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Abstract 

The identification of tumor-specific molecular dependencies is essential for the devel-
opment of effective cancer therapies. Genetic and chemical perturbations are powerful 
tools for discovering these dependencies. Even though chemical perturbations can 
be applied to primary cancer samples at large scale, the interpretation of experiment 
outcomes is often complicated by the fact that one chemical compound can affect 
multiple proteins. To overcome this challenge, Batzilla et al. (PLoS Comput Biol 18(8): 
e1010438, 2022) proposed DepInfeR, a regularized multi-response regression model 
designed to identify and estimate specific molecular dependencies of individual 
cancers from their ex-vivo drug sensitivity profiles. Inspired by their work, we propose 
a Bayesian extension to DepInfeR. Our proposed approach offers several advantages 
over DepInfeR, including e.g. the ability to handle missing values in both protein-drug 
affinity and drug sensitivity profiles without the need for data pre-processing steps 
such as imputation. Moreover, our approach uses Gaussian Processes to capture more 
complex molecular dependency structures, and provides probabilistic statements 
about whether a protein in the protein-drug affinity profiles is informative to the drug 
sensitivity profiles. Simulation studies demonstrate that our proposed approach 
achieves better prediction accuracy, and is able to discover unreported dependency 
structures.

Keywords: Tumor-specific molecular dependencies, Chemical perturbation, Gaussian 
process, Spike-and-slab regression

Introduction
The abnormal pathway activities due to genetic or epigenetic changes are often responsi-
ble for the continuous growth or apoptosis resistance in cancer cells. However, the spe-
cific molecular mechanisms driving these activities differ widely among various cancer 
types and individual patients. Such diversity in the molecular mechanisms can result in 
varying responses to treatment outcomes. The key objective of precision cancer therapy 
is to exploit this diversity and identify the inherent weaknesses unique to each tumor.
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Novel precision cancer therapies rely on the identification of potentially druggable 
targets via e.g. cancer dependency mapping. Genetic perturbations such as RNAi and 
CRISPR/Cas9 systems offer robust and scalable strategies for pinpointing cancer-specific 
dependencies. These methods manipulate genes using techniques like RNA interference 
(RNAi) and the CRISPR/Cas9 system to suppress or eliminate particular genes within 
cancer cells, and reveal the subsequent impact on cell growth or survival. Although 
RNAi and CRISPR/Cas9 are widely applicable, their application becomes challenging 
when working with primary tumor samples in the context of clinical research. In addi-
tion, genetic manipulations and the targeted inhibition of the protein produced by the 
gene may not necessarily lead to the same effect. Such discrepancies could be attributed 
to the fact that drug molecules might quantitatively impede the enzymatic function of a 
protein while leaving other functions untouched, while genetic manipulation may affect 
all of its functions simultaneously.

Compared with genetic perturbation methods such as RNAi and CRISPR/Cas9 sys-
tems, chemical perturbation experiments, which involve high-throughput screening 
of bioactive compounds on cancer cells, offer an appealing alternative for personalized 
oncology. These experiments are well-suited for primary tumor models, enabling the 
recognition of patient- and tumor-specific dependencies. However, a significant chal-
lenge arises from the polypharmacological nature of small compounds, as many exhibit 
diverse off-target effects, hindering the identification of druggable protein targets associ-
ated with the desired outcome.

To better utilise high-throughput drug sensitivity datasets for precision medicine, 
Batzilla et  al. [3] proposed DepInfer, a regularized multi-response regression model 
designed to identify and estimate unobserved, specific molecular dependencies of indi-
vidual cancers from their ex-vivo drug sensitivity profiles obtained from chemical per-
turbation experiments. The authors demonstrated that DepInfer are able to correctly 
identify known kinase dependencies of individual cancers in multiple real-world data-
sets. However, DepInfer does not provide uncertainty estimates on either the in- or 
exclusion of the molecular dependencies, or the size of them, which are crucial for users’ 
decision-making process. In addition, DepInfeR imputes missing values in protein-drug 
affinity and drug sensitivity profiles by either filling in the missing values manually or 
using a single imputation step. Such imputation steps could lead to potentially biased 
and overly confident results [22]. These limitations affect the utility and feasibility of 
DepInfeR.

In this paper, we propose a Bayesian extensions of DepInfeR to address its limita-
tions. Compared with DepInfeR, our proposed method is able to capture potentially 
non-linear dependency structures between the proteins and the samples using Gauss-
ian process, and allow users to make probabilistic statements about whether or not such 
dependencies are supported by the dataset. In addition, our methods handle missing 
values in both protein-drug affinity and drug sensitivity profiles in an automatic fashion, 
which minimizes user inputs and improves the robustness of the method. To demon-
strate the efficacy of our method, we applied the proposed method to the same datasets 
used in Batzilla et al. [3]. Simulation results show that our method consistently outper-
forms DepInfeR in term of prediction accuracy, and are able to identify multiple known 
kinases dependencies that were not picked up by DepInfeR. Furthermore, our method 
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also detects previously unreported dependencies between kinases and cancer cells in the 
same datasets analyzed by Batzilla et al. [3]. These findings further highlight the utility of 
our proposed method in revealing insights of patient or cancer type specific pharmaco-
logical intervention.

