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Introduction
The protein folding problem has a long history of identification of the phenomenon in 
which proteins adopt a 3D structure in an explicitly defined and reproducible way [1, 2]. 
Monitoring the progress in this area is made possible by the CASP (“Critical Assessment 
Structure Prediction”) project, which has been held biannually since 1994 [3–12]. The 
project organiser provides participants with the amino acid sequence of a protein with 
a 3D structure (the target) known only to the organisers. Based on the protein sequence 
provided, CASP participants predict the 3D structure of the protein (model) using 
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methods they developed [3]. In addition to the traditionally used homology-based tech-
nique, ab  initio techniques are also being developed. The homology-based technique 
consists in finding proteins with a sequence that has a sufficiently high degree of similar-
ity and under the assumption that a similar sequence provides a similar structure (espe-
cially if homologous proteins are involved); it has traditionally provided better results in 
assessing the degree of the structural accuracy of the models [13–15]. The ab initio tech-
niques seek a theoretical model without reference to known structures, and they develop 
tools – as one would expect – that reproduce the mechanism of the protein folding pro-
cess. This is pursued by proposing different forms of force field notation, the presence of 
which for a given sequence directs the structuring towards the native structure [16–19]. 
These two techniques dominated the history of the CASP project until 2020, when the 
spectacular success of artificial intelligence (AI)-based technology was reported [20]. 
This technique provided models of protein structures (targets) and was ranked the best 
in CASP in all cases. This represents a significant advance from the previous editions of 
CASP [21, 22].

The AI method used provides a correct structure with a high accuracy score on the 
GDT_TS (“Global Distance Test – Template Score”) scale used in CASP (it is the indica-
tor used as a criterion for the degree of accuracy of model structure prediction against 
the target structure), which considers multiple similarity assessment criteria [3]. The AI 
technique uses a baseline in the form of maps of preferred inter-amino acid distances 
(contacts). Based on these, distances are reconstructed that are relevant to the given 
amino acid sequence.

However, the question of ‘Why proteins fold the way they do?’ remains unanswered. In 
this work, the degree of accuracy of the predicted structure was interpreted based on the 
consideration of the protein folding environment. The final structure of a given protein 
varies with the environment. Hence, using a steady-state internal force field (including 
preferred inter-amino acid distances) for all proteins may result in the success for one 
protein and a failure for another protein. The question arises as to why a jointly applied 
computational methods have not made any significant progress (WeFold project) [23, 
24].

The Bhageerath-H server representing the hybrid ab initio/homology modelling reach-
ing models of high accordance in CASP10 for water soluble monomeric proteins is freely 
available [25].

The three-track neural network linking a one-dimensional sequence level with the dis-
tance map, and the coordinate level expressing the integration of these three approaches 
was applied in CASP14 with good results [26].

Very popular recently techniques based on deep learning applied to the combina-
tion of template and multiple sequence alignment deliver some progress due to per-
manently significantly growing number of available structures making the comparable 
prediction more effective [27]. The interpretation of the physic-chemical 3D organisa-
tion of proteins in relation to structural and chemical classification of individual amino 
acids adopted to well defined homology (evolutionary) relationships is able to deliver 
the structures applicable for drug design techniques [28]. In the search for natural pro-
teins sequence/structure relationships the nonnatural sequences are exploited allowing 
the distinguishing natural proteins on the basis of the resultant 3D structures [29]. The 
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combination of backbone dihedral angles and relative surface accessibility for tripep-
tides in relation to their N- and C-terminal relative positions in 3D structures applied to 
machine learning techniques tested on very large diverse proteins collection seems to be 
promising in the development of computational methods [30].

This approach is applied in the ProFitFun-Meta server, which is freely available [31, 
32].

The analysis of the reasons for the variation in the degree of accuracy of the predicted 
structures was based on this work on the assumption of environmental contribution in 
the protein structuring process. A diverse environment governs the protein folding pro-
cess. The absence of a diverse environment in the protein folding model eliminates a 
broad spectrum of structural forms. The possibility of considering conditions imposed 
by the environment is offered by the fuzzy oil drop (FOD) model, as well as its modi-
fied version (FOD-M) [33, 34]. The model quantitatively assesses the contribution of 
the polar water environment, as well as the contribution of the diverse environment 
affecting the protein structure formation. This differentiation in the environment, which 
affects the protein folding process in a different way, is assumed to answer the question 
as to why the results obtained are not uniformly correct, despite the use of programs 
(models) that perform positively in many cases.

