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Abstract 

Background: Thousands of genes have been associated with different Mendelian 
conditions. One of the valuable sources to track these gene‑disease associations 
(GDAs) is the Online Mendelian Inheritance in Man (OMIM) database. However, most 
of the information in OMIM is textual, and heterogeneous (e.g. summarized by different 
experts), which complicates automated reading and understanding of the data. Here, 
we used Natural Language Processing (NLP) to make a tool (Gene‑Phenotype Associa‑
tion Discovery (GPAD)) that could syntactically process OMIM text and extract the data 
of interest.

Results: GPAD applies a series of language‑based techniques to the text obtained 
from OMIM API to extract GDA discovery‑related information. GPAD can inform 
when a particular gene was associated with a specific phenotype, as well as the type 
of validation—whether through model organisms or cohort‑based patient‑matching 
approaches—for such an association. GPAD extracted data was validated with pub‑
lished reports and was compared with large language model. Utilizing GPAD’s 
extracted data, we analysed trends in GDA discoveries, noting a significant increase 
in their rate after the introduction of exome sequencing, rising from an average 
of about 150–250 discoveries each year. Contrary to hopes of resolving most GDAs 
for Mendelian disorders by now, our data indicate a substantial decline in discov‑
ery rates over the past five years (2017–2022). This decline appears to be linked 
to the increasing necessity for larger cohorts to substantiate GDAs. The rising use 
of zebrafish and Drosophila as model organisms in providing evidential support 
for GDAs is also observed.

Conclusions: GPAD’s real‑time analyzing capacity offers an up‑to‑date view of GDA 
discovery and could help in planning and managing the research strategies. In future, 
this solution can be extended or modified to capture other information in OMIM 
and scientific literature.

Keywords: Mendelian disorder, NLP, Gene‑disease relationship, Gene discovery, Rare 
disease gene, Trends in gene discovery
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Background
For decades, researchers have been discovering genes underlying Mendelian Disorders 
(MD)s and associating them with the phenotype. In 1983, for the first time, research-
ers were able to map Huntington’s disease gene to chromosome 4 [1]. At that time, 
they used DNA polymorphisms and positional cloning to map the gene location. Later, 
the discovery and associating genes with a phenotype significantly improved with the 
advancement in genotyping technology and subsequently, the emergence of sequencing 
technology [2–4]. As a result, new insights regarding gene-phenotype associations have 
emerged in recent times [5, 6]. Concurrently, the progressive development of bioinfor-
matics tools, methods, and databases helped significantly improve the discovery rate of 
GDAs [7–10].

OMIM was started as a catalogue of MDs and their traits [11, 12]. Initially released in 
the form of books, in 1987, it was later published as an online catalogue. Later, in 1995, 
it was made available to the world via world-wide-web by the National Center for Bio-
technology Information (NCBI) of the United States. Over the last 60 years, OMIM has 
become one of the leading databases for MDs, tracking the GDAs from the very begin-
ning of genetic association. It is a manually curated and continuously adapting resource 
that provides a synopsis of Mendelian phenotypes and associated genes.

While OMIM provides much valuable information on MDs, most of it is textual. For 
example, there are multiple commonly-used approaches to provide supporting evidence 
for new GDAs—(1) identifying dominant/recessive allele for a gene in multiple unre-
lated individuals with similar phenotype (e.g. using Matchmaker Exchange [13, 14]), (2) 
using model organisms, (3) performing in vitro functional studies, and (4) mapping the 
MD to a specific locus. Metadata about when a GDA was made and which methods [15–
17], technologies, or experimental approaches [16, 18] were used to confirm the GDA 
(Fig. 1), are often described in text in OMIM but are not stored as separate fields that 
could be queried.

In addition, since it is a manually curated database, different human experts have writ-
ten its texts over the years. As a result, the representation of information within the text 
is heterogeneous in nature making it difficult to mine using an automated program. 
To develop such automated program, semantic understanding of the text is important. 
Fortunately, advancements in Machine Learning (ML), especially in Natural Language 
Processing (NLP), could help significantly in this regard to obtain valuable insights from 
such texts [19, 20].

This study introduces Gene-Phenotype Association Discovery (GPAD), an applica-
tion that allows its users to get key information regarding GDAs. In addition to when 
an association was made, it informs methodological supporting evidence that could be 
found on OMIM. The tool combines a series of NLP tasks and applies grammar-based 
pattern-miner to extract GDA discovery-related information from the text obtained 
from OMIM API. We have made the tool along with its web interface, available for any-
one’s use (https:// github. com/ MTG- Lab/ gpad). Through GPAD, users can obtain the 
latest information as well as trends on GDA discovery. To the best of our knowledge, this 
is the first tool to allow real-time analysis of the rate of new GDAs discovery and explore 
methods used, which would facilitate developing a better understanding of the factors 
affecting GDA rates.

https://github.com/MTG-Lab/gpad
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Methods
GPAD’s implementation has three primary components: Firstly, a specialized algo-
rithm for extracting information from the OMIM. Secondly, a series of validation 
phases to ensure accuracy of the extracted data. Lastly, a user-friendly, deployable 
web tool that facilitates access to the extracted data.

Data extraction algorithm

OMIM API

OMIM provides API endpoints to access its data. We obtained an API key and used 
the API to access OMIM gene and phenotype descriptions. We will refer to these 
descriptions as “OMIM texts” to make it easy to explain. We made API calls to pro-
grammatically retrieve OMIM texts on December  16th, 2022. OMIM API allows 250 
API requests per day per API key. Therefore, we tracked and analyzed OMIM text 
through the API over multiple days to reliably produce the graphs based on all GDAs.

