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Abstract 

Background: Protein–protein interactions (PPIs) are crucial in various biological 
functions and cellular processes. Thus, many computational approaches have been 
proposed to predict PPI sites. Although significant progress has been made, these 
methods still have limitations in encoding the characteristics of each amino acid 
in sequences. Many feature extraction methods rely on the sliding window technique, 
which simply merges all the features of residues into a vector. The importance of some 
key residues may be weakened in the feature vector, leading to poor performance.

Results: We propose a novel sequence-based method for PPI sites prediction. The 
new network model, PPINet, contains multiple feature processing paths. For a residue, 
the PPINet extracts the features of the targeted residue and its context separately. 
These two types of features are processed by two paths in the network and combined 
to form a protein representation, where the two types of features are of relatively equal 
importance. The model ensembling technique is applied to make use of more features. 
The base models are trained with different features and then ensembled via stacking. 
In addition, a data balancing strategy is presented, by which our model can get signifi-
cant improvement on highly unbalanced data.

Conclusion: The proposed method is evaluated on a fused dataset constructed 
from Dset186, Dset_72, and PDBset_164, as well as the public Dset_448 dataset. Com-
pared with current state-of-the-art methods, the performance of our method is better 
than the others. In the most important metrics, such as AUPRC and recall, it surpasses 
the second-best programmer on the latter dataset by 6.9% and 4.7%, respectively. We 
also demonstrated that the improvement is essentially due to using the ensemble 
model, especially, the hybrid feature. We share our code for reproducibility and future 
research at https:// github. com/ Candi ceCong/ Stack ingPP INet.

Keywords: Protein–protein interaction, Hybrid feature, Self-attention, Integration 
framework
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Background
Protein–protein interactions (PPIs) play a crucial role in various biological functions 
and cellular processes [1], such as signal transduction, immunological recognition, 
metabolism [2] etc. During PPIs, some interfaces are formed at particular protein resi-
dues, called protein–protein interaction sites [3]. Therefore, identifying those sites are 
essential to reveal the key mechanisms of PPIs and beneficial to modern drug design 
[4, 5]. However, via experiments, PPI sites identification requires high-end devices and 
accurate manipulations, being time-consuming and expensive. As an economic and 
efficient alternative, computational methods [6] have been widely applied. In particu-
lar, data-driven methods can provide competitive results by leveraging machine learning 
and modern deep learning techniques [7–10]. Existing computational approaches can be 
roughly divided into partner-independent prediction [11] and partner-specific predic-
tion [12]. In addition, according to the feature information, partner-independent pre-
diction can be further divided into structure-based methods [13] and sequence-based 
methods [14]. Structure-based methods usually need structural details [15], while the 
structural information for many proteins is currently unavailable in the dataset. With 
the rapid development of high-throughput sequencing techniques, a growing number 
of protein sequences can be obtained, which attracts more attention for sequence-based 
methods [16].

Since the functions of the residues are determined by its physiochemical properties 
and context [17–19], residues are usually represented by these properties, e.g., accessi-
ble surface area [20], protein sequence composition, hydrophilic and hydrophobic index 
[21]. In addition, evolutionary information [22] and secondary structure information 
[23] are often incorporated as supplements. To model the local context, sliding window-
based methods [24] are widely applied. However, the features of the residues in the win-
dow are typically treated equally, which is obviously inaccurate and harms the precise 
PPI site prediction [25]. Hitherto, many machine learning methods have been proposed 
to deal with this prediction task, including neural networks (NNs) [26], support vec-
tor machines (SVMs) [27], random forests (RF) [28], etc. ISIS [29] is a neural network 
predictor, which is trained on sequences profiles and structural features predicted from 
the sequences. SPPIDER [30] employs an SVM, neural network and linear discriminant 
analysis based on 19 selected features from the sequences. SPRINGS [31] uses mean 
cumulative hydrophobicity, relative solvent accessibility, and structural features to rep-
resent the targeted residue site, and the algorithm uses neural networks for classifier 
construction. DeepPPISP [32] is an end-to-end deep learning framework that combines 
local contextual and global sequence features to fulfill the prediction task. Although con-
siderable progress has been achieved, the predictive performance of these methods still 
needs to be improved [33].

As a matter of fact, most residues in proteins are not PPI sites and thus making the 
data highly imbalanced [34]. The cascade random forests algorithm (CRF) [35] is first 
proposed to deal with the problem. It connects multiple random forests in a cascade-
like manner, each of which is trained with a balanced training subset that includes all 
minority samples and a subset of majority samples. However, sampling of training data 
based on residues level might destroy the completeness of a sequence. SSWRF [36] com-
bines an ensemble of SVMs and sample-weighted random forests to solve the imbalance 
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issue and achieves competing performance. SLSTM utilizes a simplified long short-term 
memory [37] network to improve the precision of the imbalanced PPI sites. It builds a 
set of protein sequences, instead of single residues, to retain the entire sequential com-
pleteness of each protein. The balancing methods either increase the samples of the 
minority class or reduces the samples of the majority class, which partly change the data 
distribution.

In this paper, we proposed a novel sequence-based method for PPI sites prediction. 
The new network model, namely, PPINet, contains multiple feature processing paths. 
For a residue, the PPINet extracts the features of the targeted residue and its context 
separately. These two types of features are processed by two paths and combined to form 
a protein representation, where the two types of features are of relatively equal impor-
tance. The individual PPINets are further ensembled via stacking, by which multiple 
types of features can be merged. To get high quality hybrid features, the dimensions of 
the 2 types of the features are adjusted to be equal. Therefore, the bias caused by fea-
ture dimensionality can be eliminated during feature fusion. Moreover, a novel data bal-
ancing strategy is presented. The majority class of samples (non-interaction sites) are 
divided into multiple sub-datasets. Each sub-dataset is merged with the entire minority 
class (interaction sites) to form a balanced dataset, which is used for training. In this 
way, the consistency of data distributions can be maintained.

Based on the above novelty, the contributions of this paper are as follows:

(1) A hybrid feature representation method is proposed to avoid the drawbacks of the 
traditional sliding window-based methods. The single targeted residue feature and 
the context feature based sliding window are extracted. They are processed by 2 
paths in the PPINet and combined to form a hybrid feature of a protein. This idea 
is also extended via stacking, where multiple types of features are merged to form a 
full representation of a protein.

(2) A new feature fusion method is proposed, where the feature importance is bal-
anced. In each PPINet, 2 feature vectors are concatenated to form a hybrid feature 
of a protein. Before concatenation, the dimensions of them are adjusted to be equal 
so that they can be exploited equally by the model. Therefore, the bias caused by 
feature dimensionality can be eliminated.

Methods
This section describes our proposed ensemble framework (StackingPPINet) for PPI pre-
diction. The architecture of the proposed StackingPPINet is shown in Fig. 1, which fun-
damentally consists of a group of base classifiers, named PPINets, and a stacking module 
for ensembling. A PPINet is an independent classifier which predicts whether the tar-
geted amino acid in an input sequence segment is a PPI site. It further contains a fea-
ture forming module (FFMod), a feature aggregation network (FANet) and a predictor 
(PPIPred). The FFMod extracts various low-level features from the input sequence by 
traditional feature extraction methods. The extracted low-level features are then aggre-
gated into a highly abstracted feature vector with fixed dimension by a FANet. Based 
on the aggregated feature, decisions are made by the predictor, which is a deep neural 
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network with a binary output. In StackingPPINet architecture, multiple PPINets are first 
trained independently and then ensembled to enhance the performance and robustness.