The ab  initio technique poses the challenge of finding the mechanism of the protein 
folding process that leads to the prediction of the correct structure by understanding 
such mechanism. This work demonstrates that this is not possible if the notation of the 
external force field of the environment origin is not considered. Environmental differen-
tiation – as shown by previous analyses – has a significant impact on protein structur-
ing [35, 36]. An averaged force field (averaged parameterisation) or any other criterion 
notation for protein structuring in an averaged form that does not take into account the 
effect of external factors cannot predict the diverse structural forms of proteins. The 
disadvantages resulting from the averaging of the parameterisation used can be dem-
onstrated from the results of CASP competitions. The vast majority of the tools used in 
the CASP project provide results of similar status by eliminating certain specific groups 
of proteins, where, as it turns out, the introduction of a factor in the form of a differenti-
ated external force field is needed.

Materials and methods
Data

The selection of proteins analysed is limited by the condition of the availability of the 
protein structures acting as targets in the CASP project and the models proposed by the 
CASP project participants. The subjective choice was also driven by the extremes: the 
best and the worst results.

A comparative analysis was carried out for the following:

1.	 The target structures (CASP13): T0953s2-D3 (PDB ID-6F45 [37]), T0990-D3 (PDB 
ID-6N9Y [38]), T1024 (PDB ID – 6T1Z [39]) and models for these targets [3]. The 
choice of these examples was driven by the extreme (high, medium and low) accord-
ance of models in respect to target structures using the parameters based on the 
FOD model as the criteria to express the effect of the environment.
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2.	 Proteins with an all helical structure are considered to be easy. However several 
other factors contribute to the computational structural model ability expressed by 
structural difficulty (SD) taking into account secondary structures, homology and 
physicochemical features of protein [40]. Also the availability of suitable template 
structure(s) influence the quality of prediction especially in comparative modelling.

3.	 Proteins with the code PDB ID—6POO [41] (GDT_TS = 65.90) and the PDB target 
ID—6UF2 [42] (GDT_TS = 45.8), whose structure was predicted with a low level of 
accuracy during CASP15 [3].

4.	 A comparative analysis of all models provided by the same technique (Baker-
Rosettaserver – participant No. 368 [43]) demonstrating its limited potential for 
highly accurate prediction levels. The reason for the individual failures was identified 
as a lack of dependence on the environment affecting the protein folding process.

The database from which the results for this analysis were taken is available at 
https://​predi​ction​center.​org/ (accessed: April 26, 2023).

Description of the FOD model

The external force field generated by the aqueous environment becomes apparent 
in the micellization process of bi-polar molecules, which, avoiding the entropically 
unfavourable contact of hydrophobic parts with polar water, form structures with an 
exposed polar surface, isolating hydrophobic fragments concentrated in the central 
part of the micelle. The description of such a hydrophobicity distribution is expressed 
by a 3D Gaussian function that spans the protein body:

By varying the magnitudes of the parameters σX, σY and σZ, it is possible to describe 
globular forms of arbitrary size and shape. ‘Hi’ expresses the idealised hydrophobic-
ity value assuming a micelle-like system. This value assigned to the position of the 
effective atom (the averaged position of the atoms that make up a given amino acid) is 
referred to as ‘Ti’ (theoretical).

The actual hydrophobicity distribution resulting from the inter-amino acid interaction 
(which depends on the distance of the interacting residues and on their intrinsic hydro-
phobicity) is, to a varying degree, aligned with the idealised distribution expressed by 
the 3D Gaussian function [33]. The determination of the actual level of hydrophobicity 
constituting the interaction effect is expressed by an equation proposed in [44].

where rij is the distance between the positions of the interacting amino acids, c is the 
cutoff distance, and Hr is the intrinsic hydrophobicity. The value of the observed level of 
hydrophobicity (assigned to the position of the effective atom) is referred to as ‘Oi’.
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The first factor in both expressions introduces the normalisation of the distributions. The 
T, O and R profiles are shown in Fig. 1A.