Selection criteria for GDAs

OMIM has standards in-place to establish a GDA [11]. It uses specific prefixes (e.g. #, 
*, +, %) and symbols (e.g. brackets—[], braces—{}, question mark—?) and genotype-
phenotype mapping key (denoted as integer number—1, 2, 3, 4) to denote the cer-
tainty and status of its entries (Additional file 1: Table S1) [21]. GPAD utilizes these 

Fig. 1 Process of novel GDA discovery. This Fig. illustrates the approach clinicians and researchers adopt 
when encountering an individual with a condition of unknown genetic origin. The process begins with a 
comprehensive multi‑omics analysis, combined with the individual’s health records, to pinpoint potential 
genetic causes. Subsequent genotype or phenotype‑based matching efforts are employed to identify 
similar cases, facilitating the narrowing down of possible gene‑disease associations. These associations are 
then typically validated through model organism studies and in vitro genetic experiments, leading to the 
establishment of a novel gene‑disease association
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Table 1 Number of GDAs in each filtration step

Data description Number of GDAs Filter criteria

Total extracted 7484

Keep only mapping key “3” 6313 Filter out Mapping Key not equal three 
(n = 1171)

Keep only confirmed association 5236 Filter out phenotypes marked with—
“susceptibility”, “modifier”, [] or {} or ? (n = 1077)

GPAD identified publication evidence for 5198

Cohort related information found for 0 
(Same study as the association making 
study)

5043 (3554)

GDA utilizing Animal model 3730

Fig. 2 Method used in metadata extraction. A Schematic diagram of overall NLP workflow. B Three 
major grammatical rule‑based dependency patterns. The first and second pattern extract cohort related 
information and the third one is used as an exclusion pattern to ignore phenotype only describing 
studies. Anchor token for each pattern is depicted in yellow. C Schematic diagram showing mechanism of 
proximity‑based anchor token detection within a context of three different paragraphs. Here we depict three 
possible scenarios where the identified token (green circle) is present in the paragraph and how we use the 
relative distance from the reference anchor token (yellow cross) to identify the target token (circles). Stop 
words (orange bars) denote sentence boundaries
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markers to initially filter out associations that are yet not confirmed. After filtration, 
we identified 5236 confirmed GDAs (Table 1).

By computationally analyzing the paragraphs (Fig. 2A, Table 2) on the gene and asso-
ciated phenotype entry page, we extract information that is not available as quarriable 
information. In particular, we look for three types of evidence in the text:

(1) when the association was made; (2) the number of unrelated, affected individuals 
included in the study(ies) establishing the GDA; and (3) whether any model organism 
was used to provide supporting evidence for the association. Sequencing and analysis 
of unrelated individuals diagnosed with the same MD [22](i.e. phenotype-driven/phe-
notype-first gene discovery) and gene-based matchmaking followed by delineation of a 
shared MD [13, 14](i.e. genotype-driven/genotype-first gene discovery) have both been 
effective strategies for establishing GDA alongside model organism work. We scan for 
a list of 12 commonly used species/animals to identify studies where the new GDA was 
modelled using model organisms.

OMIM texts are curated by many individuals over the span of several decades, result-
ing in significant variability in the representation of information. To address this, we 
use a grammatical rule-based dependency pattern matcher (Fig.  2B) to pinpoint and 
extract specific data. In our approach, each word (or token) in the text undergoes parts-
of-speech (POS) tagging and named entity recognition (NER). For executing various 
NLP tasks, such as tokenization, tagging, lemmatization and parsing, we utilized the 
SpaCy [23] Python library, capitalizing on its pre-trained model (en_core_web_sm-3.7.0), 
matcher APIs, and visualization tools. Subsequently, a grammatical dependency tag 

Table 2 Information GPAD extracts, prioritized source of each piece of metadata, and extraction 
specification

Information Source paragraph from OMIM Specification

Gene‑phenotype association Gene‑Phenotype Relationships Inheritance type is Mendelian
Clear association has been estab‑
lished

When was the association first 
made?

“Molecular Genetics” of the pheno‑
type entry page
“Allelic Variants” on Gene entry page

Literature evidence that did not only 
report the patient but also made 
the association with the disease 
phenotype

Number of unrelated individuals in 
publication that established GDA

“Molecular Genetics” of the pheno‑
type entry page
“Allelic Variants” on Gene entry page

Contains any of the anchor following 
tags as noun
POS: family, patient, child, boy, girl, 
parent, individual, people, infant, 
woman, man
An adjective modifier that modifies 
the noun anchor tag and specify the 
patient as unrelated
A numeric value (either in words or 
as number) that specify the number 
of patients
Negate pattern: To ignore phenotype 
describing studies we look for a 
patten of Adverb‑Verb‑Adposition‑
Number

Model organism “Model Organism” paragraph on 
phenotype entry page
“Molecular Genetics” of the pheno‑
type entry page
“Allelic Variants” on Gene entry page

Look for names of model organisms 
as noun POS
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is attached to each token by SpaCy, creating what is termed as "dependency tree". An 
example of such a dependency diagram is presented in Fig. S1A, Additional file 1.