Background
We start by fixing the notations. Let D, P, S be the number of drugs, proteins, and cell 
samples respectively. Let X be the D × P processed drug-protein affinity matrix with 
each entry Xdp being the processed drug-protein affinity score of the dth drug on the 
pth protein for d = 1, . . . ,D; p = 1, . . . ,P . Similarly, let Y  be the D × S processed drug-
sensitivity matrix with each entry Yds being the processed sensitivity measure of the dth 
drug on the sth sample for d = 1, . . . ,D; s = 1, . . . , S.

Batzilla et  al. [3] proposed DepInfeR, a regularized multivariate linear regression 
model, to identify and estimate the protein-sample dependence: Let 1D being a D-dimen-
sional column vector of ones. The authors proposed

where β0 = [β011D, . . . ,β0 S1D] ∈ R
D×S is the intercept matrix with β01, . . . ,β0S ∈ R , 

β ∈ R
P×S is the regression coefficient matrix and ǫ ∈ R

D×S is the residual matrix. The 
estimated parameter matrices β̂0 and β̂ in DepInfeR are obtained by repeatedly fitting a 
multi-response Gaussian linear model with group-LASSO regularization [2, 28] under 
different penalty parameters, recording the fitted parameter matrices, and finally taking 
the element-wise median of the fitted parameter matrices. Given the fitted parameter 
matrices, the model defined in Eq (1) implies that the sensitivity measure Yds of the dth 
drug on the sth sample can be written as

where β̂0s is the fitted intercept, ǫ̂ = Y − X β̂ is the fitted residual matrix, and 
Yds,Xdp, β̂ps, ǫ̂ds are the corresponding entries in Y ,X , β̂ , ǫ̂ respectively. A non-zero entry 
β̂ps in β̂ encodes the direction and magnitude of the (additive) contribution of the pth 
protein to the sth sample, as the model assumes that for the sth sample, the contribu-
tion of the pth protein to the sensitivity measure Yds is a linear function of the affin-
ity score Xdp with β̂ps being the slope for all d = 1, . . .D . The sparsity of group-LASSO 
ensures that the estimated parameter matrix β̂ would consist of rows of zeros, which 
can be viewed as proteins that do not contribute to the sensitivity measure at all (i.e. not 
selected by the model).

Limitations of DepInfeR

Batzilla et al. [3] demonstrated that DepinfeR is able to correctly identify known protein-
cell sample dependencies in multiple datasets. However, DepInfeR has a few limitations. 
First, DepInfeR handles missing values in Y  by filling the missing entries using random 
forest imputation [24]. This single imputation step does not account for the uncertainty 
in predicting the missing values, and could lead to bias in the regression analysis [20, 22]. 

(1)Y = β0 + Xβ + ǫ,

(2)Yds = β̂0s +

P

p=1

Xdpβ̂ps + ǫ̂ds,
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Secondly, even though the sparsity of group LASSO in DepInfeR helps users to identify and 
select relevant proteins, it is not able to provide uncertainty estimates of the inclusion or 
exclusion of a protein, which is crucial for selecting the subset of relevant proteins. Thirdly, 
the estimated parameter matrix β̂ in DepInfeR is obtained by taking element-wise median. 
This may improve the robustness of the estimator, but it also complicates the uncertainty 
estimation of the parameters, and affects the fitting of the model (See Additional file  1: 
Sect.  1.1). In the following section, we propose a Bayesian extensions of DepInfeR that 
address these limitations.

In addition, DepinfeR recommends normalizing the processed drug-sensitivity matrix Y  
using z-scores. This data-dependent normalization step does not always respect the model 
assumption, and may affect prediction performance. In “GDSC1”, “BeatAML” and “EMBL” 
sections, we also demonstrate how data-independent transformations such as logit or log 
transformation can lead to better prediction accuracy.

Spike‑and‑slab Gaussian process regression
To address the limitations of DepInfeR discussed in the last section, we propose a Bayesian 
extension of DepInfeR using a spike-and-slab Gaussian process regression model. DepInfeR 
assumes that for each sample s and the drug d, the contribution of each protein p to the 
sensitivity measure Yds is a linear function of the corresponding drug-protein affinity score 
Xdp . This assumption may not be flexible enough to capture the reality. Hence in this paper, 
we extend DepInfeR using Gaussian Processes to model the protein-cell sample dependen-
cies, allowing the model to adapt to more complex non-linear molecular dependency struc-
tures. We also considered a similar but less flexible linear version of the proposed model, 
which shares the same linear assumption as in DepInfeR (see Additional file 1: Sect. 2).