Quantitatively, the differences between the idealised distribution, T and the actual distri-
bution, O can be assessed using divergence entropy [45]

where P denotes the distribution under analysis (here, O) and Q denotes the reference 
distribution (here, T).

The DKL value cannot be interpreted quantitatively. Therefore, a second reference distri-
bution, R was introduced, where Ri = 1/N− N is the number of amino acids in the chain.

The R distribution, in contrast to the T distribution, represents a state with a uniformly 
distributed level of hydrophobicity (there is no hydrophobic core).

By comparing the values of DKL(O|T) and DKL(O|R), the ‘proximity’ of the two distribu-
tions being compared can be determined. The relation DKL(O|T) < DKL(O|R) indicates the 
presence of a hydrophobic core. To avoid using two values to describe the same object, the 
quantity ‘RD’ (Relative Distance) is introduced:

An RD value < 0.5 indicates the presence of a hydrophobic core (Fig. 1B).

(3)DKL(P|Q) =

N
∑

i=1

Pi log2
Pi

Qi

(4)RD =
DKL(O|T )

DKL(O|T )+ DKL(O|R)

Fig. 1  Graphical visualisation of the FOD-M model assumptions. A An example set of T (blue), O (pink) and 
R (brown) distributions. B The determined RD value for the example in (A) is 0.633, as shown on the axis. 
This value is calculated to express the difference expressed by DKL(O|T) and DKL(O|R) according to Eq. 4. C 
Determination of optimum value for K – the minimum DKL value for different K values results in best fit. The 
K = 0.3 appears to be the optimal one for presented example. D The juxtaposition of the T (blue), O (pink) 
and M (cyan) distributions for K = 0.3 illustrates the interpretation of the M distribution, which most closely 
replicates the O distribution in the example in question. Additional (thin lines) represent the M distributions 
for K = 0.1 (thin line – pink) and M distribution for K = 0.5 (thin line – blue). The comparison of M distributions 
visualises the best fit for M distribution for K = 0.3
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The deviations (the O distribution versus the T distribution) identified in protein dis-
tributions can be localised, where single and easily identifiable residues show a deficit 
or excess of hydrophobicity, as the case may be. If located in the common region of the 
protein molecule, residues with a hydrophobicity deficit in most cases are components 
of the active centre. Hydrophobicity deficits are often cavities ready to bind the ligand 
or the substrate (in the case of enzymes) [46]. A local hydrophobicity excess suggests 
the site of complex formation of a different protein [47]. Proteins with an O distribution 
similar to that of the T distribution were also identified. These are proteins with micelle-
like structuring: down-hill, fast-folding, ultra-fast-folding and antifreeze type II [48].

The aqueous environment is not the only environment for protein activity.
Membrane proteins exhibit activity in a hydrophobic environment. Their stabilisa-

tion in this environment is ensured by the exposure of the hydrophobic residues to the 
outside (providing a preferable system with the hydrophobic membrane). If, in addition, 
the protein acts as an ion channel it has a concentration of polar residues in the cen-
tral part (in particular). It is therefore an ‘inverted’ system in relation to proteins active 
in aqueous environments. Therefore, the idealised hydrophobicity distribution for the 
membrane environment is expressed by the complement of the 3D Gaussian function 
according to the equation below:

where TMax is the maximum value for the 3D Gaussian distribution and n is the normali-
sation of the resulting distribution.

As previous analyses showed, the proteins do not demonstrate an arrangement that 
follows the given distribution (Eq.  5). It appears that the proteins represent a struc-
ture that is a sort of consensus between the two forms, the Ti-compatible form and the 
Mi-compatible form. Therefore, the final distribution is determined by the following 
equation:

The K-factor indicates the degree of contribution of the ‘inverted’ distribution to the 
distribution expressed by the 3D Gaussian function (denoted here as T). This parameter 
expresses the strength with which a given environment modifies the system resulting 
from the polar water environment. The proper K value for particular set of T and O pro-
files is found as expressing the lowest DKL (O|M) value (Fig. 1C). Finally the representa-
tion of M profile for T and O is shown in Fig. 1D.