The base classifier for protein–protein interaction site prediction

The base classifiers in the StackingPPINet are PPINets, whose architecture is illustrated 
in Fig. 2. The FFMod extracts various low-level features from the input protein sequence 
by traditional feature extraction methods. Specifically, ftr is the targeted residue feature 
for the target residue, while fctx is the context feature, which is a series of feature vectors 
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feature aggregation network (FANet). Based on the aggregated features, the predictor (PPIPred) performs 
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extracted by sliding window-based method. FANet is responsible for aggregating the 
context feature fctx into a vector fagg and generating a full protein segment representa-
tion, namely fprot , by concatenating ftr and fagg . Finally, predictions are made by PPINet, 
which is a deep neural network. Details of those modules are demonstrated in the fol-
lowing subsections.

The feature forming module

In many existing works, the entire input sequence is converted into a fixed-dimensional 
feature vector, or is converted into a vector sequence, where the features are extracted 
separately from each residue. The features of the predicting residue are treated equally to 
contextual residues. When the context is extended for including more information, the 
importance of the targeted residue will be weakened, unintendedly harming the model 
performance.

To address this issue, FFMod extracts the targeted residue feature ftr and the con-
text feature fctx separately for a residue. For the targeted residue features, FFMod firstly 
extracts single features and combine them. In this paper, we use six single features, they 
are one-hot vector [38], position-specific scoring matrix (PSSM) [39], entropy density 
(Den) [40], physicochemical properties (PhyChem) [41], hydrophilicity and hydropho-
bicity index (HyIn) [42], and the pseudo amino acid [43] based on K-nearest neighbors 
(K-PseAA). And the single features are then concatenated in pairs to form combination 
features for the targeted residue. Finally, there are three combination features for a tar-
geted residue. Table 1 shows the details of these features. For the context feature, it is 
a connection of multiple residue features in the sliding window. Since it bases sliding 
window, zero padding is applied for the residues at the ends of the sequence. Although 
sliding window-based methods can model regional features to some extent, their feature 
aggregations are restricted by the window size and their simple aggregation patterns. 
Thus, FFMod only produces low-level features of the input protein sequence, which are 
not sufficient for PPI sites prediction. The obtained context feature fctx will be further 
processed by FANet. Since those 2 types of features are provided separately, FANet can 
handle them respectively and balance their relative importance, which will be intro-
duced in the next subsection.

The feature aggregation network

The context feature fctx provided by FFMod is a vector sequence. If the targeted resi-
due feature ftr is directly concatenated with fctx to form a full representation of the 
input protein, the dimension of the context feature is overwhelming, preventing the 
classifier to exploit the target residue feature. The goal of the FANet is to generate 
an aggregated feature vector fagg from fctx , whose dimension is comparable to the 
dimension of ftr . Correspondingly, FANet contains 2 paths for the targeted residue 
feature and the context feature respectively, as shown in Fig. 2. The main path per-
forms the feature aggregation for the context feature fctx . The input vector sequence 
is first processed by a deep convolutional neural network (DCNN) [44] block, con-
sisting of convolution, ReLU and max pooling operations. In this phase, 1D convo-
lution [45] is applied with zero padding so that the output sequence maintains the 
same length as the input. In this way, local invariant patterns can be captured by this 
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module. Then the output of the DCNN block is further processed by a multi-head 
self-attention module, which assigns different weights to the features. For each ele-
ment zi , a query qi , a key ki and a value vi are generated by the weight matrices WQ , 
WK  and WV  as follows:

where dm is the feature dimension of each head, and D refers to the total number of con-
volutional filters in DCNN block. By matrices, Eq. (1) can be rewritten as:

To calculate the attention weights, an energy score matrix E is calculated with a Mask 
operation:

where the correlation matrix Q × KT is scaled by 
√
dm [46]. The Mask operation adds 

a large penalty to each position in the padding regions, which weakens the attention to 
those regions. After that, the weights are obtained by a softmax function as follows:

(1)
qi = WQzi, ki = WKzi, vi = WVzi,

WQ,WK ,WV ∈ Rdm×D, qi, ki, vi ∈ Rdm

(2)
Q = WQZ,K = WKZ,V = WVZ,

Q,K ,V ∈ Rdm×L

(3)E = Mask
Q × KT

√
dm

Table 1 The feature extraction methods used in this paper

Feature Abbreviation Description

One-hot vector Seq It composed by 20 types of different amino 
acids and a 20D one-hot vector is used to 
encode it

Position-specific scoring matrix PSSM It represents the probabilities of 20 amino acids 
occurring at each position, and the PSI-BLAST 
algorithm is used to generate it, i.e., we search 
against the NCBI’s non-redundant sequence 
database with three iterations and an E-value 
threshold 0.001

Entropy density Den It represents the composition information of 
the protein sequence and obtained by calculat-
ing the information entropy of 20 amino acid 
residues

Physicochemical properties PhyChem It represents the physical and chemical 
attributes of different amino acid residues and 
obtained by multivariate statistical analysis of 
188 natural amino acid properties

Hydrophilicity and hydrophobicity index HyIn A larger hydropathic index means that the 
residue is more hydrophilic. Conversely, the resi-
dues will have higher hydrophobic properties. 
The hydrophobicity index is the opposite

Pseudo amino acid based on K-nearest 
neighbors

K-PseAA It is a new feature combining K-nearest neigh-
bors with the PseAA proposed in this paper. 
A subsequence is formed by combining the 
targeted amino acid residue with the residues 
that are not more than K before and after it. 
The length of the subsequence is 2K + 1. Then 
we calculate the PseAA of this subsequence as 
the K-PseAA feature of the targeted amino acid 
residue
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where L is the sequence length produced by DCNN block.
Then, the feature of this head at position j is a weighted summation defined as:

By concatenation, the multi-head features are obtained by:

where Hh is the output feature of a head, dH is the number of heads. The obtained 
sequential features zi and ai , 1 ≤ i ≤ L , are concatenated in an elementwise manner as 
Eq. (8):

By concatenation, the features from 2 levels of abstraction can be maintained. Next, an 
average pooling is adopted across all the elements in S , aggregating all features into an 
information-dense vector as the abstraction of the input sequence.

The protein feature fprot is the concatenation of fagg and ftr , which passes through 
another path without any transformation. Following traditional design patterns, the 
input ftr should be transformed by several fully connected layers. However, ftr will be 
processed by the fully connected layers in the following PPIPred module. It is not neces-
sary to add extra fully connected layers in this path to save some parameters. Similarly, 
there is no need to add fully connected layers to adjust the dimension of fctx . Instead, the 
numbers of convolution kernels and attention heads are carefully controlled so that the 
dimensions of ftr and fagg are comparable.

