk or causative factors for diseases at 
the population level, as they disrupt DNA structures or regulatory elements and thereby 
impact transcription [1, 2]. There is increasing evidence that genetic variants can also 
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Background: Uncovering functional genetic variants from an allele‑specific perspec‑
tive is of paramount importance in advancing our understanding of gene regulation 
and genetic diseases. Recently, various allele‑specific events, such as allele‑specific 
gene expression, allele‑specific methylation, and allele‑specific binding, have been 
explored on a genome‑wide scale due to the development of high‑throughput 
sequencing methods. RNA secondary structure, which plays a crucial role in multiple 
RNA‑associated processes like RNA modification, translation and splicing, has emerged 
as an essential focus of relevant research. However, tools to identify genetic variants 
associated with allele‑specific RNA secondary structures are still lacking.

Results: Here, we develop a computational tool called ‘AStruct’ that enables us 
to detect allele‑specific RNA secondary structure (ASRS) from RT‑stop based struc‑
turomic probing data. AStruct shows robust performance in both simulated datasets 
and public icSHAPE datasets. We reveal that single nucleotide polymorphisms (SNPs) 
with higher AStruct scores are enriched in coding regions and tend to be functional. 
These SNPs are highly conservative, have the potential to disrupt sites involved in m6A 
modification or protein binding, and are frequently associated with disease.

Conclusions: AStruct is a tool dedicated to invoke allele‑specific RNA secondary struc‑
ture events at heterozygous SNPs in RT‑stop based structuromic probing data. It utilizes 
allelic variants, base pairing and RT‑stop information under different cell conditions 
to detect dynamic and functional ASRS. Compared to sequence‑based tools, AStruct 
considers dynamic cell conditions and outperforms in detecting functional variants. 
AStruct is implemented in JAVA and is freely accessible at: https:// github. com/ cance 
romics/ AStru ct.
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affect RNA splicing [3], RNA secondary structure [4], RNA N6-methyladenosine (m6A) 
modification [5], and protein binding [6–8], etc. In individuals, these variants can act 
in an allele-specific manner, which are termed allele-specific events. Investigating 
the potential variants involved in allele-specific events is an important and effective 
approach to discovering and annotating functional variants.

RNA secondary structure is an essential feature that exerts a significant influence 
on several stages of the RNA life cycle, including RNA transcription [9], splicing [10] 
and translational control [11]. Facilitated by next-generation sequencing, a number of 
innovative techniques have been developed that combine traditional chemical probing 
methods with high-throughput sequencing to capture genome-wide RNA secondary 
structure. Foremost among them are reverse transcription stop (RT-stop) based struc-
tural probing techniques, including SHAPE-seq [12], icSHAPE [13] and smartSHAPE 
[14], etc.

Some genetic variants have been found to cause local or global RNA secondary struc-
ture changes [4] and have been proved to be associated with many genetic diseases [15, 
16]. In the case of heterozygous variants, two alleles might have distinct effects on RNA 
secondary structure, namely allele-specific RNA secondary structure (ASRS). Several 
computational methods have been developed to predict ASRS without considering allele 
dosage [17–20]. However, analyzing ASRS remains a great challenge. Since the existing 
tools rely primarily on static sequence information, they are unable to capture the com-
plex and dynamic cell conditions from the experimentally-derived data. Moreover, the 
RT-stop feature of sequencing technologies poses a challenge in effectively segregating 
reads by alleles and retaining sufficient structural information for analyzing the struc-
ture of each allele within a single sample.

To address the limitations mentioned above, we developed a computational tool called 
‘AStruct’. To the best of our knowledge, AStruct is the first software capable of identi-
fying allele-specific RNA secondary structure events at heterozygous single nucleotide 
polymorphisms (SNPs) within one sample using RT-stop based structuromic probing 
data.

Methods
Calculating allelic structure score from icSHAPE sequencing data

Six icSHAPE datasets of six human cell lines were downloaded from GEO [21] (Gene 
Expression Omnibus). Specifically, the K562, HepG2, HEK293, HeLa, and H9 data-
sets were obtained from GSE145805 [22], while the HEK293T dataset was obtained 
from GSE74353 [23]. smatSHAPE dataset of HEK293T was accessed through number 
GSE155961 [14]. Each dataset comprised two replicates of NAI-N3 treated samples 
and two replicates of control (DMSO) samples. The raw reads of each dataset were pre-
processed using Trimmomatic [24] to remove barcodes and adapters. The preprocessed 
reads were then mapped to the human genome (GRCh38.p12) using STAR [25]. PCR 
duplicates were discarded by collapsing the reads with identical sequences.