More on membrane protein structure analysis is provided in [34, 49].
The graphical visualisation of the model in question (Fig. 1) illustrates the significance 

of the individual parameters and their interpretation.
The M distribution is therefore considered to be an expression of the effect of the envi-

ronment on the protein folding process, in which the protein adapts to the conditions 
imposed by the environment.

If a juxtaposition of the distributions (Fig. 1) represented a hypothetical protein, this 
protein would be classified as deprived of a hydrophobic core.

It is also possible to perform an operation to eliminate the positions with the greatest 
differences between Ti and Oi. A multiple step-wise elimination of these positions allows 

(5)Mi = [TMax−Ti]n

(6)Mi = [Ti + K ∗ (TMax − Ti)n]n
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the identification of that part of the protein that exhibits RD < 0.5, thus identifying the 
part of the protein with a micelle-like organisation responsible for the solubility of the 
protein in question.

The summaries of successive editions of the CASP project show a split between ‘easy’ 
and ‘hard’ proteins. This distinction applies to all calculation techniques used by the 
participants. Traditionally, a high degree of prediction difficulty is associated with the 
presence of a beta-structure, which is more challenging (‘harder’) for obvious reasons 
(a long-range interaction). However, there are examples of proteins entirely represent-
ing the helical structure with a low prediction accuracy score. The search for an answer 
to the question posed earlier as to why very good force fields that provide models with a 
high degree of similarity to the target fail for other proteins is done based on the identifi-
cation of the environmental differentiation of protein folding conditions.

Programs used

The potential user has two possible ways to access the program:
The program allowing the calculation of RD as well as T and O distribution is acces-

sible upon request on the CodeOcean platform:
https://​codeo​cean.​com/​capsu​le/​30844​11/​tree. Please contact the corresponding 

author to get access to your private program example.
The application—implemented in collaboration with the Sano Centre for Computa-

tional Medicine (https://​sano.​scien​ce) and running on resources contributed by ACC 
Cyfronet AGH.

(https://​www.​cyfro​net.​pl) in the framework of the PL-Grid Infrastructure (https://​
plgrid.​pl)—provides a web wrapper for the abovementioned computational component 
and is freely available at https://​hphob.​sano.​scien​ce.

The VMD program was used to present the 3D structures [50, 51].

Results
Selected models in the CASP13 project

The selection of examples for a detailed analysis was driven by the highest, medium and 
lowest model-to-target fit that ranked at the top of the list (per GDT_TS). The evalua-
tion criterion used in the current work is the parameters of the FOD model (Table 1).

The interpretation of the respective sets as given in the columns is as follows:

•	 The TARGET column: the parameter values characterise the structure that is avail-
able in the PDB. According to the interpretation based on the FOD model, the RD 
value reveals the degree of organisation of the hydrophobicity distribution against 
the micelle-like distribution. The K parameter indicates the contribution of non-
aqueous factors that affect the formation of the structure of the protein in question.

•	 The BEST MODEL column represents the status of the structure of the model by 
assessing the extent to which the T distribution is reproduced by the O distribution 
as represented by the model structure.

•	 The correlation coefficient: the relationship of the GDT_TS rating value to the status 
of all models expressed by the RD parameter values.

https://codeocean.com/capsule/3084411/tree
https://sano.science
https://www.cyfronet.pl
https://plgrid.pl
https://plgrid.pl
https://hphob.sano.science
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In the presented system, T0953s-D3 shows a structuring consistent with a micelle-like 
distribution (very low RD and K values). The structure of this protein is distinguished by 
the presence of a hydrophobic core and a polar surface. The contribution of non-aquatic 
factors is negligible. The values describing the status of the model ranked at the top of 
the GDT_TS classification also show a high adaptation to a micelle-like system, albeit 
significantly lower than the target status. This difference turns out to be significant, as 
the model is very poor in the assessment, despite its top position on the ranking list.

The model structure obtained for the target T1065s2-D1 turns out to be very close 
to that of the protein. Here, the best model scored very highly on the GDT_TS scale. 
The assessment based on the RD and K parameters also shows considerable similarity.

The target T0990-D3 shows structuring above the cut-off level (RD = 0.5) to a small 
extent (K = 0.5). The status of the proposed model appears to represent a distribution 
further away from the micelle-like system (higher RD and K values for the model against 
the target status). This difference results in a relatively low rating on the GDT_TS scale.

