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Abstract 

Background: Processing raw genomic data for downstream applications such 
as imputation, association studies, and modeling requires numerous third-party 
bioinformatics software tools. It is highly time-consuming and resource-intensive 
with computational demands and storage limitations that pose significant challenges 
that increase cost. The use of software tools independent of one another, in a dis-
jointed stepwise fashion, increases the difficulty and sets forth higher error rates 
because of fragmented job executions in alignment, variant calling, and/or build con-
version complications. As sequencing data availability grows, the ability for biologists 
to process it using stable, automated, and reproducible workflows is paramount as it 
significantly reduces the time to generate clean and reliable data.

Results: The Iliad suite of genomic data workflows was developed to provide users 
with seamless file transitions from raw genomic data to a quality-controlled variant 
call format (VCF) file for downstream applications. Iliad benefits from the efficiency 
of the Snakemake best practices framework coupled with Singularity and Docker con-
tainers for repeatability, portability, and ease of installation. This feat is accomplished 
from the onset with download acquisitions of any raw data type (FASTQ, CRAM, IDAT) 
straight through to the generation of a clean merged data file that can combine any 
user-preferred datasets using robust programs such as BWA, Samtools, and BCFtools. 
Users can customize and direct their workflow with one straightforward configura-
tion file. Iliad is compatible with Linux, MacOS, and Windows platforms and scalable 
from a local machine to a high-performance computing cluster.

Conclusion: Iliad offers automated workflows with optimized time and resource 
management that are comparable to other workflows available but generates 
analysis-ready VCF files from the most common datatypes using a single command. 
The storage footprint challenge of genomic data is overcome by utilizing temporary 
intermediate files before the final VCF is generated. This file is ready for use in imputa-
tion, genome-wide association study (GWAS) pipelines, high-throughput population 
genetics studies, select gene candidate studies, and more. Iliad was developed to be 
portable, compatible, scalable, robust, and repeatable with a simplistic setup, so biolo-
gists that are less familiar with programming can manage their own big data with this 
open-source suite of workflows.
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Background
It is estimated that genomics research will produce approximately 40 exabytes of data 
within this decade alone [1]. Genomic data processing is paramount to deciphering 
functional information, particularly through the identification of candidate trait and 
disease-associated genetic variants within population data that are highly relevant 
in clinical, forensic, and other biological fields of research. Genome-wide associa-
tion (GWA) and candidate gene studies in particular continue to pave the way toward 
our understanding of human health and disease [2, 3]. These computational studies 
require genotypic information derived from a number of platforms and data types 
such as microarray and sequence data, but the files obtained from these platforms 
require significant computational resources to perform format conversions before 
analyses can even take place. For example, when a researcher receives single nucleo-
tide polymorphism (SNP) array data generated from a commercial platform (i.e., Illu-
mina) each sample’s BeadArray data is stored in the form of green and red IDAT files. 
The decryption of the stored summary intensities for every probe type on an array 
must be performed using proprietary software, either the Illumina Array Analysis 
Platform Genotyping Command Line Interface (IAAP-CLI) or GenomeStudio pro-
grams (Illumina, Inc. San Diego, CA, USA) which can be labor intensive, as process-
ing is limited to the number of samples in a single sample sheet [4]. Each program 
introduces steps that may impede researchers without a computational background 
from working with their own big data.

Next-generation sequencing is responsible for another source of genomic data that is 
on a larger scale. Sequence data, whether open source or provisional access, has a foray 
of different file types including raw sequence FASTQ files and highly compressed align-
ment (CRAM) files. These files are unreadable using standard text editors and software 
and therefore require several computationally intensive steps including alignment, vari-
ant calling, ID tagging, and sample/dataset file consolidation before investigators can 
include them in their analyses. At present, there are several standardized reference pop-
ulation datasets available. A few of the most popular include 1000 Genomes Project [5], 
Human Genome Diversity Project [6] (HGDP), and Simons Genome Diversity Project 
[7]. Although this sequence data is open source, it requires hours of processing before 
use, leading to delays that can impact research. Lower costs in wet laboratory sequenc-
ing consumables and SNP arrays have also opened the door towards in-house data prep-
aration for researchers interested in using sample sequence information as both a study 
target and reference panel resource [8]. This is further supported by the use of imputa-
tion software servers such as the Michigan Imputation Server [9], Sanger Imputation 
Server [10], and more data privacy permitting imputation pipelines such as Odyssey [11] 
to generate even larger amounts of genetic information than what was originally geno-
typed. This data shift signals a focal point that researchers need to overcome, which is 
the lengthy and arduous task of manual genomic data handling. For example, a singu-
lar sample with paired-end reads approximately 50 gigabytes (GB) in combined size can 
lead to manual processing times of up to 48 h. It can be an extremely daunting task for 
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the biologist who prepared the sample for sequencing to later process the genetic out-
put, particularly when it may be thousands of samples.