Pattern mining for cohort/model organism metadata

Within the workflow of GPAD, we resort to the text-pattern matcher at places where 
we need to identify particular words or phrases. These text patterns are a combination 
of regular expression, grammatical attributes, and phrasal structure. In this context, a 
"pattern" refers to a set of grammatical and relational dependencies among tokens that 
consistently point to the type of information we aim to extract. In each of these patterns, 
certain tokens serve as "anchor token"—the primary focus words that the rest of the pat-
tern revolves around (Fig. 2B; anchor tokens are yellow color coded).

To extract information about the cohort describing study, we first identify the gram-
matical dependency pattern by analyzing its components (Fig.  2B). The development 
of the patterns starts with a rather simplified version of the pattern. Each token iden-
tified by this initial pattern is then scrutinized for its grammatical roles and relation-
ships (Additional file 1: Fig. S1B–E). Based on this analysis, we introduce specific lemma 
(or root word) constraints (e.g., patient, family, unrelated etc.) and “exclusion pattern” 
(Fig. 2B). These strategies help in negating and filtering out noises (irrelevant informa-
tion), enhancing its accuracy (as described in the Expert Validation section below by 
comparing the baseline from phase 1 vs final accuracy). Exclusion pattern is especially 
crucial in distinguishing studies- emphasizing those that identify causal variants rather 
than merely describing the disease.

Workflow for metadata extraction and publication evidence identification

Fig. 2A shows the schematic diagram of the GPAD workflow. Based on which question 
we are focusing on, we look at specific paragraphs of the OMIM gene entry and its asso-
ciated phenotype entry page(s). Table 2 describes the source paragraphs and their speci-
fication for each type of metadata extraction. Here we use CUL3 gene (MIM #603136) as 
an example. GPAD first extracts the gene-phenotype association from the “Gene-Pheno-
type Relationships” table (Additional file 1: Fig. S2). OMIM has two phenotypes (MIM 
#619239 and #614496) associated with CUL3. For the first GDA, that is—CUL3 associa-
tion with Neurodevelopmental disorder with or without autism or seizures (NEDAUS), 
we consider the source text section specified in Table 2.

Additional file 1: Fig. S3 shows how the GPAD workflow in Fig. 2A extracting GDA 
works for these particular pairs. To extract the earliest publication evidence (“When 
was the association first made?” in Table 2) for the GDAs, we first consider “Molecular 
Genetics” section in the phenotype entry page (as described in Table 2). For this part, we 
look for Anchor token 1—that is the gene name—CUL3 (Additional file 1: Fig. S3).

Following the extraction of relevant tokens, we turn our attention to literature iden-
tification. Using the positional information of the anchor token as a starting point, we 
employ a “proximity-based” method to scan for publication details within the same sen-
tence (Fig. 2C). It first looks for publication within the same sentence as anchor token, 
rejecting other references in the paragraph (e.g. 1st paragraph depict in Fig. 2C). If the 
search comes up empty, the algorithm scans preceding sentences in reverse order (e.g. 
2nd paragraph in Fig.  2C), and if needed, sentences that follow (e.g. 3rd paragraph in 
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Fig. 2C), up to the end of the paragraph. The goal is to locate the earliest manuscript that 
provides evidence of the GDA under consideration. In the case of CUL3-NEDAUS pair, 
the first citation is within the same sentence context of the anchor token 1 (Additional 
file 1: Fig. S3).

We then check if the selected publication is a phenotype describing study. We apply 
the third pattern from Fig. 2B to the paragraph and get all studies that report only the 
phenotype. If the publication selected from the previous step is one the phenotype/
patient reporting study, we ignore the publication and move to the next citation. For 
CUL3-NEDAUS GDA, we do not have any phenotype describing studies in the set of five 
citations, thus Thiffault et al.’s study does not match with the phenotype describing pat-
tern, GPAD selects this study as evidence for GDA (Additional file 1: Figs. S3, S4).

Next, to identify the cohort specific metadata, we apply the first two patterns speci-
fied in Fig.  2B. The pattern matches Anchor Token-2 from the paragraph (Additional 
file 1: Fig. S3) and applies the proximity-based reference publication selection processes 
described above with the same policy. Once, the earliest publication reference that is not 
a phenotype describing study (excluded using third pattern in Fig. 2B) is identified, we 
take the numeric modifier from the matched pattern to get the number of individuals 
that were studied.

Finally, for the model organisms, “Animal Model” section of the phenotype entry has 
the highest priority (as described in Table 2). The name of the model organism is used as 
focus word (Anchor Token-1, mice, in Additional file 1: Fig. S3). With this anchor token 
as reference, we calculate the proximity of the reference and select the closest and the 
earliest (Additional file 1: Fig. S4).

Web tool

The GPAD web tool gives users a comprehensive and detailed view of GDA discovery. 
We packaged the application with a graphical user interface (GUI) for easier exploration 
of GPAD data (Fig. 3A, B). The code base for GPAD is available at https:// github. com/ 
MTG- Lab/ gpad. It requires OMIM API access to run the tool. Anyone interested in get-
ting an overview can apply GPAD to gain the view at any time, as noted in OMIM. The 
complete application is built on top of Docker (https:// www. docker. com) containeriza-
tion system; making it deployable on any operating system with no additional software 
requirement other than the Docker itself. It uses the latest progressive web application 
(PWA) technology to conveniently browse both the web and as a mobile application. 
GPAD’s data processing and analysis unit is developed with Python programming lan-
guage with Flask Framework, and the visualization component is managed by NodeJS 
Framework (Fig. 3C). Installation instructions for the tool are provided in the README.
md file that can be found in the GitHub repository.