Let a0, b0 > 0 , π0 ∈ (0, 1) . Let kν(·, ·) : R× R → R be a valid kernel function with hyper 
parameter ν . We define the Spike-and-Slab Gaussian process model as follows:

The binary variables zp controls the inclusion of the pth protein (note that zp excludes 
proteins in a similar fashion to the group-LASSO penalty used in DepInfeR: when 
zp = 0 , Yds does not depend on the protein-drug affinity score Xdp for all d = 1, . . . ,D ). 
The scalar parameter αs is the intercept parameter of the sth column of Y  , and σ 2 

(3)zp ∼ Bernoulli(π0), p = 1, . . . ,P;

(4)σ 2 ∼ Inv-Gamma (a0, b0);

(5)fps : R → R ∼ GP(0, kν), p = 1, . . . ,P; s = 1, . . . , S;

(6)γ 2 ∼ Half-Normal (0, 1), as|γ
2 ∼ N (0, γ 2), s = 1, . . . , S;

(7)ǫds ∼ N (0, σ 2), s = 1, . . . , S; d = 1, . . . ,D;

(8)Yds = as +

P
∑

p=1

zpfps(Xdp)+ ǫds, s = 1, . . . , S; d = 1, . . . ,D.
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controls the scale of the Gaussian noises ǫds . This proposed approach shares the same 
additive structure as DepInfeR, but we now model the contribution of the pth protein to 
the sth sample as a random function fps of the drug affinity scores. In contrast, DepInfeR 
assumes that the contribution of the pth protein to the sth sample is linear with slope 
βps . Using Gaussian Process as a non-linear regression model greatly improves the flex-
ibility of the model, and allows the model to identify more complex molecular depend-
ency structures. See also Fig. 1 for a schematic illustration of the proposed model.

We now discuss the choice of the kernel function kν . From Eqn (2) we see the linear 
assumption in DepInfeR implies that when Xdp = 0 , the pth protein does not contribute to 
the sensitivity measure Yds for any s = 1, . . . , S regardless of the value of β̂ps . This is a natu-
ral constraint: When Xdp = 0 , we expect this protein to have no contribution to the sensi-
tivity measure as the drug would simply not bind to this protein. This observation implies 
that in our setup, the individual contribution functions should satisfy fps(0) = 0 for all p, s. 
Let GP(0, kν) be a Gaussian process with zero mean function and an arbitrary kernel kν . 
Instead of sampling fps from the original GP(0, k) , we can impose this functional constraint 
by sampling fps from a conditional Gaussian process fps|fps(0) = 0 : By standard properties 
of Gaussian process [16], it is straightforward to show that this conditional Gaussian pro-
cess fps|fps(0) = 0 built on GP(0, kν) is itself a zero-mean Gaussian process, and its kernel 
function k(0)ν  takes the form

Fig. 1 A A schematic illustration of how the s = 3 rd column of the drug-sensitivity matrix Y  is generated 
under the proposed Gaussian Process regression model using the set of functions {fps}4p=1 . Here we set 
Z = {1, 1, 1, 0} . This means the p = 4 th protein does not contribute to the sensitivity measure, and the 
corresponding function f43 is colored in grey. B Graphical representation of the proposed Spike-and-Slab 
Gaussian Process regression model. C A table of all variables used to define the proposed model
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As a result, any random function fps ∼ GP(0, k(0)ν ) would satisfy the constraint 
fps(0) = 0 . We suggest using this modified kernel k(0)ν  instead of the original kν whenever 
possible as it respects this particular aspect of the underlying physical process of the 
experiment. An example of k(0)ν (x1, x2) will be given in “Posterior inference” section.

Missing values in X and Y

DepInfeR handles missing values in Y  using Random-Forest-based single imputation, 
which does not account for the uncertainty in the prediction of the missing values. In 
contrast, our proposed model is able to handle missing values in Y  in a statistically 
more principled way: Under the Bayesian framework, we are able to view missing val-
ues in Y  as unobserved random variables (i.e. addition model parameters). Specifi-
cally, suppose Ys , the sth column of Y  , consists of multiple missing values. Let Ms be 
the set of indices whose corresponding entries in Ys is missing. Let YMs and Y−Ms be 
the missing and observed entries of Ys respectively. It is straightforward to see that 
YMs and Y−Ms are conditionally independent given the model parameters for any 
s = 1, . . . , S . Therefore instead of imputing the missing values directly, we can easily 
incorporate the additional uncertainty introduced by missing values by first marginal-
izing the unobserved part out from the likelihood function conditioned on all model 
parameters, and then carrying out posterior inference conditioned solely on the 
observed values Y obs = {Y−Ms}

S
s=1 thanks to the conditional independent assumption.