The predictor of protein–protein interaction sites

The PPIPred module consists of 3 fully connected layers (FC Layers) with ReLU activa-
tion as shown in Fig. 2. To smooth the training, batch normalization is inserted between 
adjacent fully connected layers. Similarly, DropOut is applied to enhance the generaliza-
tion. The prediction is produced by a sigmoid activation.

The stacking of multiple base classifiers

As a matter of fact, model performance heavily relies on features. One can conduct a 
series of experiments to find the optimal feature combinations and train one PPINet as 
the predictor. However, the results could be misleading due to overfitting when those 
experiments are based on limited data. As a better alternative, multiple PPINets are 
trained and then ensembled via stacking [47] in this paper. The ensembled model, called 

(4)wi,j =
exp

(

ei,j
)

∑L
i=1 exp

(

ei,j
) , 1 ≤ i, j ≤ L

(5)hj =
∑L

i=1
wi,jvi, 1 ≤ j ≤ L

(6)Hh =
[

h1, . . . , hj , . . . , hL
]

(7)A =
[

a1, . . . , aj , . . . , aL
]

= concat(Hh), 1 ≤ h ≤ dH

(8)S =
[

s1, . . . , sj , . . . , sL
]

, si = concat(zi, ai), 1 ≤ i ≤ L

(9)fagg = AveragePooling(S)
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StackingPPINet, could be more robust thanks to the model diversity. To obtain diverse 
individual PPINets, each PPINet is trained independently using different data and fea-
ture combinations.

Suppose there are K  combinations features, each combination corresponding a base 
classifier which is employed in StackingPPINet. The parameters K  is three in this paper. 
With different feature combinations, multiple PPINets can be trained independently. 
Then, these diverse models are ensembled via stacking. The final prediction is made by a 
decision rule in the stacking module as shown in Fig. 2.

Benchmark datasets

In the process of model hyperparameter adjustment, three benchmark datasets, i.e., 
Dset_186, Dset_72 [48] and PDBset_164 datasets [31], are fused as a dataset, called 
Dset_186_72_PDB164 in this paper. To maintain consistency with other model training 
data, we remove two protein sequences as they do not have the definition of secondary 
structure of proteins (DSSP) file, same as the datasets in [32]. In the fact, we do not use 
the DSSP feature. There are 422 protein sequences ranging from 39 to 2000 amino acids 
in the fused dataset, and 61.85% of them contain less than 200 amino acids. An amino 
acid is defined as a protein–protein interaction (PPI) site if its absolute solvent acces-
sibility is < 1  Å2, otherwise, it is a non-PPI site. There are 13,536 interaction sites and 
74,504 non-interaction sites. Table 2 shows the statistics of those datasets. Dset_186_72_
PDB164 is divided into a training set, a validation set, and a test set according to the 
ratio of 3:1:1, respectively. The divided process complies with two principles, they are 
random selection, and sites of the same sequence are in the same sub-dataset.

In the comparison with other methods, we first compare the trained model on 
Dset_186_72_PDB164 with the performance in [32]. The paper uses the fused dataset 
for model training. And then we evaluate our proposed method with the performance in 
[17]. We use a large dataset [49] as this paper to train our model, and then do the same 
test on Dset_448 [50]. The raw data of Dset_448 was from the BioLip database [51]. The 
statistics of sites in the two datasets show on Table 2.

It is well acknowledged that similar sequences between training and testing datasets 
negatively affect the generalization of the evaluated performance of a machine learn-
ing model. Dset_186 was built based on a PDB collection [52] to which a six-step fil-
tering process was applied to refine the data, including similarities elimination. Dset_72 

Table 2 The statistics of all sites in Benchmark datasets

Dataset Sequences Interaction sites Non-
interaction 
sites

All sites

Number Average 
length

Length ≤ 200 
(%)

Number Proportion 
(%)

Dset_186 186 195 65.05 5517 15.23 30,702 36,219

Dset_72 72 252 56.94 1923 10.6 16,217 18,140

PDBset_164 164 205 60.37 6096 18.1 27,585 33,681

Dset_186_72_
PDB164

422 209 61.85 13,536 15.37 74,504 88,040

Dset_448 448 260 35.94 15,810 13.57 100,690 116,500

The large 
dataset

9982 426 28.01 427,687 10.05 3,826,511 4,254,198
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was constructed based on the protein–protein benchmark set version 3.0 [53], and 
any sequences showing ≥ 25% sequence identity over a 90% overlap with any of the 
sequences in Dset_186, using BLASTClust, were removed. Dset_164 with the same fil-
tering technique as for Dset_186 and Dset_72. The raw data was further processed by 
removing protein fragments, mapping BioLip sequences to UniProt sequences, and clus-
tering, so no similarities above 25% are shared within Dset_448. The sequences from the 
large training dataset sharing similarities above 25% were removed, as measured by PSI-
CD-hit [54].

Data balancing strategy

Since the data sets for PPI site prediction problem are usually highly unbalanced, tradi-
tional oversampling and subsampling methods do not work well. Here, we first construct 
a series of subsets, where the samples are relatively balanced. Then, we use subsampling 
to balance all the subsets, which are used for model training. To do so, we first compute 
the ratio between PPI sites and non-PPI sites, as shown in Eq. (10):

where Nr_n and Nr_p are non-PPI sites and PPI sites in the dataset. Usually, non-PPI sites 
are far more than PPI sites. Hence, M > 1 . Then, we divide non-PPI sites into M parts. 
Each part of the non-PPI sites is combined with all PPI sites to form a subset, where the 
ratio of non-PPI sites to PPI sites is less than 2. The constructed M subsets are fed to the 
PPINets for training. During training, each subset is further balanced by subsampling. In 
this way, when all non-PPI sites are fed to the networks, PPI sites have been learned M 
times. To some extent, PPI sites are oversampled.

Implementation details

Our model is implemented by PyTorch (http:// pytor ch. org/). The loss function for Stack-
ingPPINet is mean square error (MSE), while the loss for training the individual PPINet 
is the cross-entropy loss, defined as follows:

where n is the number of all training samples, y is the label and ypred is the model 
prediction.

The program is written in Python 3.7.4 with PyTorch 1.8.1 + cu101 as the back end. 
All features are computed from protein sequences only. According to the methods pro-
posed in [38–43], we have implemented feature extraction functions used in the paper in 
Python, which have been published on GitHub. The parameters of the feature extraction 
methods are given in Table 3. The structure and parameters of the model are shown in 
Table 4. The length of the sliding window for context features is discussed in the experi-
mental section, where the window length of 8, 16, 32, and 64 are considered. The thresh-
old is set to 0.5 for the final decision.

We trained our model on the training set with the Adam optimizer [55]. To avoid 
overfitting, DropOut is applied after the first and the second fully connected layer 

(10)M =
Nr_n

Nr_p

(11)Loss = −
1

n

∑

[

y log
(

ypred
)

+
(

1− y
)

log
(

1− ypred
)]

http://pytorch.org/
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with the rate of 0.5. The training stops when the average loss of the last 3 epochs 
continues to increase for 5 epochs or the maximum epochs of 50 is reached. Mean-
while, the independent validation set is also used to tune hyper parameters and 
perform model selection, such as choosing different ensemble methods and convo-
lutional neural network architectures. Finally, the model is tested on an independent 
test set. The training and testing are conducted on a workstation with a GTX 1660Ti 
graphics card and 32 GB RAM. The training parameters are listed in Table 5.