After successful installation, the application can be viewed via a web browser. Fig-
ure 3A and B shows a snapshot of the homepage of GPAD. Figure 3B shows a snapshot 
of the search result view. The search option allows users to search by gene symbol. In 
the result box, all the associated phenotypes will be listed along with information about 
when the association was made and how it was made. The most recent associations that 
are added to OMIM are displayed in a table. Users can expand the row to view the details 
about a particular association. Furthermore, with the latest data, users can visualize all 

https://github.com/MTG-Lab/gpad
https://github.com/MTG-Lab/gpad
https://www.docker.com


Page 8 of 21Rahit et al. BMC Bioinformatics           (2024) 25:84 

Fig. 3 GPAD web tool. A, B Snapshot of GPAD web interface. A Snapshot of homepage with search option, 
latest OMIM reported GDAs, and latest trend graphs. B Snapshot of a search for a gene of interest by 
gene symbol (e.g. CLDN11). C Architecture of the web tool. All components have been containerized and 
shipped using Docker (Docker Desktop is a containerization app that lets user deploy, run, and ship stack 
of applications. https:// www. docker. com.) to make it deployable on any system easily. Arrow denotes data 
and/or process communication. The web interface is developed with NodeJS (A JavaScript library used as 
an asynchronous event‑driven runtime environment for frontend application. https:// nodejs. org), React 
(JavaScript based React framework allows component‑based frontend application development. https:// 
react. dev) while Flask (A Python‑based server‑side framework. https:// flask. palle tspro jects. com) serves the 
backend API written in Python. We perform textual analysis with Spacy (Spacy library provides APIs for 
production level NLP tasks. https:// spacy. io) library and the data are saved in a local MongoDB (a no‑SQL 
database. https:// www. mongo db. com) instance

https://www.docker.com
https://nodejs.org
https://react.dev
https://react.dev
https://flask.palletsprojects.com
https://spacy.io
https://www.mongodb.com
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the trend graphs presented in this paper on its homepage as shown in Fig. 3A. It shows 
the yearly trend in novel GDA discovery, and the supporting evidence used in the GDA 
(matching patient and/or model organism). Separately, it reports the trend of the model 
organism utilization.

Evaluation of GPAD’s performance

To ensure integrity and reliability, we employed both manual and automated validation 
of the extracted information (Additional file 1: Fig. S5).

Expert validation

In different phases, a total of 571 GDAs were manually checked to improve and validate 
GPAD’s performance. Extracted data was examined manually and independently by two 
people. They were tasked to identify the information by reading the text without prior 
knowledge of the text processing algorithm explained in the methods section.

In the first phase, 150 GDAs were chosen for manual validation. The genes for these 
GDAs were updated on OMIM between 2017 and 2022 and chosen randomly from the 
pool of genes that were updated during this period. We chose this timeframe to validate 
the most recent GDAs thoroughly as we did not have any recent data to automatically 
compare with (see Benchmarking Dataset below). During the manual validation, it was 
observed that GPAD missed a few infrequently-used model organisms such as—cattle, 
bull, chicken, dog, etc., which we then added to our list of species.

Notably, the expert validation revealed that the patients with specific phenotype were 
initially reported by an earlier study and noted as GDAs in many cases. However, these 
initially reported patients were only further studied and linked with a particular gene 
by a later study. We aimed to detect the study that made the GDA connection (the lat-
ter one). Still, our algorithm reported the earlier study (the study that only reported the 
patient phenotype but did not make the association). To solve this issue, we integrated 
another textual dependency pattern matcher to reliably identify the study by ignoring 
phenotype describing and/or patient reporting studies (Fig. 2B). After incorporating this 
mechanism into our algorithm, the detection accuracy improved, which was revealed by 
examining a new set of 100 GDAs.

We also compared dates of GDA discovery as assessed by GPAD and by scripts devel-
oped by Chong et  al. [24]. Manual expert curation of the discrepancies where Chong 
et al. reports different dates compared to GPAD revealed that more than 50% was due to 
how OMIM describes the initial delineation of the MD, initial case report, or mapping 
study, followed by describing the publication discovering the GDA. A three-way com-
parison with the result from automated validation with benchmarking dataset (described 
below) shows that GPAD overcomes these limitations with its text-processing methods.

Benchmarking dataset

We also validated our NLP algorithm’s performance with previously published dataset. 
A recent study manually curated gene discovery metadata primarily from OMIM and 
other secondary sources such as PubMed, Wikipedia, and Google Scholar [25]. We uti-
lized their data to validate our automated discovery. We do this by comparing the Pub-
Med ID (PMID) [26] extracted by GPAD for each GDA with the PMID that was reported 
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by Ehrhart et al. After performing automated validation, we have also manually reviewed 
all 281 discrepancies (Fig. S5, Additional file 1).

Comparison with large language model

The GDAs for which GPAD does not match with Ehrhart et al.’s report, we tasked 
Llama-2 to extract information for those. We used the model with 7 billion parameters 
with chatting capability (7B-Chat version). This model has a limit of context length of 
maximum 4096 tokens. We used high performance computing system with the param-
eters specified in Additional file 1: Table S2.

We have queried Llama-2 for 100 randomly selected GDAs out of 281 mismatched 
GDAs. Because of limited context size (4096 tokens) and to reduce the burden on 
Llama-2 of contextualizing the full entry page, we prompted Llama-2 with only the text 
from “Molecular Genetics” section. Additional file 1: Fig. S6 shows the template that we 
use for the prompt for each GDA. Once we get a structured reply from the model, we 
manually validate randomly selected 40 GDAs.