The target T1024 shows the highest variation against the top model in terms of RD 
and K. The top model was ranked with a relatively high GDT_TS value (63.3).

The meaning of the ‘Correlation Coefficient’ column (Table 1) is shown in Fig. 2 and 
Table  1 provides very similar RD and K values since the top models are presented. 
The spread of the analysis of the model statuses (on the RD scale) varies widely across 
all participants of the CASP. A dependence with a negative correlation coefficient 
value is revealed, expressing a decreasing score (GDT_TS) with an increasing RD that 
describes the status of the target. This means a lower rating (GDT_TS) for models 
that do not take into account deviations from the FOD-ordered distribution. The cor-
relation coefficient value is variable and depends on the status of the target.

The classical GDT_TS rating reduction relationship for RD values moving away 
from the target status is shown by the model obtained for the target T0953s2-D3 
(Fig. 3), which is to the very low RD value that describes the status of the target. The 
relationship between the status expressed by RD and the GDT_TS assessment is 
expressed by the correlation coefficient equal to CC =  − 0.785 (Fig. 2). It means the 
larger the error in the RD status the lower the assessment of the model.

The positions circled in Fig.  2 are the results obtained with the AI method. It is 
apparent that the environment should also be considered in this method. This is par-
ticularly evident for the target T0953s2-D3.

Table 1  Values of RD and K parameters for models that had the top position on the ranking list (the 
GDT_TS values) 

The determination of RD and K values for the target – the T and O distributions obtained for the structures as given in PDB. 
The correlation coefficient expresses the relationship of the rating (per GDT_TS) of the model to the RD parameter value, 
which determines the degree of adaptation of the protein structure to environmental conditions

TARGET BEST MODEL Correlation 
coefficient

ID RD K K RD GDT_TS

T0990-D3 0.528 0.5 0.6 0.575 48.71  − 0.275

T1024 0.648 0.8 0.4 0.540 63.30  − 0.466

T0953s-D3 0.286 0.1 0.3 0.468 43.01  − 0.785
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As an example of the type of incompatibility between a model and a target in terms 
of the FOD model, the set of T and O profiles for T0953s2-D3 representing the low-
est GDT_TS score is illustrated. Here, the degree of reproduction in the top-ranked 
model micelle-like system proved to be too poor. The central section of the chain 
(highlighted in red in the 3D image) in the proposed model contributes too little to 
the hydrophobic core.

To make the list of discussed examples complete, the structure of target T1065s2-D1 
described by parameters: RD = 0.594 and K = 0.5 appeared to be very well predicted 
with GDT_TS score = 98.47. This best model for this target represents the structure 

Fig. 2  Dependence of the GDT_TS scale score on the status of the model protein structure expressed on the 
RD scale. The vertical lines are the RD values for the targets. The height of the vertical lines is the maximum 
score level on the GDT_TS scale. The encircled positions are the results obtained with AlphaFold

Fig. 3  Example of incompatibility for T0953s2-D3. The blue dots on the x-axis identify the area that does not 
reproduce the arrangement present in the target protein. The 3D presentation with a highlighted section of 
the chain where a significant discrepancy between the top-ranked model against the target is present
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of the status expressed by parameters RD = 0.578 and K = 0.5. This example proves 
applicability of RD and K parameters as possible criteria for structure comparison.

Analysis of examples taken from CASP14 and CASP15
This analysis demonstrates the dependence of the result obtained (the top position on 
the ranking list) on the RD value of the target structure.

An extreme case of a globally distinct structure is a pathogenicity protein, putative 
from Streptococcus agalactiae serotype V from the Streptococcus agalactiae (PDB ID—
6POO – target T1030 in CASP 14) [41] (Fig. 4).

The protein entirely represents an example of a helical protein with a structure far 
from globular. Therefore, a hydrophobic core is not expected to be present here. The 
structure of the protein (target) is described by the values: RD = 0.786 with K = 1.7 and, 
to determine the status of distinguished domains: (1–154) RD = 0.674 and K = 0.8, while 
for the domain (155–273), RD = 0.658 and K = 0.6.