Table 3 The parameters of the feature extraction method in each FFMod

Component FFMod Parameter Value

Seq 0 Dimension 20

Den 0 Dimension 20

PhyChem 1 Dimension 21

HyIn 1 Dimension 2

PSSM 2 Dimension 20

K-PseAA 2 Max level correlation factor 10

Dimension 30

Table 4 The modules and parameters of the model in the experiment

Component FFMod Parameter Value

Convolutional layers 0,1,2 Kernel size (1-Dimensional) 5,5,5

Number of Kernels 8,8,8

Strides 1,1,1

Activation function ReLU

Pooling layers 0,1,2 Size (1-Dimensional) 3,3,3

Strides 1,1,1

Self-attention 0,1,2 Heads 4

Attention-dimension 16

Fully connected layer 0,1,2 Neurons 1024

Neurons 256

Neurons 1

Activation function ReLU,ReLU,Sigmoid

DropOut rate 0.5

Table 5 The training parameters in experiment

Parameter Value

Optimizer Adam with 
default param-
eters

Learning rate 0.001

Batch size 64

Max epoch 50
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Results
Evaluation metrics

We assume the PPI sites are the positive samples and the non-PPI sites are the negative 
samples. To evaluate the performance, we use five evaluation metrics. They are accuracy 
(ACC), precision (Pre), recall (Rec), F1 scores (F1) and Matthew’s correlation coefficient 
(MCC). The calculations of these measurements are:

where TP , TN, FP and FN represent true positives, true negatives, false positives, and 
false negatives, respectively. Area under the ROC curve (AUROC) and area under the 
precision-recall curve (AUPRC) are also used for evaluations [56].

Performance comparison of StackingPPINet and other PPI predictors

To evaluate the performance of the proposed method, we have compared it with six 
state-of-the-art machine-learning-based methods on the Dset_186_72_PDB164. They 
are PSIVER [48], SPPIDER [30], SPRINGS [31], ISIS [29], RF_PPI [28] and DeepPPISP 
[32]. PSIVER uses the PSSM and solvent accessibility within a sliding window to rep-
resent the feature of the targeted residue site, and it employs a naive Bayes classifier 
for prediction. RF_PPI uses a variety of feature representations and employs a random 
forest classifier for PPI sites prediction. The other four model are described in Section 
Background. Among these methods, ISIS, SPRINGS and DeepPPISP are neural network 
models, while SPPIDER uses a SVM classifier.

In the experiment, we use the same datasets to train our model as the other six 
methods. At last, we use the same set as the other six methods for testing. Table  6 
shows the predictive performance of different methods. It can be seen from the 
experiment results that StackingPPINet achieves better performance than the other 
algorithms in terms of all evaluation metrics except ACC. With respect to Rec, 
our method obtains the highest value of 0.683, which is 0.106 over the second-best 
method. For Pre, F1 and MCC, the results of our method also demonstrate signifi-
cant advantages over those of the completing alternatives. In summary, these results 
clearly show the superiority of our method in reliably predicting the PPI sites. As the 

(12)ACC =
TP + TN

TP + TN + FP + FN

(13)Pre =
TP

TP + FP

(14)Rec =
TP

TP + FN

(15)F1 =
2 ∗ Pre ∗ Rec
Pre + Rec

(16)MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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DeepPPISP achieves suboptimal performance on the aggregate metrics, we further 
compare the AUROC and AUPRC of StackingPPINet with DeepPPISP. The AUROC 
considers the classification of positive and negative samples at the same time. It can 
be seen that the performance of StackingPPINet and DeepPPISP is basically the same. 
AUPRC is better suited to evaluate unbalanced data classification. On this metric, 
the performance of StackingPPINet is clearly better than that of the DeepPPISP. In 
addition, DeepPPISP uses the secondary structure information of protein sequences. 
Compared with DeepPPISP, the features used in our model uses are easier to obtain.

Table  7 provides the p values of the two-tailed t-test for the metrics on the 
Dset_186_72_PDB164 data set. From this table, it can be seen that StackingPPINet 
considerably outperforms other methods in terms of Precision, Recall, and F1. For 
MCC, StackingPPINet outperforms other methods except for SPRINGS and DeepP-
PISP. SPRINGS achieves a similar MCC as StackingPPINet, while DeepPPISP obtains 
significantly better MCC than StackingPPINet. In addition, DeepPPISP performs 
slightly better than StackingPPINet in terms of AUROC and AUPRC, with the p val-
ues of 0.0479 and 0.0593, respectively.

To further evaluate the performance of our proposed method, we also compared 
it with nine state-of-the-art machine-learning-based methods on the Dset_448. They 
are SCRIBER [50], SSWRF [36], SPRINT [57], CRFPPI [35], LORIS [14], SPRINGS 
[31], PSIVER [48], SPPIDER [30] and DELPHI [17]. They are also sequence-based 
methods as sequence information is readily available for most proteins. The evalua-
tion of the other programmers comes from [17]. In the experiment, we use the same 
datasets to train our model as the other nine methods. Table 8 shows the predictive 
performance of different methods.

Table 6 Predictive performance of different methods on the Dset_186_72_PDB164

Method ACC Pre Rec F1 MCC AUROC AUPRC

PSIVER 0.653 0.253 0.468 0.328 0.138

SPPIDER 0.622 0.209 0.459 0.287 0.089

SPRINGS 0.631 0.248 0.598 0.35 0.181

ISIS 0.694 0.211 0.362 0.267 0.097

RF_PPI 0.598 0.173 0.512 0.258 0.118

DeepPPISP 0.655 0.303 0.577 0.397 0.206 0.65 0.68

StackingPPINet 0.597 0.530 0.683 0.582 0.226 0.65 0.77

Table 7 The p values of the two-tailed t-test for the metrics on the Dset_186_72_PDB164

Method p value of Pre p value of Rec p value of F1 p value of MCC

PSIVER < 0.0001 < 0.0001 < 0.0001 0.1158

SPPIDER < 0.0001 < 0.0001 < 0.0001 0.0008

SPRINGS < 0.0001 0.0008 < 0.0001 0.3024

ISIS < 0.0001 < 0.0001 < 0.0001 0.0016

RF_PPI < 0.0001 < 0.0001 < 0.0001 0.0136

DeepPPISP < 0.0001 < 0.0001 < 0.0001 0.0228
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It can be seen from the experiment results that StackingPPINet achieves the best per-
formance in the most important metrics, such as AUPRC and Rec. It surpasses the sec-
ond-best programmer by 0.069 and 0.047, respectively. This shows that our algorithm 
achieves the best results when considering both interaction and non-interaction sites on 
unbalanced datasets.