Results
Leveraging the GPAD, we conducted a real-time extraction and systematic analysis of 
5,236 GDAs catalogued within the OMIM database. The outcomes of this analysis are 
detailed as part of the results. To ascertain the robustness and efficacy of our method-
ology, we undertook a comparative evaluation against data and methods delineated in 
independent scholarly publications. All the results and analysis presented in the paper 
concern the data retrieved on 16 December 2022.

GDA Trends Obtained Through GPAD

Overall GDA trend shows a recent decline in GDA discovery studies

We confirm prior published analyses as well as present an up-to-date view of yearly 
trends in GDA discovery as shown in Fig.  4. The rate of GDA discovery increased 
through 2016 and has since declined. In 2013, the highest number of associations were 
made in a year. From 2011 to 2017, every year, at least 200 associations were made. 

Fig. 4 Trend analysis of GDA discoveries over time. Each dot represents the yearly count of identified GDAs. 
The green lined area represents GDAs currently categorized as ’provisional’ in the OMIM database, identified 
based on single‑patient evidence. Provisional GDAs, pending further verification via genotype–phenotype 
correlations, and laboratory studies, hold the potential to advance into the category of confirmed (blue line) 
associations
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This rapid increase can be explained by the improvements related to High Throughput 
Sequencing (HTS) technology and its integration into clinical and research assays [4, 27].

Compared to three decades back (1990–2000), the average number of GDA discover-
ies (88/year) has increased by 2.5 folds to 220 discoveries per year during 2010–2020 
(Fig.  4). From the trend graph, the most active period was 2012–2016, and the num-
ber of GDAs made per year decreased after 2016. During this period, around 255 GDAs 
were made per year, or 300 GDAs if the single patient discoveries are included.

In contrast, the sharp decline of 2020 could be attributed, at least in part, to the Coro-
navirus Disease of 2019 (COVID-19) pandemic and the resulting crisis [28, 29]. During 
the COVID-19 pandemic, reduced access to healthcare, labs, and sequencing facilities, 
external responsibilities for Clinicians [30, 31] (responding to the COVID-19 emer-
gency), changed priorities for researchers [32] (e.g. home-schooling and childcare), and 
increased research focus on COVID-19 clearly impacted rare disease studies and likely 
the ability for knowledge curators like OMIM to keep pace with the literature.

Trends in discovery methodology

While there exist multiple approaches to provide supporting evidence for new GDAs, 
GPAD identifies two commonly used methods that OMIM provides as evidence—[1] 
identifying the same underlying gene in multiple individuals with similar phenotype 
and/or, [2] using model organisms. The evidence used in each GDA publication is not 
systematically documented in every OMIM entry, however where available, GPAD 
attempts to identify when OMIM does describe the use of multiple unrelated affected 
individuals (“cohorts”) and/or the use of model organisms.

GPAD extracted earliest cohort related information from the text for 96.31% [5] of the 
GDAs. As GPAD is capable of extracting publication information too, we compared ear-
liest cohort study publication reference with the association making study. GPAD was 

Fig. 5 Number of individuals/families studied to make an association. A Displays a pie chart representing the 
count of unrelated individuals/families involved in initial GDA studies. B Illustrates the yearly trend (on the 
X‑axis) in the number of individuals or families associated with GDA discoveries, with the left Y‑axis detailing 
the annual total of GDAs and the right Y‑axis (and accompanying red line) indicating the annual count of 
individuals or patients. C Provides a histogram focusing on GDAs identified with fewer than 100 individuals or 
families, offering a detailed view of studies involving smaller cohorts



Page 12 of 21Rahit et al. BMC Bioinformatics           (2024) 25:84 

able to identify the cohort information for 67.88% (3554) total GDAs. Fig. 5A shows the 
number of individuals studied to make the association. Expectedly, we observe that most 
associations (81.57%) were made by studying less than 5 unrelated patient cohorts.

The trend graph for cohort size (Fig.  5B) shows that in recent years the discovery 
was made possible with larger cohort size compared to before 2010. The total number 
of unrelated patients studied in a single year has decreased significantly in recent years 
(2017-onwards); also, it has become more common to report more than one patient 
after 2015.

We further analyzed the studies for which GPAD has extracted single patient/fam-
ily as a cohort and found that 70.10% [1060] of these studies were complemented by 
experiments with model organisms. For example, combined oxidative phosphorylation 
deficiency 10 (COXPD10; MIM#614702) is associated with defects in MTO1 (MIM# 
614667). The first report for this GDA was published in 2012 where they have found 
MTO1 variant in two siblings [33]. The authors also performed in vivo experiments 
using yeast model organism. To provide a deeper look into the model organism study, 
we present a model organism utilization trend over the years in Fig. 6.

Compared to GDA discovery trend and cohort study trend, studies with model organ-
ism were comparatively stable as these do not show significant decrease (Fig. 6A). From 
2011 until 2021 between 50 and 70 model organism studies were done with 2013 hav-
ing a comparatively higher number (82). We have found that the mouse model has 
been the most popular over the years (Fig. 6B), most likely, due to the high availability 
of diverse phenotypes akin to human. In recent years (2013-onwards), the zebrafish has 
emerged as a prevalent alternative in approximately 28.5% association-discovery stud-
ies (Fig. 6C). Zebrafish offers efficient high-throughput screening techniques, and their 
progenies are easily maintainable compared to mouse [34, 35]. Furthermore, embryos of 
zebrafish develop outside of the mother allowing embryonic phenotyping. As a result, 

Fig. 6 Model organism trends in association discovery. A Depicts the overall trend of GDAs reported with 
each bar indicating the animal model usage for a particular year. B Presents a donut chart demonstrating 
the predominance of mouse models in GDA studies historically. C Offers a pie chart focusing only on the last 
decade (2011–2021), revealing a diversification in model organism use
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developmental disorders that affect embryonic development are easier to model. This 
same reason also applies to simpler model organisms such as worms, which are also 
being utilized in studying association discovery at an increasing rate [36, 37].