Before we give the likelihood of the observed Yobs , we also need to address the miss-
ing values in the drug-affinity matrix X  . In practice, X  consists a large number of 
missing entries. For example, approximately 90% of entries in the raw X  matrix of the 
GDSC1 dataset used in Batzilla et al. [3] are missing. In Batzilla et al. [3], the authors 
filled all missing values in the raw drug-affinity matrix manually without justification. 
In this paper, we consider a different assumption that, for the dth drug and pth pro-
tein, if the corresponding drug-affinity score Xpd is missing, then the pth protein sim-
ply does not contribute to the sensitivity measure Yds for all samples s = 1, . . . , S . If we 
impose this assumption on our proposed model, then each sensitivity measure Yds in 
(8) would then follow

for s = 1, . . . , S , d = 1, . . . ,D where 1(·) is the indicator function. Let µ(s) = {µds}
D
d=1 , 

Z = {zp}
P
p=1 and α = {αs}

S
s=1 . Under this assumption, the likelihoods of the observed 

column Y−Ms and the full observed dataset Y obs = {Y−Ms}
S
s=1 given the drug-affinity 

matrix X and all model parameters are then

(9)k(0)ν (x1, x2) = kν(x1, x2)− kν(x1, 0)kν(x2, 0)kν(0, 0)
−1.

(10)Yds = µds + ǫds;

(11)µds = as +

P
∑

p=1

zp1(Xdp not missing)fps(Xdp)
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and

respectively, where ID is a D × D identity matrix and N (·;µ,�) is the multivariate 
Gaussian density with mean µ and covariance matrix � . In the following section, we will 
carry out posterior inference of the model parameters using the likelihood given above. 
From simulation studies in “GDSC1”, “BeatAML” and “EMBL” sections we find that this 
pre-processing procedure, combined with the proposed model architecture, consistently 
leads to superior prediction performance than DepInfeR, hence we recommend the data 
handling process above as it is more automated and requires less input from users.

Posterior inference

In this section, we describe the posterior inference procedure of the proposed model using the 
modified kernel (9) and the likelihood functions given in (13). Let 
p(fps|kν), p(γ

2), p(α|γ 2), p(σ 2|a0, b0), p(Z|π0) be priors on the corresponding model 

parameters. Let kν(x1, x2) = ν1 exp

(

− (x1−x2)
2

2ν22

)

 be the 1D Gaussian-RBF kernel with kernel 

parameter ν = {ν1, ν2} , ν1, ν2 > 0 . Under this choice of kν , it is straightforward to verify that 

the modified kernel (9) takes the form k(0)ν (x1, x2) = ν1 exp

(

− (x1−x2)
2

2ν22

)

− ν1 exp

(

−
x21+x22
2ν22

)

 . 

For the rest of the paper, we use this k(0)ν (x1, x2) as the kernel function of the Gaussian process 
for simplicity. Simulation studies in the following sections show it achieves satisfactory results.

Let Jdp = 1(Xdp not missing) be a binary variable indicating if Xdp is missing. Let K̄ (p) 
be a D × D modified kernel matrix such that the entries K̄ (p)

d1d2
= 0 if Jd1pJd2p = 0 , and 

K̄
(p)
d1d2

= k(0)ν (Xd1p,Xd2p) otherwise for d1, d2 = 1, . . . ,D . Let 1D be a D × D matrix with 
all entries being 1. Let 0D be a zero vector of length D. Then by the conjugacy between 
Gaussian process priors on fps , Gaussian prior on αs , and the Gaussian likelihood on Y obs , 
we can marginalize αs and {fps}Pp=1 out from (12), and obtain the following marginalized 
likelihood

where �̄s = γ 2
1
D−|Ms| + σ 2

ID−|Ms| +
∑P

p=1 zpK̄
(p)
−Ms

 for s = 1, . . . , S.
Given the marginalized likelihood above, the posterior distribution of the set of model 

parameters {Z,α, {fps}P,Sp,s=1, σ
2, γ 2} can then be factorized as

where

(12)p
(

Y−Ms |X ,αs, {fps}
P
p=1,Z, σ

2
)

= N
(

Y−Ms ;µ
(s)
−Ms

, σ 2
ID−|Ms|

)

(13)p
(

Y obs|X ,α, {fps}
S,P
s,p=1,Z, σ

2
)

=

S
∏

s=1

p
(

Y−Ms |X ,αs, {fps}
P
p=1,Z, σ

2
)

(14)p(Y−Ms |X ,Z, σ 2, γ 2, k(0)ν ) = N
(

Y−Ms ; 0D−|Ms|, �̄s

)

(15)

p
(

Z,α, {fps}
P,S
p,s=1, σ

2, γ 2|X ,Y obs, k
(0)
ν , a0, b0,π0

)

∝

S
∏

s=1

p(αs, {fps}
P
p=1|σ

2, γ 2,X ,Y−Ms ,Z, k
(0)
ν )× p(Z, γ 2, σ 2|X ,Y obs, k

(0)
ν , a0, b0,π0)
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for s = 1, . . . , S , and