Discussion
We introduce an ensemble framework, StackingPPINet, for PPI sites prediction. To 
demonstrate its performances, we compare it with twelve other PPI sites prediction 
methods. Based on the design of StackingPPINet and the results of the experiments, 
we identified five issues worth further discussion. They are the effect of balancing data-
set, the stacking ensemble method and its integrated rules, the effectiveness of hybrid 
feature, the performance on sequences of different lengths. We discuss these issues as 
follows.

The improvement of using multiple balanced datasets

In the experiment, we compare the predictive performance of the classifiers trained 
by the unbalanced datasets and the balanced datasets under the same model settings, 
respectively. We construct the balanced datasets as above described. When training with 
an unbalanced dataset, the training dataset for each epoch is the entire original dataset. 
The model structure and parameters of the two experiments are the same. The difference 
between the two is only whether the datasets using in the training process is processed 
with the balance strategy proposed in the paper. The stacking adopts the logistic regres-
sion to integrate the primary results. The parameters of the classifier model are detailed 
in Table 4. The length of sliding window for the context feature are 16.

Table 8 Predictive performance of different methods on the Dset_448

Method Pre Rec F1 MCC AUROC AUPRC

SPPIDER 0.194 0.202 0.198 0.071 0.517 0.159

SPRINT 0.183 0.183 0.183 0.057 0.570 0.167

PSIVER 0.191 0.191 0.191 0.066 0.581 0.170

SPRINGS 0.228 0.229 0.229 0.111 0.625 0.201

LORIS 0.263 0.264 0.263 0.151 0.656 0.228

CRFPPI 0.264 0.268 0.266 0.154 0.681 0.238

SSWRF 0.286 0.288 0.287 0.178 0.687 0.256

SCRIBER 0.332 0.334 0.333 0.230 0.715 0.287

DELPHI 0.371 0.371 0.371 0.272 0.737 0.337

StackingPPINet 0.360 0.418 0.387 0.129 0.593 0.406

Table 9 Predictive performance of using unbalanced and balanced datasets

Method ACC Pre Rec F1 MCC AUROC AUPRC

Unbalanced datasets 0.795 0.076 0.205 0.111 0.025 0.533 0.189

Balanced datasets 0.549 0.489 0.565 0.512 0.105 0.571 0.554
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Table 9 shows the performance of our model using unbalanced and balanced datasets. 
ACC, Pre, Rec, F1, and MCC obtained with the balanced datasets are 0.549, 0.489, 0.565, 
0.512, and 0.105, respectively. The results under all evaluation metrics are improved 
comparing with the results trained with unbalanced datasets except ACC. Especially 
in F1 and MCC, which reflect the comprehensive performance, the indicators increase 
from 0.111 to 0.512, and from 0.025 to 0.105, respectively. Since non-interaction sites 
are far more abundant than interaction sites, the classifier is inclined to the majority cat-
egory, which simply achieves high ACC and produce deceptive performance. Figure 3 
shows the accuracy of interaction and non-interaction sites obtained by the unbalanced 
and the balanced datasets, respectively. The precision of the non-PPI sites obtained by 
the unbalanced datasets is relatively high, while the precision of the PPI sites is extremely 
low. As a matter of fact, it is more important to correctly classify PPI sites than non-PPI 
sites in practice. Therefore, we use multiple balanced datasets to improve the precision 
of the PPI sites.

The improvement by stacking

In the proposed method, we use a stacking ensemble method to integrate the predic-
tion of primary classifiers. We here focus on whether the PPI sites prediction could 
indeed benefit from the stacking method. To this end, we keep the other parts of our 
model unchanged and replace the ensemble method with either a voting or an averaging 
mechanism for final prediction. We then compare the prediction results obtained by the 
three models. Among them, stacking adopts logistic regression as the ensemble rule. The 

Fig. 3 The accuracy of interaction and non-interaction sites obtained by unbalanced and balanced datasets

Table 10 Predictive performance of using different ensemble methods

Method ACC Pre Rec F1 MCC AUROC AUPRC

Stacking 0.549 0.489 0.565 0.512 0.105 0.571 0.554

Voting 0.531 0.586 0.532 0.557 0.062

Averaging 0.552 0.616 0.549 0.581 0.104 0.565 0.551
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parameters of the classifier are detailed in Table 4. The length of sliding window for the 
context feature are 16.

Table  10 shows the performance of the three ensemble methods for predicting PPI 
sites. The voting method does not end up with a probabilistic calculation, so its AUROC 
and AUPRC values are not calculated. Obviously, the stacking achieves the best Rec, 
MCC, AUROC and AUPRC while the averaging mechanism reaches the optimal values 
on the other three metrics. Although the voting method does not obtain the best results 
under any evaluation metrics, it retains a relatively stable performance.

In addition, we compared the predictions of individual frames and their integrated 
with stacking. Table 11 shows the performance results. With stacking, the AUROC and 
AUPRC values are increased, and the model has stronger generalization ability.

The effects of different integrated rules in stacking

In the stacking ensemble method, different integration rules could also impact the 
prediction results of PPI sites. In our experiments, we compare the prediction results 
obtained by four different stacking rules, i.e., logistic regression, decision tree, random 
forest, and nearest neighbor. The parameters of the classifiers are listed in Table 4. The 
length of sliding window for the context feature are 16.

Table 12 shows the performance of four stacking rules. The logistic regression achieves 
the best results on all indicators except Pre. Notably, on MCC, its performance is sig-
nificantly better than the other alternatives, indicating its overall superiority. Taken 
together, the comparison results show that the logistic regression could obtain better 
performance than the other three integrated rules.

The effectiveness of hybrid feature

In this subsection, we exhibit the effectiveness of feature combination. We first compare 
the results using feature combination with the results using individual feature. Then we 
investigate the predictive performance under different length of sliding window for the 
context feature. The parameters of the models are listed in Table 4.

Table 11 Predictive performance of using and not using stacking

Method ACC Precision Recall F_value MCC AUROC AUPRC

PPINet 0 0.508 0.508 0.710 0.592 0.013 0.509 0.516

PPINet 1 0.527 0.540 0.425 0.475 0.057 0.549 0.539

PPINet 2 0.543 0.544 0.578 0.560 0.087 0.562 0.551

Stacking 0.549 0.489 0.565 0.512 0.105 0.571 0.554

Table 12 Predictive performance of using different integrated rules

Method ACC Pre Rec F1 MCC AUROC AUPRC

Logistic regression 0.549 0.489 0.565 0.512 0.105 0.571 0.554

Decision tree 0.513 0.476 0.518 0.496 0.027 0.492 0.518

Random forest 0.518 0.482 0.524 0.501 0.038 0.485 0.490

Nearest neighbor 0.516 0.497 0.521 0.507 0.033 0.496 0.527
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We compare the predictive performance obtained by different features in experi-
ments. Except the processing module of the context feature and the targeted residue 
feature, the rest parts are the same. The length of sliding window for the context 
feature are 16. The detailed results are shown in Table 13. After adding the targeted 
residue feature, the predictive performance is improved under all evaluation met-
rics. Specifically, two comprehensive indicators F1 and MCC, increase from 0.499 
to 0.521, and 0.046 to 0.105, respectively. This indicates that the targeted residue 
feature is important to the decision making. Figure 4 shows the improvement of the 
feature connection for PPI and non-PPI sites. We can see that the addition of the 
targeted residue feature really improves the accuracy of PPI sites and non-PPI sites.