Performance analysis

We performed both manual expert validation and automated comparison with indepen-
dently published dataset to evaluate the performance of GPAD as an automated data 
mining tool. In different phases, we have manually checked 571 GDAs in total. Initially, 
150 associations were checked of which 66.67% (n=100) were correctly associated with 
the model organism described in OMIM as providing experimental evidence in the 
manuscript. The purpose of this evaluation was to identify potential improvements to 
GPAD. Later, we checked another set of 100 GDAs of which 48 (96%) GDA studies were 
identified correctly. For the cohort information, 72% (72) were accurate, 21% [21] were 
partially accurate, and the rest (7%) were inaccurate. The partially accurate GDAs often 
recognized the large cohort studies, among which only a few individuals were found to 
be carrying the variant responsible for the disorder. As for the model organism studies, 
98% (98) were correctly identified.

We used Ehrhart et al.’s dataset as benchmarking dataset for our automated evalua-
tion [25]. This independently published data was collected and curated manually by the 
authors. Among 5236 GDAs identified by GPAD, 1568 associations were not present in 
benchmarking dataset, of which 58.77% (925) can be accounted for by GDA established 
after Ehrhart et  al. finished their data curation (seemingly near the end of 2016/early 
2017). Of the remaining 3668 GDAs, GPAD correctly identified 92.34% (3387) GDA 
publications and conflicted with Ehrhart et al. for 7.66% (281) (Fig. 7A).

Manual evaluation of these 281 discrepancies revealed that GPAD identified the cor-
rect publication for 141 (49.82% of the conflicts) (Fig. 7B). For example, Ehrhart et al.’s 
study identified Wynne Jones et al. [38] as the association-making study for Fletcher fac-
tor (prekallikrein) deficiency (OMIM ID: 612423) and KLKB1 (MIM number: 229000). 
Whereas GPAD recognizes Lombardi et al. (2003) [39] for the association. This could be 
because of updated information on OMIM, as this record was last updated in 2022, and 
Ehrhart et al.’s report is based on 2015’s information.

Fig. 7 Comparative Performance Analysis of the GPAD. This Fig. shows the performance of GPAD by 
comparing its extracted PubMed IDs (PMIDs) against those identified in the study by Ehrhart et al. [25]. A 
Displays a pie chart illustrating the proportion of matched (green) and unmatched (blue) PMIDs between 
GPAD and the Ehrhart’s study. B Presents the results from a manual evaluation of 281 Gene‑Disease 
Associations (GDAs) that were not automatically matched with the Ehrhart study (Blue part of the pie chart 
in A)
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We have found at least three cases where Ehrhart et al. reported “Exclusion Studies” as 
the association-making study. One such case is the association between Familial hyper-
cholesterolemia-4 (FCHL4; OMIM#603813) and LDLRAP1. Sun et al. studied the possi-
ble link between the disease phenotype and gene in 1997 [40] but could not confirm any 
association. Thus, OMIM describes the 1997’s as an “exclusion study.” However, Ehrhart 
et al. report Sun et al.’s study as the association-making study. In this context, GPAD 
correctly identifies a study that was published two years later, in 2001, by Garcia et al. 
as the association-making study. A similar observation was made for Mitochondrial 
DNA depletion syndrome-7 (MTDPS7; OMIM#271245) and Fish-eye disease (FED; 
OMIM#136120).

Considering the 141 false negative GDAs, the overall accuracy increases to 96.16% 
(3528) (Fig. 7B). Our manual validation also shows similar accuracy of 96%. Of the 3.84% 
(140) GDAs for which GPAD incorrectly identified the association making publication, 
more than half of it is because of the lack of generalizability of GPAD’s algorithm to cap-
ture all the delineations. More specifically, the selection of reference publication based 
on the anchor token’s position in the text is mostly causing misidentification. Further-
more, for at least 10% of these 141 GDAs, multiple association-making efforts made the 
discovery possible, or multiple studies independently reported the GDAs at the same 
time. One example is variants in the CCDC65 (MIM number: 611088), known to cause 
autosomal recessive ciliary dyskinesia (MIM number: 615504). In 2013, two independ-
ent studies simultaneously discovered this association and both are described in OMIM 
[41, 42]. While our automated approach identified Austin-Tse et  al. [41] study as the 
association-making study, the independent dataset we compared our result to identi-
fied Horani et al. [42] study as the source. Also, some studies used fibroblast, induced 
pluripotent stem cells (iPSC), tissue or organoids to make associations; however, these in 
vitro methods were not incorporated in the current version of the GPAD.

Comparison with large language model

Large language model (LLM) like Llama-2 [43] represents the state-of-the art of NLP, 
harnessing vast amounts of data to understand and generate human-like text, revolu-
tionizing the field. We test the performance of our GPAD tool against an LLM model—
Llama-2. The Llama-2 model was queried with 100 randomly selected GDAs from the 
set of 281 mismatches identified during the validation phase with Ehrhart et al.’s report. 
The "Molecular Genetics" section of OMIM entries was isolated to serve as the input 
context for Llama-2, ensuring that the information provided was pertinent and within 
the token limits of the model.