This factorization suggests that we can approximately draw samples from the posterior by 
iteratively sampling from first p(αs, {fps}Pp=1|σ

2, γ 2,X ,Y−Ms ,Z, k
(0)
ν ) for s = 1, .., S using 

Bayesian backfitting [10], and then the marginalized p(Z, γ 2, σ 2|X ,Y obs, k
(0)
ν , a0, b0,π0) 

using Metropolis-Hasting MCMC. Once we have obtained MCMC samples from the 
posterior, we are able to form both point and set estimates of the parameters of our 
interest such as Pr (zp = 1|X ,Y obs, k

(0)
ν , a0, b0,π0) , the posterior inclusion probabil-

ity of the pth protein. Compared with DepInfeR, our Bayesian framework allows us to 
assess uncertainties in both the set of selected proteins and other model parameters in a 
straightforward fashion.

To demonstrate the efficacy of our method, we first apply the proposed model to a 
synthetic dataset (See Additional file 1: Sect. 3). Simulation results confirm that it can 
recover the underlying functions fps accurately. From both simulation studies on syn-
thetic and real (“GDSC1”, “BeatAML” and “EMBL” sections) datasets, we find that the fit 
of the proposed model is not sensitive to the choice of prior on γ 2 or the choice of hyper-
parameters {a0, b0,π0} , and primarily depends on the choice of kernel hyperparameter 
ν = {ν1, ν2} . Therefore we recommend setting the prior on γ 2 to be Half-Normal (0, 1) , 
a0 = b0 = 1 , π0 = 0.1 , and choosing ν using grid-search and 3-fold cross-validation.

Outlines of simulation studies
In this section, we describe the setup of our numerical experiments. We will report the 
results in the next section.

Data pre‑processing

We use the same datasets analyzed in Batzilla et al. [3] to demonstrate the effectiveness 
of our proposed method. In addition to the original processed datasets used in DepIn-
feR, we also tried a different data pre-processing step in the following numerical experi-
ments: For the drug-affinity matrix X , we denote X imp the original drug-affinity matrix 
used in DepInfeR [3] whose missing entries are filled in manually by the authors, and 
Xmiss the incomplete matrix without any imputation. For the drug-sensitivity matrix Y  , 
we consider two choices: We denote Y imp the original imputed and z-score normalized 
drug-sensitivity matrix used in DepInfeR. We also construct a drug-sensitivity matrix 
from the incomplete raw sensitivity measures without the imputation step. The raw sen-
sitivity measures in the GDSC1 dataset are all in the range (0,  1). We choose not to 

(16)

p(αs, {fps}
P
p=1|σ

2, γ 2,X ,Y−Ms ,Z, k
(0)
ν )

∝ p
(

Y−Ms |X ,αs, {fps}
P
p=1,Z, σ

2
)

p(αs|γ
2)

P
∏

p=1

p(fps|k
(0)
ν )

(17)

p(Z, γ 2, σ 2|X ,Y obs, k
(0)
ν , a0, b0,π0)

∝

S
∏

s=1

p(Y−Ms |X ,Z, σ 2, γ 2, k(0)ν )p(γ 2)p(σ 2|a0, b0)p(Z|π0).
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impute the missing values in the raw measures, and apply a data-independent logit 
transformation h(y) = log

y
1−y (instead of the z-score normalization in DepInfeR) to map 

all non-missing raw sensitivity measures from (0, 1) to the real line. We denote Y logit the 
resulting logit-transformed incomplete drug-sensitivity matrix without imputation. For 
the beatAML and EMBL datasets in DepInfeR, we construct incomplete sensitivity 
matrices Y log in a similar fashion by applying data-independent log-transformation to 
the entries, mapping the positive scalar raw responses to the real line. In “GDSC1”, 
“BeatAML” and “EMBL” sections, we apply our proposed method to both the original 
sensitivity measures Y imp and our transformed, incomplete datasets Y logit/Y log , and 
demonstrate how such data-independent transformations lead to better prediction per-
formance and normally distributed residuals, which agrees with our model assumption.

Simulation strategy

We compare the prediction performance between the DepInfeR model based on the 
original dataset {X imp,Y imp} , and our proposed model based on two different data-
sets {Xmiss,Y imp} (incomplete drug-protein affinity matrix and the original sensitivity 
matrix) and {Xmiss,Y logit} or {Xmiss,Y log} (incomplete drug-protein affinity matrix and 
the incomplete, logit- or log-transformed sensitivity matrix). We include both the origi-
nal and the incomplete drug-sensitivity matrices to demonstrate the effectiveness of the 
proposed data-independent transformation. Since Y imp and the transformed Y logit or 
Y log are not on the same scale, we compare the prediction performance between models 
with different datasets using normalized mean square error