Several workflows and pipelines have been developed over the years to simplify 
this task by integrating third-party bioinformatics software tools and reducing runt-
imes. These workflows, however, will often be catered for one data file type [12–14]. A 
recently developed workflow called OVarFlow [15] is based on the Snakemake [16] com-
mon workflow language for processing variant data from high-throughput sequencing 
FASTQ files. It was designed to be customizable and can be used to analyze a wide range 
of variant data, including single nucleotide variants (SNVs), indels, and structural vari-
ants (SVs). The pipeline includes a number of different steps under GATK [17] software 
for processing and analyzing variant data, including quality control, alignment, vari-
ant calling, annotation, and filtering. There are several manual steps that must be per-
formed such as downloading the FASTQ data and reference genome files and updating 
the Snakemake version before the workflow can start. Although it is a valuable resource 
for processing FASTQ input data, it would benefit greatly from additional modules to 
accommodate the other data file types that biologists typically encounter such as CRAM, 
IDAT, and VCF.

Variant call format (VCF) files are the standard output of processed sequence data and 
the prerequisite to many genetic data analysis tool kits. As there is a rise in user-gener-
ated data and collections of populations that are available in varying data formats online, 
we have the potential to unite these datasets to develop more globally represented cus-
tom reference datasets. This is an important emerging capability for researchers that 
are well-equipped with quick and easy data processing pipelines. It allows them to bet-
ter represent select populations with improved imputation accuracies and therefore 
advance big data genome analyses on a global scale. Improvements such as increased 
imputation accuracy have already been noted using these approaches and methodolo-
gies [18]. It is essential therefore to have versatile workflows that can handle as many 
raw genomic data formats as possible, from start to finish including an ability to merge 
datasets from different genome assembly builds, whether sequence or SNP array gener-
ated. The capability to clean and efficiently combine datasets into singular genetic files 
in an automated fashion will make research between groups easier, ultimately increasing 
power in the detection of variants in larger association studies. There are workflow lan-
guages, such as Snakemake, that greatly reduce manual processing steps by automating 
them into a pipeline. It is no longer practical in genomics for big data processing to rely 
on segmented data handling scripts and manual handling of excessive intermediate files. 
Workflow management systems are highly valuable for this automation.

Here we introduce Iliad, a suite of Snakemake workflows developed with several mod-
ules for automatic and reliable processing of raw or stored genomic data that lead to 
the output of ready-to-use genotypic information necessary to drive downstream appli-
cations. Iliad offers a containerized workflow with optional automatic downloads of 
desired files from file transfer protocol (FTP) sites coupled with the use of any genome 
reference assembly for variant calling using BCFtools [19]. All dependencies are pre-
installed or systematically downloaded and/or built when invoked to considerably 
reduce the time and effort required to execute the workflows. At present we demonstrate 
usage comparisons with another genetic data processing workflow and show time-saving 
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improvements as well as increased data input flexibility using human sequence data 
only, but also provide instructions on how this pipeline can be adapted to cater for other 
genomes. Iliad’s minor startup requirements and complementary modules for qual-
ity control and data cleaning support its user-friendly and customizable characteristics. 
With compatibility for the major operating systems in mind, Iliad offers a scalable solu-
tion from local machines to high-performance computing (HPC) clusters to address the 
needs of any genomics researcher.

Implementation
Pipeline architecture and configuration file

Genomic data processing poses a challenge for genetic research studies because it 
involves multiple program dependency installations, vast numbers of samples with raw 
data from various next-generation sequencing (NGS) platforms, and inconsistent genetic 
variant ID and/or positions among datasets. The Iliad suite of genomic data workflows 
automates the central steps in genomic data processing for several NGS data types with 
implementation through the Singularity [20] container system and Snakemake workflow 
management system. These systems form the basis of Iliad and account for its ease of 
distribution, reproducibility, and scalability to ultimately accommodate users with a sim-
plified and standardized suite of workflows that are easy to implement.