673,668,919 human SNPs were download from NCBI SNP Database (dbSNP) 
(GCF000001405.38) [26]. Read coverage was calculated for each SNPs in each aligned 
sample. Only the heterozygous SNPs with reads covering both the reference (Ref ) allele 
and the alternate (Alt) allele were retained. Moreover, the SNPs with total reads less than 
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10 or Ref reads less than 2 or Alt reads less than 2 were filtered out. For each retained 
SNP, a SNP window was determined by the start base of the most upstream SNP-span-
ning read and the end base of the most downstream SNP-spanning read. The structure 
score for each base in the window was calculated for Ref allele and Alt allele separately 
according to the following method modified from icSHAPE-pipe [27]:

Firstly, we calculated the scores for the RT-stop events and background in a SNP 
window using the reads overlapping the SNP window. Reads overlapping the SNP win-
dow but not spanning the SNP would be utilized for both Ref and Alt alleles. The first 
upstream base of a read mapping start represented an RT-stop event ( R ) and all the 
bases in a read represented the background ( B ). Accordingly, R score and B score were 
calculated for each base in the window using all reads.

Secondly, to smooth the R scores and B scores, all the values were divided by a nor-
malization factor which was the 95th percentile of all scores in the window (see formulas 
1 and 2).

where R were arranged in ascending order as R1 ≤ R2 ≤ . . . ≤ RN represent-
ing the RT-stop event occurring in all bases, B were arranged in ascending order as 
B1 ≤ B2 ≤ . . . ≤ BN representing the background in all bases, i was the ith base in the 
window, and N  was the window length.

Thirdly, an enrichment score ( ES ) was calculated for each base in the window using 
the smoothed R scores and B scores in NAI-N3 treated samples and DMSO control sam-
ples (see formula 3).

where ESi was the enrichment score for the ith base in the window, RT
i  was the R score 

for the ith base in the window in treated sample, RC
i  was the R score for the ith base in 

the window in control sample, BC
i  was the B score for the ith base in the window in con-

trol sample, and s was the predefined factor.
Fourthly, the enrichment score was converted between 0 and 1 using formula 4 to rep-

resent the structure score.

where ES were arranged in ascending order as ES1 ≤ ES2 ≤ . . . ≤ ESN.
Finally, we obtained a set of structure scores for Ref allele and Alt allele, separately.

Statistical test for the structure difference between Ref allele and Alt allele

To test the structure difference between Ref allele and Alt allele, we firstly calculated 
Pearson Correlation between the structure scores of two alleles. Then the Pearson Cor-
relation Coefficient was converted to the experimental structural disruption coefficient 
( eSDC ) as described below [28] (see formula 5).

(1)Ri = Ri/R[0.95× N ]

(2)Bi = Bi/B[0.95× N ]

(3)ESi = RT
i − s × RC

i BC
i

(4)ESi = max

(

0,min

(

1,
ESi − ES[0.05× N ]

ES[0.95× N ]− ES[0.05× N ]

))
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where pCC was the Pearson Correlation Coefficient of the structure scores between two 
alleles, and N  was the length of the SNP window. The larger eSDC meant more differ-
ence in structure scores between the two alleles.

To evaluate the statistical significance of the difference, 1000 permutations were per-
formed by assigning reads to Ref and Alt alleles following 1:1 ratio based on Poisson 
distribution. The P value of the difference was calculated by comparing the true eSDCs 
and permuted eSDCs . Some studies have shown the robustness of measuring the gene 
expression difference by combining the magnitude and significance [29]. Thus, borrow-
ing from this idea, we also combined eSDC (magnitude) and P (statistical significance) to 
measure the structure difference. Because the reads that overlapping with the SNP win-
dow but not spanning SNP smoothed the structure difference between two alleles, we 
used the ratio between the number of reads spanning SNP and total reads in the window 
to adjust the difference score. Finally, the AStruct score was defined as formula 6:

where Rd was the number of reads spanning SNP, R was the number of total reads in the 
SNP window.

Calculating the structure difference for each base in a SNP window

To provide more details of the structure difference between the two alleles for each base, 
we applied the method from a previous study [30] as described below (see formula 7):

A sequence of P values named StrucDiff  for each base were obtained by permutation 
test.