The effect of sliding window length

The length of sliding window for the context feature is the amino acid range that 
characterizes the biological properties of the targeted site. In the experiments, we 
compare the effects of different lengths on the model performance by keeping other 
model hyper parameters unchanged while varying the lengths of sliding window. It 
can be seen from the results that the lengths are not as large as possible. If the value 
is too small, the amino acid residues in the range cannot fully reflect the biological 
properties. If the value is too large, some amino acid residues in the range may not 
be related to the interaction of the targeted site. We find that when the length of 
sliding window for the context feature is 32, our model could reach the best perfor-
mance. Table 14 shows the effects of different sliding window lengths.

Table 13 The effectiveness of feature combination

Method ACC Pre Rec F1 MCC AUROC AUPRC

Targeted and context feature 0.549 0.5 0.567 0.521 0.105 0.574 0.575

Targeted residue feature 0.544 0.444 0.568 0.488 0.099 0.567 0.568

Context feature 0.52 0.487 0.532 0.499 0.046 0.54 0.538

Fig. 4 The accuracy of interaction and non-interaction sites with different features
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The performance on sequences in different lengths

In the experiment, we divide the test set into several subsets and show how performance 
varies according to the sequence length. As shown in Table 15, the best performance is 
achieved when the sequence length falls between 100 and 300. When the sequence is too 
short, the model obtains limited information from the input; when the sequence is too 
long, the model can be misled by redundant or irrelevant information. Either of those 
cases may harm the performance, especially for MCC, AUROC, and AUPRC. We also 
illustrate the accuracy of interaction and non-interaction sites for each subset in Fig. 5. 
It shows that the accuracy gap rises considerably when the sequence is longer than 200. 
When the sequence is longer than 400, the accuracy for interaction sites is 22.15% lower 
than the non-interaction sites. The possible reason could be the data imbalance. There 
are always enough non-interaction samples (negative samples) for training, while long 

Table 14 The effects of different sliding window lengths

Length ACC Pre Rec F1 MCC AUROC AUPRC

8 0.527 0.461 0.541 0.491 0.060 0.545 0.542

16 0.549 0.489 0.565 0.512 0.105 0.571 0.554

32 0.549 0.500 0.567 0.521 0.105 0.574 0.575

64 0.503 0.471 0.500 0.479 0.005 0.502 0.503

Table 15 Predictive performance on sequences in different lengths

Length ACC Pre Rec F1 MCC AUROC AUPRC

 < 100 0.525 0.514 0.777 0.608 0.035 0.508 0.773

100–200 0.548 0.522 0.641 0.562 0.098 0.581 0.643

200–300 0.542 0.507 0.577 0.501 0.121 0.586 0.554

300–400 0.566 0.391 0.439 0.406 0.063 0.549 0.423

> 400 0.562 0.416 0.4 0.395 0.055 0.532 0.397

Fig. 5 The accuracy of interaction and non-interaction sites on two categories
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interaction samples (positive samples) are relatively limited and more difficult to learn. 
Thus, for long sequences, our model can get high accuracy for non-interaction samples 
but considerably lower accuracy for interaction samples.

The effect of multi-head attention

In the PPINet, context features are processed by a CNN block and the multi-head self-
attention. Convolutional layers extract features locally, while self-attention aggregates 
all the sequence information globally. By combining them, it is expected to obtain the 
global representation of a sequence more efficiently. If the self-attention is removed, one 
has to add more convolutional layers to extend the reception field to cover the whole 
sequence. To show the effectiveness of multi-head self-attention, in this experiment, the 
performance of the model with multi-head attention, the model with single-head atten-
tion, and the one without attention are compared. As shown in Table 16, the Base-Model 
is the one introduced in Table 4 with 4-head self-attention. The SH-Model has the same 
setup as the Base-Model except that the number of attention heads is only 1. The last 
NA-Model is constructed by removing the self-attention from the Base-Model and only 
contains convolutional and fully connected layers. The results show that SH-Model and 
NA-Model achieve similar ACC, Rec, MCC, AUROC, and AUPRC. SH-Model gains 
higher Pre and F1. Base-Model outperforms the other two models in all the metrics, 
indicating the effectiveness of the multi-head attention in global feature aggregation.

Discussion
In the above experiments, only sequence based features are exploited in the proposed 
model for the sake of fair comparison with considered baseline methods. From the 
methodology of model ensembling, it can be noticed that the improvement by the pro-
posed ensembling strategy is restricted by the low diversity of based classifiers. To break 
through such limitation, one feasible way is to introduce multiple types of data, e.g. pro-
tein structure features, protein domain features, to train base models. On the one hand, 
multiple types of information help to construct a full description of a protein; on the 
other hand, diverse data types require different types of models to process, enhancing 
the model diversity. Both can bring extra performance gain for model ensembling. The 
cost of such improvement is the data collection. For a protein, one has to collect multiple 
types of data to get the prediction, which is not convenient during inference phase. One 
possible way to further overcome this drawback is to utilize protein language models 
trained on large sequence data sets. Recent research has reported that accurate protein 
structure prediction can be achieved by learning from Multiple Sequence Alignment 
(MSA) data [58, 59] or even pure sequence data [60]. Such models can be used as feature 
extractors which indirectly introduces protein structure information to base PPINet. 

Table 16 Performance comparison of the models with different self-attention setup

Model ACC Pre Rec F1 MCC AUROC AUPRC

Base-model (4-head attention) 0.549 0.489 0.565 0.512 0.105 0.571 0.554

SH-model (Single-head attention) 0.528 0.454 0.540 0.491 0.056 0.539 0.528

NA-model (No attention) 0.522 0.317 0.549 0.375 0.051 0.540 0.543
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However, this method has not been extensively studied yet. We decide to leave it to the 
further work.

Conclusions
In this work, we propose a novel sequence-based method for PPI sites prediction from 
the motivation of extracting more valuable features. Specifically, we extract the sin-
gle feature of the targeted amino acid residue and the context feature of its neighbors 
with different combinations of features to compose the hybrid feature. A deep learning 
framework combined with convolutional neural networks and multi-head self-atten-
tion is employed to process the context feature to control these dimensions. In addi-
tion, we present a strategy to balance the interaction sites and non-interaction sites so 
that the model can ultimately learn the original data distribution. This paper compares 
the proposed method with the prediction algorithms of twelve existing protein–protein 
interaction sites. The results show that our method performs well in various indicators, 
especially on the precision of interaction sites. Though the proposed method is demon-
strated to have advantages over other competing methods, it also has some limitations. 
The first is that the model architecture and the features can be extended. The second 
is that the optimal parameters of the model are obtained through grid search, which is 
computationally intensive. Future challenges include exploring more efficient feature 
expression methods and designing more adaptive network architectures.