High RD values indicate a structuring devoid of a hydrophobic core, while the K values 
suggest a significant contribution of factors that are not water, driving the structuring. A 
compilation of the T, O and M distributions for the protein in question shows a nearly 
linear distribution (similar to the R distribution). This type of distribution is interpreted 

Fig. 4  Characteristics of the N-terminal helical domain of biba, a group b Streptococcus immunogenic 
bacterial adhesin (PDB ID—6POO). A 3D structure left – the target T1030; right – the model T1030TS427-1 B 
set of T, O and M profiles for the corresponding K representing the target T1030 C set of T, O and M profiles for 
the corresponding K, representing the model T1030TS427-1
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to be a result of conditions where there is no impact of an aquatic environment. The 
closer to the horizontal line the M distribution is, the lower the influence the aqueous 
environment has on the structuring. A protein with this type of M distribution can be 
thought of as a protein folding effect in a specific ‘water void’ environment.

A summary of the results (Table 2) shows the lowest GDT-TS score for the complete 
chain. Considering the nearly complete helical structure of this protein, the result turns 
out to be very poor. The very high values of the K parameter with large differences for 
the model and the target reveal the need to diversify the environment (its influence on 
the target is much higher than that obtained for the model).

An example that also requires a detailed discussion is the unknown function target 
category protein, T1029 (PDB ID—6UF2 [42]).

Complete with respective 3D presentations. Highlighted in red – fragments showing a 
hydrophobicity deficit; blue – hydrophobicity excess, as shown in the diagrams.

The selected example represents the model with the lowest GDT_TS score in the set 
under discussion (Fig. 5). The parameters based on FOD-M for the target molecule are 
RD = 0.622 and K = 0.6 and GDT-TS = 45.8, with RD = 0.622 and K = 0.4 for the model. 
The assessment of the accuracy of the model structuring according to the criteria based 
on the FOD model is higher against a very low score on the GDT_TS scale. Rather, the 
identical RD values and the low variance of the K values suggest the accuracy of the 
model structure. When analysing the T, O and M profiles, a peculiar notation of prop-
erty variation is seen, suggesting possible biological activity. It is indeed possible to iden-
tify a chain fragment whose status, revealing a local hydrophobicity deficit, suggests the 
presence of a cavity (the red fragments in Fig. 5) ready to interact with the ligand. It is 

Table 2  Set of parameters based on the FOD model for the target T1030 and the model 
T1030TS427-1

GDT_TS RD-target/RD-model K-target/K-model

D1 78.73 0.674/0.671 0.8/0.9

D2 89.5 0.658/0.640 0.6/0.6

CHAIN 63.0 0.786/0.757 1.7/1.3

Fig. 5  Set of T, O and M profiles for the corresponding K, representing A Model T1029TS361-D1-1 B Target 
T1029
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feasible to speculate on a possible interaction with another protein via an N-terminal 
chain fragment showing excess hydrophobicity. High RD and K values may suggest the 
need for other factors besides water to contribute. The location of sections of the O dis-
tribution significantly diverging from the T distribution suggests a similar design of the 
potential ligand binding cavity.

Comparative analysis of results obtained by the same force field – Baker‑Rosettaserver 

(participant No. 368) (CASP13)

The model proposed in a group of programs whose history began with the ROSETTA 
program [52] is represented in a subsequent version modified in the form available with 
the Baker-Rosettaserver. The force field used in this program package is known very 
well. Alongside numerous successes, the group also delivered poorly rated results. It is 
therefore possible to pose the question as to why a very good force field fails in some 
cases. The search for an answer to this question was based on the analysis of a set of 
results in the form of models provided under ID 368 Baker-Rosettaserver in the CASP13 
project [43].

The results of the evaluation of the models obtained with this server are presented in 
Fig. 6.

Analysis of the set of results (Fig. 6A) shows a correlation coefficient of -0.562. This 
is a result of very low scores for target protein status models with high RD values and 
two relatively good scores for low RD values. The summary in Fig. 6B reveals the status 
of the target proteins and the status of the models provided. The most numerous group 
of models represents the RD range of 0.5 < RD < 0.7, while the 0.6–0.7 range is the most 
numerous in the target group. This abundant presence is representative of the entire 
pool of proteins (an opinion expressed on the basis of the analysis of numerous pro-
teins available in the publications of the I. Roterman team – the results have not been 
published). It can be speculated that the parameterisation used in the programs in the 
ROSETTA group (in particular the one used in the Baker-Rosettaserver – participant 
No. 368) was determined based on the analysis of multiple proteins, which justifies rep-
resenting only this range of RD values.