as the accuracy benchmark, where Ŷ  is the estimate of the observed values Y  and Ȳ  is 
the sample mean of all entries in Y  . Specifically, the estimated Ŷ  of our proposed model 
is computed as follows: For a fixed hyperparameter, we draw posterior samples of the 
parameters using the MCMC sampler described in “Posterior inference” section with 
chain length being fixed at 120. We discard the first 20 steps as burn-in, and retain the 
remaining 100 steps as our MCMC posterior samples. To illustrate that MCMC has con-
verged in 120 iterations, we report the trace plots of the unnormalized log posterior den-
sity and σ 2 of the proposed model fitted using the datasets {Xmiss,Y logit} or {Xmiss,Y log} . 
For each dataset in Batzilla et al. [3], we run 6 MCMC with random initializations and 
see no evidence of poor mixing from the trace plots. In addition, the Gelman-Rubin 
statistics of the scalar parameter σ 2 and γ 2 are both less than 1.1, indicating good con-
vergence (see Additional file  1: Sect.  1.2 for details). On average, each repetition of 
posterior inference using the MCMC described in “Posterior inference” section takes 
2 ∼ 2.5 hours to run on our machine. For i = 1, . . . , 100 , we then compute the estimated 
responses Ŷ i based on the ith MCMC sample as the model parameters. We then report 
the sample average Ŷ = 1

100

∑100
i=1 Ŷ i as our final estimated responses of Y  . The normal-

ized MSE measures the prediction error of a model relative to the variability of the data-
set, hence allows us to compare the performance of models fitted using datasets that 

nMSE(Y , ̂Y ) =
||Y − ̂Y ||2

2

||Y − Y |2
2
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have different value ranges. Similar to Batzilla et al. [3], the nMSE of the model under 
different hyper-parameters are estimated using 3-fold cross validation, and the optimal 
hyper-parameters are chosen using grid-search.

In addition to DepInfeR and our proposed method, we also tried to regress Y imp on 
X imp (i.e. the original dataset) using Multivariate Random Forest [11, 23], a non-additive, 
non-linear multivariate regression model, and report its prediction performance. We 
choose to include this highly flexible model as a benchmark of prediction accuracy since 
we would like to check to what degree does the additive structure in both DepInfeR and 
our proposed method affects prediction power.

Protein selection

In addition to prediction performance, we also compare the set of proteins (kinases 
in the following examples) selected by DepInfeR and our proposed model. For our 
approach, we record the proteins whose corresponding indicator zp is 1 for more than 
95% of the times in the MCMC samples, and treat them as the set of selected pro-
teins. For each dataset and each choice of hyper-parameter, we report the Intersection 
over Union IoU(A, B) = |A∩B|

|A∪B| as a similarity measure between the subsets of proteins 
selected by our approaches and the ones reported in DepInfeR. For each dataset, we also 
report the subsets of proteins selected by the proposed model that attain minimal cross-
validation error (Fig. 4).

Results
In this section, we demonstrate the efficacy of our proposed method using the same 
datasets analyzed in Batzilla et al. [3].

GDSC1

In this section we compare the performance of our proposed method with DepIn-
feR using the GDSC1 dataset studied in Batzilla et  al. [3]. The GDSC1 dataset con-
sists of tumor specimens from different cancer types: 30 samples from diffuse large 
B-cell lymphoma (DLBCL) patients, 25 samples from acute lymphocytic leukemia 
(ALL) patients, 24 samples from acute myeloid leukemia (AML) patients and 47 sam-
ples from breast carcinoma (BRCA) patients. We run our proposed model multiple 
times under different choices of the hyper-parameter ν = {ν1, ν2} . Specifically, we con-
sider ν1 ∈ {0.01, 0.0825, 0.155, 0.2275, 0.3000} , ν2 ∈ {0.01, 0.068, 0.126, 0.184, 0.242, 0.3} 
and tried all their combinations, resulting in 30 distinct hyper-parameter values in a 
grid. We then estimate the normalized MSE of the fitted model under each choice of 
hyper-parameter using 3-fold CV. From Fig. 2 we see that under both {Xmiss,Y imp} and 
{Xmiss,Y logit} , our proposed approach outperforms DepInfeR (solid vertical black line) 
for all choices of hyper-parameters, and outperforms the flexible MultiRF model for 
most of the times. In addition, we see the choice of hyperparameter ν has impact on both 
prediction accuracy and the subsets of selected kinases.