Abbreviations
PPIs  Protein–protein interactions
NNs  Neural networks
SVMs  Support vector machines
RF  Random forests
FFMod  Feature forming module
FANet  Feature aggregation network
PSSM  Position-specific scoring matrix
Den  Entropy density
PhyChem  Physicochemical properties
HyIn  Hydrophilicity and hydrophobicity index
K-PseAA  The pseudo amino acid based on K-nearest neighbors
FC Layers  Fully connected layers
DCNN  Deep convolutional neural network
AUROC  Area under the ROC curve
AUPRC  Area under the precision-recall curve

Acknowledgements
We are grateful to those researchers that have made the benchmark datasets available for PPI prediction evaluation.

Author contributions
HC developed the algorithm, did the computation, and wrote the manuscript. YC designed the project, collected 
the data and revised the manuscript. HL, CL and YC revised the manuscript. All authors read and approved the final 
manuscript.

Funding
This research was supported by the National Natural Science Foundation of China [61876102]; Shandong Provincial 
Natural Science Foundation [ZR2021MF036)]; and University Innovation Team Project of Jinan [2019GXRC015].

Availability of data and materials
The datasets supporting the conclusions of this article are available in the Github repository, https:// github. com/ Candi 
ceCong/ Stack ingPP INet.

Declarations

Ethics approval and consent to participate
Not applicable.

https://github.com/CandiceCong/StackingPPINet
https://github.com/CandiceCong/StackingPPINet


Page 20 of 21Cong et al. BMC Bioinformatics          (2023) 24:456 

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 18 December 2022   Accepted: 30 November 2023

References
 1. Hu L, Wang X, Huang YA, Hu P, You ZH. A survey on computational models for predicting protein–protein interac-

tions. Brief Bioinform. 2021;22(5):bbab036.
 2. Jamasb AR, Day B, Cangea C, Liò P, Blundell TL. Deep learning for protein–protein interaction site prediction. In: 

Proteomics data analysis. New York, NY: Humana; 2021. p. 263–88.
 3. Jordan RA, Yasser EM, Dobbs D, Honavar V. Predicting protein-protein interface residues using local surface struc-

tural similarity. BMC Bioinform. 2012;13(1):1–14.
 4. Chen M, Ju CJT, Zhou G, Chen X, Zhang T, Chang KW, Wang W, et al. Multifaceted protein–protein interaction predic-

tion based on Siamese residual RCNN. Bioinformatics. 2019;35(14):i305–14.
 5. Li X, Li W, Zeng M, Zheng R, Li M. Network-based methods for predicting essential genes or proteins: a survey. Brief 

Bioinform. 2020;21(2):566–83.
 6. Das S, Chakrabarti S. Classification and prediction of protein–protein interaction interface using machine learning 

algorithm. Sci Rep. 2021;11(1):1–12.
 7. Sarkar D, Saha S. Machine-learning techniques for the prediction of protein–protein interactions. J Biosci. 

2019;44(4):1–12.
 8. Li Y, Wang Z, Li LP, You ZH, Huang WZ, Zhan XK, Wang YB. Robust and accurate prediction of protein–protein interac-

tions by exploiting evolutionary information. Sci Rep. 2021;11(1):1–12.
 9. Zhang C, Freddolino PL, Zhang Y. COFACTOR: improved protein function prediction by combining structure, 

sequence and protein–protein interaction information. Nucleic Acids Res. 2017;45(W1):W291–9.
 10. Yang H, Wang M, Liu X, Zhao XM, Li A. PhosIDN: an integrated deep neural network for improving protein phos-

phorylation site prediction by combining sequence and protein–protein interaction information. Bioinformatics. 
2021;37(24):4668–76.

 11. Wang X, Yu B, Ma A, Chen C, Liu B, Ma Q. Protein–protein interaction sites prediction by ensemble random forests 
with synthetic minority oversampling technique. Bioinformatics. 2019;35(14):2395–402.

 12. Afsar Minhas FUA, Geiss BJ, Ben-Hur A. PAIRpred: partner-specific prediction of interacting residues from sequence 
and structure. Proteins Struct Funct Bioinform. 2014;82(7):1142–55.

 13. Northey TC, Barešić A, Martin AC. IntPred: a structure-based predictor of protein–protein interaction sites. Bioinfor-
matics. 2018;34(2):223–9.

 14. Dhole K, Singh G, Pai PP, Mondal S. Sequence-based prediction of protein–protein interaction sites with L1-logreg 
classifier. J Theor Biol. 2014;348:47–54.

 15. Hou Q, Lensink MF, Heringa J, Feenstra KA. Club-martini: selecting favourable interactions amongst available candi-
dates, a coarse-grained simulation approach to scoring docking decoys. PLoS ONE. 2016;11(5):e0155251.

 16. Zhang B, Li J, Quan L, Chen Y, Lü Q. Sequence-based prediction of protein-protein interaction sites by simplified 
long short-term memory network. Neurocomputing. 2019;357:86–100.

 17. Li Y, Golding GB, Ilie L. DELPHI: accurate deep ensemble model for protein interaction sites prediction. Bioinformat-
ics. 2021;37(7):896–904.

 18. Tsubaki M, Tomii K, Sese J. Compound–protein interaction prediction with end-to-end learning of neural networks 
for graphs and sequences. Bioinformatics. 2019;35(2):309–18.

 19. Lei Y, Li S, Liu Z, Wan F, Tian T, Li S, Zeng J, et al. A deep-learning framework for multi-level peptide–protein interac-
tion prediction. Nat Commun. 2021;12(1):1–10.

 20. Miloserdov O. Classifying amorphous polymers for membrane technology basing on accessible surface area of their 
conformations. Adv Syst Sci Appl. 2020;20(3):91–104.

 21. Jones S, Thornton JM. Prediction of protein-protein interaction sites using patch analysis. J Mol Biol. 
1997;272(1):133–43.

 22. Singh H, Singh S, Raghava GPS. Peptide secondary structure prediction using evolutionary information. BioRxiv. 
2019;558791.

 23. Balogh RK, Németh E, Jones NC, Hoffmann SV, Jancsó A, Gyurcsik B. A study on the secondary structure of the 
metalloregulatory protein CueR: effect of pH, metal ions and DNA. Eur Biophys J. 2021;50(3):491–500.

 24. Zhu H, Du X, Yao Y. ConvsPPIS: identifying protein-protein interaction sites by an ensemble convolutional neural 
network with feature graph. Curr Bioinform. 2020;15(4):368–78.

 25. Wang X, Zhang Y, Yu B, Salhi A, Chen R, Wang L, Liu Z. Prediction of protein-protein interaction sites through 
eXtreme gradient boosting with kernel principal component analysis. Comput Biol Med. 2021;134:104516.

 26. Chen H, Zhou HX. Prediction of interface residues in protein–protein complexes by a consensus neural network 
method: test against NMR data. Proteins Struct Funct Bioinform. 2005;61(1):21–35.

 27. Chen P, Wong L, Li J. Detection of outlier residues for improving interface prediction in protein heterocomplexes. 
IEEE/ACM Trans Comput Biol Bioinform. 2012;9(4):1155–65.

 28. Hou Q, De Geest PF, Vranken WF, Heringa J, Feenstra KA. Seeing the trees through the forest: sequence-based 
homo-and heteromeric protein-protein interaction sites prediction using random forest. Bioinformatics. 
2017;33(10):1479–87.