Performance evaluation using simulated datasets

To evaluate the reliability of our method, we simulated the icSHAPE reads under differ-
ent read depths (10M, 20M,…,100M) based on Poisson distribution. The pair or unpair 
structure information were generated from RNAsubopt [31]. In order to simulate the 
RT-stop event, the artificial stop intervention was evenly added on the unpaired bases. 
For the sequences without allelic structure difference, Ref and Alt alleles were designed 
to have the same set of unpaired bases (RT-stop bases). For the sequences with allelic 
structure difference, Ref and Alt alleles were supposed to have different sets of unpaired 
bases.

Functional annotation of allele specific RNA secondary structure

All the retained SNP sites were divided into three groups according to the magnitude of 
AStruct score, which are ‘Low’ (0), ‘Medium’ (0, 1], and ‘High’ (1, + ∞). For RNAsnp, the 
‘High-RNAsnp’ and ‘Low-RNAsnp’ groups were defined by smallest 10% r and largest 

(5)eSDC =
(

1−p CC
)

×
√
N

(6)AStruct score = − log10 P × eSDC ×
(

1− log10

(

Rd

R

))

(7)StrucDiffi =
k=i+2
∑

k=i−2

abs
(

ESk ,Alt − ESk ,Ref
)

/

5
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10% r values of the same SNP sites [20]. The r value represented the Pearson Correla-
tion Coefficient for the structural comparison between the reference sequence and the 
alternative sequence (± 100bps of SNP sites). SNPs in linkage disequilibrium (LD) were 
retrieved from HaploReg (r2 > 0.8) [32].

To explore conservation, we gathered PhastCon100 scores from UCSC genome 
browser [33]. In examining the relationship between ASRS and other AS events, 
genetic variants affecting RNA modifications (mainly m6Asnp) were obtained from 
RMVar [34]. Allele-specific RBP binding (ASRBP) were collected from ADASTRA [6] 
overlapped with two RBP datasets [35, 36]. To investigate ASRS association with dis-
eases, FATHMM-XF scores were annotated to all SNPs [37]. Disease-related SNPs were 
obtained from ClinVar [38].

Results
AStruct pipeline for evaluating allele‑specific structure events

AStruct is implemented in Java (JDK 8), and simply takes sorted BAM files from struc-
ture sequencing data as input. The rationale behind AStruct is that the two alleles 
involved in an allele-specific structure event are expected to have dissimilar structure 
scores using structure sequencing technologies such as icSHAPE and smartSHAPE [13, 
14]. The workflow of AStruct was illustrated in Fig. 1a. First, the preprocessed sequenc-
ing reads were aligned to the reference genome using STAR [25]. Second, all the SNPs 
obtained from dbSNP [26] were used to search against the alignment data, and only the 
heterozygous SNPs were retained for further analysis. Third, the aligned reads around 
each heterozygous SNP were separated into two groups according to the SNP, with each 
group representing one allele. Finally, the AStruct score for each SNP was calculated 
based on the similarity test between the structure scores of two alleles. A higher AStruct 
score indicated higher allele specificity of RNA secondary structure.

AStruct is robust in predicting allele‑specific structure events

To evaluate the performance of AStruct, we simulated 10 icSHAPE datasets with 
sequencing depths ranging from 10 to 100M. Each dataset consisted of two control sam-
ples and two treated samples. The AUC values of the simulated datasets ranged from 
0.712 to 0.892, indicating a robust performance of AStruct. As expected, the perfor-
mance of AStruct improved with the increase of sequencing depth (Fig. 1b).

We next applied AStruct to public icSHAPE datasets of six different cell lines. As a 
result, we obtained 1616, 3046, 930, 4415, 2591, and 8640 heterozygous SNPs with 
enough reads coverage and enough extra reads stop of structure information from 
K562, HepG2, HEK293, HEK293T, HeLa, and H9, respectively (Fig.  1c). According to 
the AStruct score, the heterozygous SNPs above were categorized into three groups: the 
‘Low’ group with a score of 0, the ‘Medium’ group with a score ranging from 0 to 1, 
and the ‘High’ group with a score greater than 1. We applied a published method [30] to 
measure the structure difference at the single base level. As shown in Fig. 1d, the ‘High’ 
group had much more bases with significantly different structure scores between two 
alleles, compared to the ‘Low’ group and ‘Medium’ groups. We found a high correlation 
between AStruct scores of different cell lines (Fig. 1e), further demonstrating the robust-
ness of AStruct. Additionally, we found that SNPs with higher AStruct scores were more 
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likely to be located in the CDS region rather than the intron region (Fig. 1f ). Moreover, 
AStruct could also be applied to smartSHAPE, another RT-stop based sequencing tech-
nology, implying broader applicability (Additional file 1: Fig. 1).