We also see that the model with Y logit tend to achieve lower normalized MSE than 
the one with Y imp , which indicates the efficacy of the logit transformation. To further 
compare the logit and the original z-score transformations, we report the residual 
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Fig. 2 Prediction performance: Each point in each figure corresponds to a model fitted under a given value 
of hyper-parameter using either the original, imputed Y imp or the incomplete, logit-(log-)transformed Y logit

(Y log ). The horizontal coordinate of the point is the normalized MSE of the model estimated using 3-fold CV, 
and the vertical coordinate is the Intersection-over-Union score between the subset of kinases selected by 
the fitted model and the corresponding subset of kinases selected by DepInfeR. The vertical dashed and solid 
lines correspond to the estimated normalized MSE of multivariate Random Forest and DepInfeR based on the 
original dataset {X imp, Y imp}

Fig. 3 Observed vs estimated responses plots and residual Q-Q plots for both DepInfeR and the proposed 
method with different datasets. From left to right: Observed vs estimated responses plot of our proposed 
model; Observed vs estimated responses plot of DepInfeR; Residual Q-Q plot of our proposed model; 
Residual Q-Q plot of DepInfeR. Note that the scale of the datasets used to fit our proposed model are 
different from the ones used to fit DepInfeR
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Q-Q plot and the observed vs fitted responses plot for both DepInfeR with the origi-
nal {X imp,Y imp} and the proposed method with the new {Xmiss,Y logit} under the hyper-
parameters that lead to minimal normalized MSE in Fig. 3. We see that the proposed 
method with the new dataset fits the observed responses better, and its residuals are 
roughly normally distributed, indicating that the fitted results are in-line with our model 
assumption. This further supports that our proposed model with the data-independent 
logit transformation leads to better prediction performance.

We also would like to highlight that even though a number of hyper-parameters are 
able to attain a similar level of prediction accuracy in Fig. 2, their corresponding similar-
ity measures between the subsets of kinases selected by the fitted model and DepInfeR 
vary considerably. This suggests that there may exist many subsets of kinases that are 
equally informative to the drug-sensitivity measures. In Fig. 4 we report the subsets of 
kinases selected by the proposed model with the choice of hyperparameter that attains 
minimal normalized MSE under the two choices of datasets. We see DYRK1A and 
CCNK are not selected by the original DepInfeR but are consistently picked up by our 
proposed model. Experimental studies confirm that DYRK1A is associated with acute 
lymphocytic leukemia (ALL) [4], acute myeloid leukemia (AML) [15] and breast cancer 
(BRCA) [14]. On the other hand, CCNK is complexed with kinase CDK12 and CDK13 
[5, 9], which are strongly associated with BRCA [13], AML [21] and diffuse large B-cell 
lymphoma (DLBCL) [8]. Demonstrated that the targeted degradation of CCNK/CDK12 
complex is a druggable vulnerability of colorectal cancer [7] . This finding suggests that 

Fig. 4 Feature Selection Comparison: Sets of kinases reported in Batzilla et al. [3] and the ones selected by 
our proposed model under the hyperparameters ν∗ that lead to the minimal normalized MSE. We highlight 
the kinases that appear in more than one of the reported subsets. Top: Selected kinases in the GDSC1 dataset. 
Compared with DepInfeR, the proposed models also suggest that CCNK and DYRK1A are informative to 
the sensitivity measure. Mid: Selected kinases in the EMBL dataset. The proposed models also suggest that 
CDK16, CDK6, EIF3J, GSKIP, PDXK, PTK2B and TAOK2 are also informative. Bottom: Selected kinases in the EMBL 
dataset. he proposed models also suggest that ACAD11 and STK26 are informative
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there might be similar druggable dependencies between CCNK/CDK12 or CCNK/
CDK13 complexes and the cancer types included in the GDSC1 dataset such as BRCA 
and AML.

To better understand this difference in kinase selection, we also report the estimated 
posterior means of fps of CCNK and DYRK1A across all sample cells. From Fig. 5 we see 
the estimated fps have a non-monotonic ∩ - or ∪-shape, which can not be well approxi-
mated by the linear basis function in DepInfeR. In contrast, the fps of kinases that are 
selected by both DepInfeR and our proposed method are indeed more monotonic, 
allowing the linear basis functions in DepInfeR to approximate these patterns reasonably 
well. This confirms that in addition to monotonic or linear dependencies, our proposed 
approach are also able to capture non-linear dependencies that can not be identified by 
DepInfeR.

BeatAML

In this section, we compare the performance of our proposed approach with DepInfeR 
using the beatAML dataset in Batzilla et al. [3]. The beatAML dataset consists of tumor 
specimens collected from 528 AML patients. We fit our proposed models using the two 
datasets {Xmiss,Y imp} and {Xmiss,Y log} , and estimate the normalized MSE repeatedly 
using the same grid of hyper-parameters and procedure described in “GDSC1” section.

From Fig. 2 we see our fitted model under both response matrices ( Y log,Y imp ) outper-
forms DepInfeR (solid vertical black line) in term of prediction accuracy for all choices 
of hyper-parameters, and our proposed model fitted to the new dataset {Xmiss,Y log} is 
able to outperform the highly flexible MultiRF. We also report the residual Q-Q plot and 

Fig. 5 Estimating fps : Estimated posterior means of fps of a single kinase p across all sample cells s = 1, . . . , S 
based on the logit- or log-transformed incomplete responses. First two columns: Examples of estimated fps of 
kinases that are not selected by DepInfeR. Last two columns: Examples of kinases that are selected by both 
DepInfeR and our approach. Note that our estimated fps are not directly comparable with DepInfeR as they 
are fitted using responses matrices on different scales
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the observed vs fitted responses for both DepInfeR with {X imp,Y imp} and the proposed 
method with {Xmiss,Y log} in a similar fashion to the previous section. Again from Fig. 3 
we also see our proposed model with the log-transformed sensitivity measure has better 
model fit, and its residuals are not drastically different from a normal distribution.