When we compared the Llama-2 reported discovery year with our manually validated 
results, we have found that the Llama-2 model identifies 55% of the GDA discovery years 
correctly. Llama-2 correctly identified approximately 58% of the GDAs that were missed 
by GPAD. To test the robustness of Llama-2’s output, we conducted manual verifica-
tion of a computationally randomized selection of 40 GDAs out of the 100. This verifica-
tion revealed that Llama-2 correctly identified the discovery study for 50% [20] of the 
GDAs and accurately reported the number of studied individuals or families for 32% [16] 
of the cases. In case of model organism-based studies, we could not provide Llama-2 
the text from “Animal Model” section of OMIM because of the model’s limitation with 
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maximum context length. However, Llama-2 identified model organism for 37 of the 100 
GDAs from the provided “Molecular Genetics” section text.

Discussion
In this study, we present a new tool called GPAD that applies NLP to mine the rich, 
long-standing and manually curated OMIM database to uncover GDA-related informa-
tion. The data extracted by GPAD permits tracking of trends in GDA discoveries over 
time and enables researchers and clinicians to quickly identify historically and contem-
porarily successful strategies for GDAs across all the full spectrum of MDs.

The first effort to automatically extract metadata about GDA discovery and delinea-
tion of MDs from OMIM was based on simple pattern-matching in specific sections of 
the narrative text [4, 24]. Therefore, information in any sentences written by the OMIM 
curator that did not conform to the pattern would be missed. Additionally, while most 
MDs with locus heterogeneity are represented in OMIM by one phenotype entry per 
gene, some legacy phenotype entries have not yet been split by gene, so that pattern 
matching will fail to accurately capture the date of GDA for many of those MDs. GPAD 
overcomes these shortcomings by using NLP to “read” and “understand” each sentence 
more naturally. GPAD also improves upon a prior effort [25] that manually curated GDA 
metadata, a laborious process that cannot be updated or recreated easily.

Moreover, compared to the performance shown by the generative LLM – Llama-2, 
designed for general chat-based question-and-answer (Q&A) tasks, GPAD identified the 
metadata accurately more often (Llama-2 50% compared to GPAD’s 96.16%). However, 
it needs further exploration to evaluate whether this performance of Llama-2 could be 
improved by using a domain specific LLM. Models specialized for scientific literature-
based Q&A, medical knowledgebase could be candidates for such exploration. Notably, 
current best performing medical Q&A model Med-PaLM 2 [44] achieved 81.8% accu-
racy on PubMedQA dataset [45] indicating the improvements and fine-tuning these 
models need in this specific domain, particularly, the specialized context of OMIM along 
with the larger context length presents a challenge for Llama-2 and possibly similar 
LLMs. GPAD, by contrast, relies on deterministic and explainable methods that are less 
prone to such errors, enhancing its reliability. Additionally, its lightweight application 
size facilitates easy deployment, making it broadly accessible and usable. Furthermore, 
GPAD’s architecture is specifically tailored for the extraction of information pertinent to 
GDAs, enabling it to navigate the complexities of the OMIM database effectively.

From the analysis done on the data retrieved through GPAD, we observe a recent 
decline in GDA discovery [24, 25]. The curators of OMIM review a large number of 
studies and select the ones that meet the criteria for inclusion in OMIM. This process 
ensures the quality and reliability of OMIM, but also requires time and resources [11, 
12]. Therefore, the number of GDAs for the most recent year (2022) may be lower than 
expected. This number might not reflect the actual state of research, but rather the delay 
in cataloging which has been observed in other studies on GDAs as well [4, 24, 25].

Before the era of high throughput sequencing technologies, about ~ 150 new GDAs 
were described annually [4]. The advent of exome sequencing and new analysis 
approaches increased that rate to ~ 250 per year [24]. As these advancements clearly 
accelerated the pace of GDA discovery, there was a hope that we would be able to 
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uncover much of the unknowns about rare diseases by 2020 [15, 46]. Still, we do not 
know the genetic origin of thousands of MDs, with many more MD anticipated discov-
eries [12, 24]. Our analyses show that with the decline in GDAs in recent years, we may 
be hampered in reaching that goal. In the last few (2020-onwards) years, we observe a 
decreased rate of ~ 150 discoveries per year.

Before exome sequencing, from 1998 to 2008, a reduced rate of GDAs was reported 
(compared to post-2008), and the trend was downward between 2005 and 2008 (Fig. 4) 
[47, 48]. In 2007, OMIM reports that the genetic origin of more than half of MD condi-
tions was unknown at that time [48]. The development of exome sequencing and associ-
ated bioinformatics tools has greatly enhanced the efficiency of GDA discovery research 
[22, 49, 50]. After the innovation of exome sequencing, between 2011 and 2017, over 200 
GDAs were discovered each year, resulting in a total of approximately 1452 associations 
(Fig. 4). These discoveries were further supported by studies using model organisms for 
confirmation.