Page 21 of 21Cong et al. BMC Bioinformatics          (2023) 24:456  

 29. Ofran Y, Rost B. ISIS: interaction sites identified from sequence. Bioinformatics. 2007;23(2):e13–6.
 30. Porollo A, Meller J. Prediction-based fingerprints of protein–protein interactions. Proteins Struct Funct Bioinform. 

2007;66(3):630–45.
 31. Singh G, Dhole K. Pai PP, Mondal S. SPRINGS: prediction of protein-protein interaction sites using artificial neural 

networks (No. e266v2). PeerJ PrePrints. 2014.
 32. Zeng M, Zhang F, Wu FX, Li Y, Wang J, Li M. Protein–protein interaction site prediction through combining local and 

global features with deep neural networks. Bioinformatics. 2020;36(4):1114–20.
 33. Lu S, Li Y, Nan X, Zhang S. Attention-based convolutional neural networks for protein-protein interaction site predic-

tion. In: 2021 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE; 2021. p. 141–144.
 34. Xie Z, Deng X, Shu K. Prediction of protein–protein interaction sites using convolutional neural network and 

improved data sets. Int J Mol Sci. 2020;21(2):467.
 35. Wei ZS, Yang JY, Shen HB, Yu DJ. A cascade random forests algorithm for predicting protein-protein interaction sites. 

IEEE Trans Nanobiosci. 2015;14(7):746–60.
 36. Wei ZS, Han K, Yang JY, Shen HB, Yu DJ. Protein–protein interaction sites prediction by ensembling SVM and sample-

weighted random forests. Neurocomputing. 2016;193:201–12.
 37. Zhang B, Li J, Quan L, et al. Sequence-based prediction of protein-protein interaction sites by simplified long short-

term memory network. Neurocomputing. 2019;357:86–100.
 38. Al-Shehari T, Alsowail RA. An insider data leakage detection using one-hot encoding, synthetic minority oversam-

pling and machine learning techniques. Entropy. 2021;23(10):1258.
 39. Zhang S, Liang Y. Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and 

PSSM into Chou’s PseAAC. J Theor Biol. 2018;457:163–9.
 40. Kothawala D, Padmanabhan T. Entropy density of spacetime from the zero point length. Phys Lett B. 2015;748:67–9.
 41. Wihodo M, Moraru CI. Physical and chemical methods used to enhance the structure and mechanical properties of 

protein films: a review. J Food Eng. 2013;114(3):292–302.
 42. Abskharon R, Wang F, Wohlkonig A, Ruan J, Soror S, Giachin G, Steyaert J, et al. Structural evidence for the critical role 

of the prion protein hydrophobic region in forming an infectious prion. PLoS Pathog. 2019;15(12):e1008139.
 43. Cong H, Liu H, Chen Y, Cao Y. Self-evoluting framework of deep convolutional neural network for multilocus protein 

subcellular localization. Med Biol Eng Comput. 2020;58(12):3017–38.
 44. Sui X, Zheng Y, Wei B, Bi H, Wu J, Pan X, Zhang S, et al. Choroid segmentation from optical coherence tomography 

with graph-edge weights learned from deep convolutional neural networks. Neurocomputing. 2017;237:332–41.
 45. Mohapatra S, Nayak J, Mishra M, Pati GK, Naik B, Swarnkar T. Wavelet transform and deep convolutional neural 

network-based smart healthcare system for gastrointestinal disease detection. Interdiscip Sci Comput Life Sci. 
2021;13(2):212–28.

 46. Vaswani A, Shazeer N, Parmar N. Uszkoreit J, Jones L, Gomez AN, Polosukhin I, et al. Attention is all you need. Adv 
Neural Inf Process Syst. 2017;30.

 47. Kardani N, Zhou A, Nazem M, Shen SL. Improved prediction of slope stability using a hybrid stacking ensemble 
method based on finite element analysis and field data. J Rock Mech Geotech Eng. 2021;13(1):188–201.

 48. Murakami Y, Mizuguchi K. Applying the Naïve Bayes classifier with kernel density estimation to the prediction of 
protein–protein interaction sites. Bioinformatics. 2010;26(15):1841–8.

 49. Zhang J, Ma Z, Kurgan L. Comprehensive review and empirical analysis of hallmarks of DNA-, RNA-and protein-
binding residues in protein chains. Brief Bioinform. 2019;20(4):1250–68.

 50. Zhang J, Kurgan L. SCRIBER: accurate and partner type-specific prediction of protein-binding residues from proteins 
sequences. Bioinformatics. 2019;35(14):i343–53.

 51. Yang J, Roy A, Zhang Y. BioLiP: a semi-manually curated database for biologically relevant ligand–protein interac-
tions. Nucleic Acids Res. 2012;41(D1):D1096–103.

 52. Berman HM, Battistuz T, Bhat TN, et al. The protein data bank. Acta Crystallogr D Biol Crystallogr. 2002;58(6):899–907.
 53. Hwang H, Pierce B, Mintseris J, et al. Protein–protein docking benchmark version 3.0. Proteins Struct Funct Bioin-

form. 2008;73(3):705–9.
 54. Fu L, Niu B, Zhu Z, et al. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 

2012;28(23):3150–2.
 55. Bock S, Goppold J, Weiß M. An improvement of the convergence proof of the ADAM-Optimizer. arXiv preprint arXiv: 

1804. 10587. 2018.
 56. Zeng M, Zou B, Wei F, Liu X, Wang L. Effective prediction of three common diseases by combining SMOTE with 

Tomek links technique for imbalanced medical data. In: 2016 IEEE international conference of online analysis and 
computing science (ICOACS). IEEE; 2016. p. 225–228

 57. Taherzadeh G, Yang Y, Zhang T, et al. Sequence-based prediction of protein–peptide binding sites using support 
vector machine. J Comput Chem. 2016;37(13):1223–9.

 58. Rives A, Meier J, Sercu T, et al. Biological structure and function emerge from scaling unsupervised learning to 250 
million protein sequences. Proc National Acad Sci U S A. 2021;118(15):e2016239118.

 59. Roshan R, Jason L, Robert V, et al. MSA transformer. In: 38th international conference on machine learning. 2021.
 60. Fang X, Wang F, Liu L, et al. A method for multiple-sequence-alignment-free protein structure prediction using a 

protein language model. Nat Mach Intell. 2023;5:1087–96.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1804.10587
http://arxiv.org/abs/1804.10587

	Protein–protein interaction site prediction by model ensembling with hybrid feature and self-attention
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Methods
	The base classifier for protein–protein interaction site prediction
	The feature forming module
	The feature aggregation network
	The predictor of protein–protein interaction sites
	The stacking of multiple base classifiers
	Benchmark datasets
	Data balancing strategy
	Implementation details

	Results
	Evaluation metrics
	Performance comparison of StackingPPINet and other PPI predictors

	Discussion
	The improvement of using multiple balanced datasets
	The improvement by stacking
	The effects of different integrated rules in stacking
	The effectiveness of hybrid feature
	The effect of sliding window length
	The performance on sequences in different lengths
	The effect of multi-head attention

	Discussion
	Conclusions
	Acknowledgements
	References