Fig. 6  Analysis of the models obtained with the Baker-Rosettaserver A relationship of the RD value to the 
GDT_TS score. The blue dots represent the range of RD of highest representation as shown in B. B number of 
available targets and delivered models for the RD value ranges
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The summary in Fig. 6B reveals the absence of models with extreme statuses – low and 
high RD values. This observation reveals the need to vary the force field used to predict 
protein structures.

Of particular note are two structures (PDB ID–6CL6 [53] and PDB ID 6F45 [37]) 
whose native form shows extreme values of K = 4.0 for 6CL6 and K = 0.1 for 6F45. These 
examples represent cases that are in the target form but absent in the models provided 
(Fig. 6B) (with an RD-based classification).

Analysis of the T, O and M profiles reveal the cause of the different structures of the 
target T0963, and the model provided by the server in question (Fig. 7). Notable is the 
fundamentally different RD value, with the target protein structure showing a signifi-
cantly higher value. In contrast, a significantly higher value for the K parameter reveals 
the role of the environment. The target structure requires a suitable environment to sta-
bilise this non-globular structure. It is clear that this structure would not be formed in 
an water environment. This is particularly evident in the N-terminal sections and par-
ticularly in the C-terminal sections, which show significantly higher hydrophobicity than 
the superficial location of these sections would suggest. This represents a preparation for 
interactions with other chains, which is in fact what happens when studying the biologi-
cal activity of this protein [53]. This example clearly reveals the need of considering the 
presence of a certain external ‘rack’ in the form of non-aqueous factors stabilising this 
structural form that is far from globular.

A second example of the target whose status was not reproduced in the model is the 
target T0953s2-D2, due to its very low RD (target: 0.286) at RD (model: 0.522) (Fig. 8).

In the set of targets in the CASP13 edition, the example representing a micelle-
like structure is the D3 domain (115–130, 152–228) (PDB ID 6F45). The RD value 
for the target is 0.286 (extremely low) with K = 0.1, while the structure predicted by 
T0953s2TS368-D3 shows a structuring with RD = 0.599 and K = 0.5. This is an example 

Fig. 7  Summary of the T, O and M profiles for the corresponding K values. A Target T0963 together with the 
3D structure of the native form of the protein in question (PDB ID 6CL6) B – Model T0963TS368 together with 
the 3D structure proposed using the Baker-Rosettaserver (participant No. 368) [43]
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of a structure determination by a force field, whose parameterisation is focused on the 
range of 0.5 < RD < 0.7, as shown earlier. Here, the structure of the model could probably 
be reproduced by running simulations of the protein folding process in an aqueous envi-
ronment that directs the process towards a micelle-like form [35].

Discussion
The vast majority of programs in the ab initio category as well as the recently introduced 
AI-based method are driven by parameterisation resulting from the analysis of protein 
structures available in the PDB. The proteome of a particular organism is made up of 
proteins performing all the biological activities required to sustain life. Given the com-
plexity of the system that is the world of living organisms, it is not surprising and indeed 
seems necessary to have a high degree of diversity in the tools that are proteins. Struc-
tural differentiation stems from the differences in amino acid sequences. In addition, the 
environment in which a protein performs its function is also a source of high diversity in 
the protein world. The environmental diversity has a very wide range, which provides a 
highly differentiating factor for the structures obtained. Therefore, a force field that does 
not consider external conditions or refers to ‘averaged’ characteristics remains deficient 
in relation to the great variety of tools and machines that are the proteins in every living 
organism.