Figure 4 shows that CDK16, CDK6, EIF3J, GSKIP, PDXK, PTK2B and TAOK2 are not 
selected by DepInfeR but are consistently picked up by our model. Various experimen-
tal studies confirm association between AML and CDK6 [26], GSKIP [18, 19], PDXK 
[6] and PTK2B [1, 27] also suggests a possible indirect association between AML and 
TAOK2.

Similar to the previous section, we also report the estimated posterior means of fps of 
CDK6 and PDXK across all sample cells. From Fig. 5 we see the estimated fps also have 
a non-monotonic ∩ - or ∪-shape, while the fps of kinase AKT1 and CDK17, which are 
selected by both DepInfeR and our proposed method, are more monotonic.

EMBL

In this section, we compare the performance of our proposed approach with DepInfeR 
using the EMBL dataset in Batzilla et al. [3]. The EMBL dataset consists of 117 tumor 
samples from CLL patients, 7 samples from mantle cell lymphoma (MCL) patients, 
and 7 samples from T-cell prolymphocytic leukemia (T-PLL) patients. Here we run the 
proposed model and estimate the normalized MSE using exactly the same setup as in 
“BeatAML” section. From Fig. 2 we see that our proposed approach outperforms DepIn-
feR consistently (solid vertical black line) for all choices of hyper-parameters. The pro-
posed model with the log-transfromed, incomplete sensitivity measure Y log tend to 
achieve better performance than the model with the original, imputed sensitivity meas-
ure Y imp , and is able to attain a comparable prediction performance to the more flexible 
MultiRF model while maintain interpretability. We also report the residual Q-Q plot and 
the observed vs fitted responses plot for both DepInfeR with {X imp,Y imp} and the pro-
posed method with {Xmiss,Y log} in a similar fashion to the previous section in Fig.  3. 
Here we also see that our proposed approach with the new dataset achieves better model 
fit, and the residuals are also reasonable close to a normal distribution.

From Fig. 4 we see ACAD11 and STK26 are not selected by the original DepInfeR but 
are consistently chosen by our model. The EMBL dataset primarily consists of tumor 
samples from chronic lymphocytic leukemia (CLL) patients. To our best knowledge, 
direct association between ACAD11 and CLL has not been reported before. However, 
[12] show that ACAD11 plays a key role in the pro-survival function of p53 tumor sup-
pressor, a strong molecular predictors for CLL [29]. On the other hand, [17] recom-
mends targeting p53 and restoring the function of the disrupted p53 pathway in the 
treatment of CLL. This suggests the potential therapeutic value of ACAD11 in CLL 
treatment. Although the association between kinase STK26 and CLL is unclear, its asso-
ciation with AML is recently reported in [25]. This finding suggests possible dependency 
between STK26 and CLL, further indicating the clinical potential of our method.

Similar to the previous section, we compare the estimated fps between kinases not 
selected by DepInfeR (ACAD11 and STK26) and the one selected by both DepInfeR and 
our method (CCNT1). Figure 5 shows that the shape of the estimated fps follow patterns 
similar to the ones demonstrated in previous sections.
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Discussion
In this paper, we proposed a Bayesian extension of DepInfeR [3], a computational frame-
work for identifying the sample-specific protein dependencies (i.e. to what extent does 
the survival of the cancer cells depend on a certain protein) using both the drug-sensi-
tivity and drug-protein affinity data. Compared with DepInfeR, our proposed approach 
uses Gaussian process to model the unobserved dependency structures between pro-
teins and cell samples, and uses Spike-and-Slab prior to decouple protein selection and 
parameter regularization. This modelling framework allows users to identify non-lin-
ear protein-cancer cell dependencies, and make probabilistic statements regrading the 
inclusion of candidate proteins. In addition, our method does not any require any impu-
tation on either the drug-sensitivity or the drug-protein affinity data. As a result, our 
approach requires less input from the users, and is more automated than DepInfeR.

In simulation studies, we demonstrated that our approach consistently outperformed 
DepInfeR in term of prediction accuracy, and was able to identify known protein-cancer 
cell dependencies that were not picked up by DepInfeR [3]. In addition, our approach 
also detected a number of protein-cancer cell dependencies that have not been reported 
in literature. These findings support the therapeutic potential of the proposed method, 
and confirm that our proposed methods can help revealing more insights into protein-
cancer cell dependencies, and finding new possibilities for patient or cancer type specific 
pharmacological intervention.
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