It has been known that most MDs are rare in population [16, 51, 52]. Consistent with 
that knowledge, our analysis indicates that most confirmed association discoveries are 
made utilizing a very limited number of patients. From the evaluation based on GPAD’s 
result, we find that 81.57% (2704 associations) of the discoveries were made by studying 
less than five unrelated patients (Fig. 5A). As the majority of MD cases are rare, knowl-
edge gained from model organism studies helped establish GDAs for more than two-
thirds of cases. One noticeable trend shift in the model organism is the utilization of 
simpler organisms with the advent of HTS (Fig. 6). Maintaining and experimenting with 
higher-order organisms could be time-consuming and laborious. As HTS has become 
affordable and widely accessible, high-throughput experimentation favours research 
with simpler organisms and faster confirmation of novel GDAs. Model organisms are 
useful for understanding the molecular basis of novel GDAs. Although the GDA discov-
ery rate has decreased in recent times, the number of GDAs that are validated by experi-
mental studies using model organisms has remained relatively stable during the same 
period. This suggests that model organisms are still a valuable resource for verifying and 
exploring the functional relevance of GDAs.

The recent decline in the rate of GDA discovery after ~2016 as noted in our result 
can be found in previously published literature [24, 25]. Interestingly, Bamshad and col-
leagues explored unpublished evidence, such as discoveries made as part of the Centers 
for Mendelian Genomics (CMGs) [24] and suggested that the evident decline in the rate 
of GDA discovery is really a decline in rate of publication, and might or might not neces-
sarily reflect a decrease in the true GDA discovery rate. Based on the analysis of GPAD’s 
findings, there appears to be evidence supporting the assertion. Fig. 5C illustrates a sig-
nificant decline in the number of publications with single family/patient evidence, while 
GDAs with two or more patients has become more common during this period. We see 
that the number of GDAs made studying 2–5 patients were 50–75 from 2010 to 2015 
and 75–100 from 2015 to 2020. However, single patient studies have decreased from 80 
(2010–2015) to 40 (2015–2020). Furthermore, Fig. 4 reveals that many of the GDAs are 
listed as “provisional” on OMIM because of only single patient evidence. These results 
indicate the possibility of increased scrutiny from publishers as well as OMIM to report 
unconfirmed and single patient studies.
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International collaborative effort to utilize case matchmaking platforms such as the 
MatchMatcher Exchange, members of which include GeneMatcher [53], MyGene2 [54], 
and DECIPHER [55], has facilitated GDA discoveries for MDs for almost a decade [56]. 
These platforms are connected through Matchmaker Exchange API allowing global 
genomic data sharing for MDs [13, 14]. It has been proposed that the lack in identifying 
candidate gene association can be improved by incorporating model organism related 
information [18] as well as variant level information (i.e. variant matching via GA4GH 
Application Programming Interfaces [57]).

During manual evaluation of GPAD’s performance, we have found that—often, mul-
tiple studies report novel GDA independently and concurrently. GPAD only recognizes 
the earliest publication in such cases and ignores the rest. Although we recognize this 
limitation of GPAD and we tried to address it, we could not without compromising the 
performance.

Our findings reflect the evolutionary trajectory of GDA discovery, from the early phe-
notype-focused era to the current genotype-centric methods, shaping our understand-
ing of MDs [24]. Hence, the effectiveness and efficiency of GDAs depend on the ability 
to identify and interpret individual gene variants. Progress in HTS technology and bio-
informatics techniques has enabled the identification of single nucleotide variants and 
more complex gene inactivation mechanisms, such as mobile element insertions [58] 
or repeat expansions [59]. It is possible that some new gene-disease associations may 
only be discovered once we can confidently call more complex variants present in under-
studied genes that are previously not associated with any MDs [59, 60]. Nonetheless, we 
are still limited in our ability to identify and interpret complex structural variants and 
variants in non-protein coding regions [61–63]. Furthermore, the resulting phenotype 
could be driven by various factors, such as genetic and epigenetic modifiers [51, 64–67]. 
Whether these different but complicated genetic aspects uncover much of the unknown 
avenue of MDs and GDAs remains to be explored [51, 67–69].

Conclusions
We have presented a novel tool—GPAD for textual analysis of OMIM for identifying 
GDA metadata. GPAD leverages NLP techniques to extract relevant information from 
OMIM such as publication information of GDAs, studied cohort and model organ-
ism. GPAD’s ability to delineate temporal trends offers researchers a macroscopic view 
of GDA discoveries over time, eliminating the labor-intensive task of sifting through 
OMIM entries. This trend analysis could aid in understanding the evolution of GDA 
research.

Our results and analyses of GPAD show that its method can be reliably extended to 
computationally extract other information from OMIM. One possible avenue of explo-
ration could be integration of other methods of GDAs (e.g., in vitro methods).

Furthermore, GPAD extracted information could be used for fine -tuning LLMs and 
train it for variety of purpose including—broader information extraction, meaning-
ful literature mining, surveying through current knowledge on MDs. While LLMs like 
Llama-2 can be powerful in extracting information, they often miss important details 
related to many GDAs. These language models can enhance the efficiency and accuracy 
of extracting complex data on MDs by understanding the contextual intricacies within 
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OMIM’s unique content. Such a model would provide tailored insights for clinicians, 
researchers, and bioinformaticians, allowing for more nuanced analyses and predictions.

Finally, in this work, we have demonstrated the utility of our tool by providing the 
analysis on the resultant data it produces including the discovery trends. Researchers, 
equipped with GPAD’s data, can identify and focus on understudied areas, potentially 
seeking grants and collaborating with specialists in relevant fields. As research evolves, 
GPAD allows for the real-time tracking of new GDAs in these targeted areas, facilitating 
the continuous adjustment and refinement of research strategies. Ultimately, the insights 
offered by GPAD could be beneficial for understanding trends and developing strategies 
for effective and efficient disease-gene discovery.
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