AStruct can help identify functional variants

Numerous causal SNPs associated with traits or diseases were defined in previous 
GWAS studies, but most of them were usually not genotyped but are in linkage disequi-
librium (LD) with the genotyped SNPs [39]. Recent studies on SNP pairs in high LD indi-
cated their interplay on  m6A modification [40] and RNA structure [41]. Consequently, in 
order to take the effects of LD-SNPs into account, we annotated the LD-SNPs (r2 > 0.8) 
for ASRS SNPs from HaploReg [8] and grouped ASRS SNPs with their LD-SNPs into 
new ‘High’, ‘Medium’ and ‘Low’ groups for the following functionality analyses. We pre-
sumed that SNPs in the ‘High’ group are prone to include allele-specific structure fea-
tures than SNPs in the ‘Medium’ or ‘Low’ groups.

As shown in Fig. 2a, SNPs with higher AStruct scores illustrated a higher degree of 
conservation, highlighting their important function. As for the same test on RNAsnp, 
which predicted ASRS based on sequence, only three cell lines showed significant 

Fig. 1 Robustness of AStruct in predicting allele‑specific structure events. a Flowchart of AStruct pipeline. 
b ROC curves of simulated datasets under different sequencing depths. c The AStruct score distribution 
of all heterozygous SNPs in six cell lines (H9, HEK293, HEK293T, HeLa, HepG2, and K562). d The allele level 
reactivity score derived from the icSHAPE data of K562 cell line for three SNPs representing the three AStruct 
group (Low: rs1292926445; Medium: rs12133138; High: rs17424311). The P values indicating the difference 
in reactivity score between two alleles for each base were shown in the top. e The correlation of ASRS SNPs 
between different cell lines. The value in top‑right triangle presents the number of common ASRS SNPs; the 
value in bottom‑left triangle presents the Pearson correlation coefficient of the AStruct scores. Background 
color presents the P Value, where gray indicates P > 0.05. f Distribution of ASRS SNPs in different genomic 
regions (3′UTR, CDS, 5′UTR, intron, and ncRNAs). Left: Stacked bar plot for three AStruct groups. Right: 
Comparison the sites number of different regions between different groups (Fisher’s exact test). The number 
represents the Odds Ratio. Background color represents the significant P Value
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conservation differences (Fig. 2b). This observation led us to concentrate on investi-
gating the biological features associated with ASRS.

ASRS SNPs with high AStruct scores demonstrated an enrichment of allele-specific 
RBP binding sites (ASRBP) and m6A related SNPs (m6Asnp) compared to SNPs with 
medium or low scores. Again, we did not detect any significant differences between 
‘High-RNAsnp’ and ‘Low-RNAsnp’ groups (Fig. 2c and 2e). Besides, we found 39 orig-
inal ASRS SNPs with high AStruct scores in HepG2 cell line that can induce allele-
specific binding pattern of the PPIG RBP (Additional file  1: Table  1). For example, 
the SNP rs74488735 located in PKD1 showed both allele-specific RNA secondary 
structure (AStruct score = 8.74, P = 0.046) and allele-specific PPIG RNA binding pat-
tern (P = 5.666e−8) (Fig. 2d). Moreover, we found 34 original ASRS SNPs with high 
AStruct scores in HeLa cell line that can influence the m6A modification (Additional 
file  1: Table  2). For instance, the SNP rs3820677 located in KIRREL1 showed both 

Fig. 2 AStruct is valuable in assisting with the identification of functional variants. a, b The cumulative 
distribution curve of the phastCon100 score for different groups. a for AStrcut, b for RNAsnp. c The bubble 
plot shows the comparison of the number of ASRS SNPs annotated as allele‑specific RBP binding events 
between different groups. d A G‑to‑A SNP (rs74488735) in the ‘High’ group shows allele‑specific pattern 
of a PPIG binding site in PXD1 of HepG2 cell line. It is illustrated by the different proportion of reads count 
covering each allele in the eCLIP‑Seq data and the control RNA‑Seq data (left), and the significant structure 
difference with each allele (right). e The bubble plot shows the comparison of the number of ASRS SNPs 
annotated as m6A related variants between different groups. f A A‑to‑G SNP (rs3820677) in the ‘High’ group 
shows allele‑specific pattern of a m6A modification site in KIRREL1 of HeLa cell line. It is illustrated by the 
different proportion of reads count covering each allele in the MeRIP‑Seq IP data and the control Input 
data (left), and the significant structure difference with each allele (right). g, h The cumulative distribution 
curve of the FATHMM‑XF score for different groups. g For AStrcut, h for RNAsnp. i The bubble plot shows the 
comparison of the number of disease‑related ASRS SNPs annotated by ClinVar between different groups. The 
P value of cumulative distribution curve was calculated using Kolmogorov–Smirnov (KS) test. The P value of 
bubble plot was calculated using Fisher’s exact test 
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allele-specific RNA secondary structure (AStruct score = 10.88, P = 0.013) and allele-
specific m6A modification (P = 2.073e−4) (Fig. 2f ).