The characterisation of the target T0953s2-D3 (CASP13), the structure of which no 
method could handle, shows a very low value of the K parameter = 0.1 in the native 
structure. This means that the force fields applied (which presumably are averaged) can-
not reproduce the structure according to the micellization mechanism. As shown in 
Fig. 6 and Fig. 9, the range of characteristics best reproduced in the programs is between 
RD 0.5 and 0.7. According to the assessment to date, this is the range most highly rep-
resented by proteins of the proteome. Within this range are single-chain enzymes less 

Fig. 8  LOW A set of the T, O and M profiles for the respective K values, together with a 3D presentation for: A 
target T0953s2-D3 B model T0953s2TS368-D3
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than 200 aa in length with a clearly localised incompatibility with the micelle-like system 
(an active centre). Enzymes with an extended structure (300–500 aa chains) and specific 
incompatibility with the micelle-like system are also in this range. The incompatibility 
consists of a scattering of small differences along the chain, without being able to distin-
guish the specific location of an explicit micelle-like incompatibility. This numerical pre-
dominance of proteins with the status expressed as 0.5 < RD < 0.7 indicates the reasons 
why the largest number of highly rated models precisely involve structures that, under 
conditions of activity, represent such a structure.

The need to consider environmental specificity for the folding protein is revealed by 
all amyloid proteins, whose change in structure is not caused by mutation but, it seems, 
solely by environmental effects.

The proposal to include a structure assessment in the RD and K category was already 
raised [54]. Structures rated highly by geometrical criteria (GDT_TS) do not perform 
well in terms of specificity derived from the hydrophobicity system (RD and K), which is 
important for the biological functions performed by proteins.

A summary (Fig. 9) reveals the dominance of the parameterisation of the tools used 
over the range of variation in environmental conditions expressed as 0.5 < RD < 0.7. 
According to analyses carried out by the authors of this work, this is the most common 
range of variation for this parameter. If the parameterisation for the tools used had been 
based on domain structures, the range would have been expressed with much lower RD 
values, as the domains show a large majority of structuring based on the presence of a 
hydrophobic core (low RD and low K values).

The summary of results (Fig.  9) reveals a dominant parameterisation for structures 
defined by the FOD-M model convention as representing a status with 0.5 < RD < 0.7. 
This coverage is mostly present in large-scale analysis of proteins as available in PDB. 
The standardisation of force fields and other criteria for protein structure prediction 
seems to be common for all procedures independently of the method applied. The data 
base in the form of domains as the test set for parameterisation shall deliver the results 
from the range 0.0 < RD < 0.4 since this range has been identified for large scale analysis 
of domains as they are available in PDB.

In conclusion: the protein structures do not follow the averaged model. The differen-
tiation of force fields expressing the external conditions shall be present in models ori-
ented on protein structure prediction.

Fig. 9  Summary of the results based on the examples discussed. The vertical axis expresses the number of 
models provided for a given range of RD values. A all examples discussed in this work. B target T0953s2-D3 
representing the lowest RD = 0.286 for the target status – the range distinguished by the red bar
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The proteins presented in this analysis were selected subjectively, focusing mainly 
on examples that show significant differentiation in performance between groups and 
examples that score low, despite the use of models that perform very well for other 
targets.

The analysis of two examples with extreme RD values (0.286 and 0.918), whose struc-
tures were predicted to have RD values of 0.599 and 0.783 (with GDT_TS scores of 43.01 
and 24.66, respectively), demonstrate the validity of the thesis assumed here about the 
necessity of the environmental factor.

Conclusion
As long as protein structure prediction-oriented programs do not take into account the 
presence of environmental conditions, the prediction is only reliable for a limited group 
of proteins (here defined by parameters based on the FOD model at 0.5 < RD < 0.7). The 
use of an averaged parameterisation determined from the analysis of known structures 
cannot lead to the prediction of protein structures, which are themselves differentiated 
as products of the contribution of the environment directing the protein folding process.

This work proposes a model that takes into account the environmental specificities to 
be considered in the construction of the external force field.

An external field for successive values of K (from K = 0 to K = 1.0 and even K > 1.0) 
applied to an energy optimisation procedure extended by optimisation due to the pres-
ence of an environment that directs the protein folding process appears to be necessary. 
An unambiguous example is amyloid proteins, which, with an unchanged sequence, 
acquire very different structural forms depending on the environment (shaking as the 
experimental procedure for amyloid production). These conclusions are also confirmed 
by the WeFold project, where combining the tools of the leading groups did not signifi-
cantly change the validity of the results obtained [23]. The example shown in [35] also 
supports this conclusion.
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