Furthermore, to investigate the association between ASRS SNPs and disease, the 
FATHMM-XF score was used to evaluate the pathogenicity [37]. A higher FATHMM-
XF score means mutations are more likely to be pathogenic, while a lower score means 
more benign. We found that SNPs with higher AStruct scores were more pathogenic 
(Fig. 2g) while RNAsnp did not reveal any significant differences [20] between different 
groups (Fig. 2h). We also annotated the ASRS SNPs and their LD-SNPs using ClinVar 
database [38], and found SNPs with higher AStruct scores had a higher proportion of 
variants associated with disease, such as Lynch syndrome, Argininosuccinate lyase defi-
ciency, and Farber disease (Fig. 2i, Additional file 2: Table 3).

Taken together, AStruct demonstrated superior capability in detecting functional 
ASRS SNPs, in contrast to tools that only focused on static sequence information. ASRS 
SNPs with high AStruct scores tended to be more conserved and were more likely to 
influence other allele-specific events such as RNA–protein interactions and RNA modi-
fications. These ASRS SNPs are also potentially linked with specific traits- or diseases-
related variants.

Discussion
Despite the fact that the impact of genetic variants on RNA structure and transcriptional 
regulation were widely acknowledged, specialized tools to systematically profile ASRS 
have been lacking. Identification of ASRS events is expected to contribute to revealing 
functional variants and illuminating the molecular mechanism of associated diseases 
at the allele level. Here, we provided AStruct as a robust algorithm for detecting ASRS 
from RT-stop based structuromic probing data.

Theoretically, RNAsnp and other sequence-based tools are designed to evaluate the 
impact of SNPs on local RNA secondary structure. They typically utilize thermodynamic 
models on the input sequence. However, the structures and functions are mostly varied 
because of cell specificity, cell status and their microenvironment that must be consid-
ered. Taking full advantage of experimental structure sequencing technologies, AStruct 
utilized allelic variants, base pairing, and RT-stop information under in vivo conditions 
to detect dynamic and functional ASRS. In practice, we analyzed the association of 
ASRS ANPs detected from AStruct and RNAsnp with other AS events as well as dis-
eases. The results further demonstrated the superiority of AStruct. Additional tests on 
smartSHAPE further indicated the broad applicability of AStruct.

However, it is worth noting that read coverage is important for recovering RNA struc-
ture and providing enough SNPs coverage for statistical analyses. In this study, we set 
coverage threshold for each SNPs. Because of the sparsity of alleles and the truncation in 
RT-stop data, only a part of SNPs satisfied the requirements and were used as candidates. 
Therefore, a complete mapping of ASRS have not yet been established. These limitations 
can be overcome by using high sequencing depth data and high resolution technologies. 
Moreover, we are working to update AStruct to adapt it to RT-Mut structure sequencing 
data. While not mentioned in this article, we had successfully tested AStruct on SHAPE-
MaP datasets and obtained similar results. It is expected that AStruct can be applied 
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to more types of structure sequencing data and provide insights to allele-specific RNA 
secondary structure.

Conclusions
In conclusion, AStruct can be an excellent candidate for detecting allele-specific RNA 
secondary structure. The advantages of AStruct are obvious. Using high-throughput RT-
stop based experimental data, AStruct has the capability to capture the allele-specific 
RNA secondary structure in the real cellular environment. In addition, AStruct allows 
allele-specific comparisons within a single sample by accurately separating alleles based 
on heterozygous SNPs, resulting in more accurate and reliable results.

Availability and requirements
Project name: AStruct. Project homepage: https:// github. com/ cance romics/ AStru ct. 
Operating system: Platform independent. Programming language: Java. Other require-
ments: JDK 8. License: GNU GPL v3. Any restrictions to use by non-academics: none.
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