All but one of the required program dependencies for Iliad are contained within a 
pre-built singularity image file available on Sylabs cloud (library://ncherric/iliad/igdp-
container:latest) that is automatically pulled down into the workflow by Snakemake. A 
Docker container solution is also provided (https:// hub. docker. com/ repos itory/ docker/ 
ncher ric/ iliad/ gener al) with options for AMD64 or ARM64 architectures. The Illumina 
IAAP-CLI is not permitted for distribution, so the download link is accessible to Iliad 
and users via the configuration file. The Singularity definition file and Dockerfile used 
to build the containers are also provided with Iliad on Github and ReadTheDocs in case 
there are any user-specific modifications to build a custom version. The container base 
system is Ubuntu 20.04 [21] Linux and includes BWA [22] for read mapping, SAMtools 
[19] and PicardTools [23] for user-choice of sorting and compressing the alignment files, 
BCFtools for variant calling, +gtc2vcf BCFtools plug-in [24] for converting SNP array 
files, and miniconda [25] for creating rule-based conda environments as needed. The 
latest Iliad container contains up-to-date versions of SAMtools and BCFtools, however, 
users can download previous versions if preferred by using a tag that corresponds to the 
version of software (e.g. library://ncherric/iliad/igdp-container:v1.16).

Iliad functions under Snakemake best practices and takes advantage of several use-
ful features. Iliad works as an inference pipeline where the user can specify the desired 
endpoint, and Snakemake will then infer which rules are to be run based on the follow-
ing user input: the final invocation of the Snakemake command, existing input/output 
files in the workflow, and a primary configuration file. The desired endpoint is declared 
as the input to the “rule all” found in each of the independent workflows’ main Snake-
file. This is already pre-set based on the goal of each workflow. There are certain Snake-
make flags that will affect the starting point, such as ‘--forceall’ which triggers all rules 
to be executed whether there are existing files or not. In a scenario where Iliad has been 
invoked and progress was interrupted, the workflow will begin where it left off saving 

https://hub.docker.com/repository/docker/ncherric/iliad/general
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both time and resources. This offers users a flexible entry point into the workflow, mean-
ing researchers can begin using Iliad even if they possess data files corresponding to 
input that is mid-stream of a workflow.

All Iliad workflows refer to the primary configuration ‘config.yaml’ file which has 
numerous controller variables with clearly denoted purposes. This file is the central 
point of customizing user needs. Many of the adjustments are binary conditions that are 
dependent on files a user may already possess. The most important configurations can 
be found at the top of this primary file. For example, adding the working directory path 
location of the Iliad directory is required. Once that single change is made in the con-
figuration file, Iliad will be able to execute a demo based on tutorial data. This provides 
users with an instant glimpse into the workflow and how it works, making it easier to 
begin working with new data. A thorough how-to guide for each workflow and a dem-
onstration of the tool is provided on “Read the Docs” (https:// iliad. readt hedocs. io/ en/ 
latest/).

Modularization

Iliad was developed as a suite of workflows using the modularization capabilities of 
Snakemake (Fig. 1). It includes data-specific pipeline modules that are designed for raw 
sequence data (FASTQ), Illumina SNP array data (IDAT), and a common storage format 
for sequence alignment data (CRAM). Each of these data types are common sequence 
data files. The user is free to choose which of these data processing modules best suit 
their needs by executing the corresponding Snakefile(s). Each of these modules provide 
flexible start and end points depending on any pre-existing data files and the Snakemake 
flags included in the command line invocation. Additionally, Iliad features independent 
submodules for lifting over reference assembly genomic positions (GRCh37 to GRCh38 
and vice versa) and merging multiple VCF files at once. These submodules can be used 
independently or combined within the raw sequence processing modules.

Computational specifications

Development and benchmarking took place on Carbonate [26] and Ulysses, respectively. 
Carbonate is Indiana University’s large-memory computer cluster designed for data-
intensive tasks. It is home to a cluster of 72 Lenovo NeXtScale nx360 M5 server compute 
nodes each with 12-core Intel Xeon E5–2680 v3 CPUs and 256 GB of RAM. There are 
additionally 8 large-memory compute nodes containing 512 GB of RAM, but those were 
not necessary for the purpose of Iliad. Ulysses is a remote server with more immediate 
access for the Department of Biology at Indiana University Indianapolis (IUI). Ulysses 
is comprised of two 16-core Intel Xeon Gold CPUs. Both Carbonate and Ulysses sur-
pass the hardware necessary to run Iliad. It is also possible to execute Iliad workflows 
on a local machine such as a desktop or laptop equipped with Linux, MacOS, or Win-
dows operating systems (OS) possessing at least 1 core, 16 GB of RAM, and enough disk 
space storage to sustain the amount of data needed. We recommend having as much 
computational storage as possible for sample processing, but this will vary depending 
on the nature of the research. We provide the minimum system requirements neces-
sary to execute the demo tutorial. RAM and CPU usage metrics were collected using the 

https://iliad.readthedocs.io/en/latest/
https://iliad.readthedocs.io/en/latest/
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collectl utility (http:// colle ctl. sourc eforge. net/) and the built-in ‘benchmark’ declarative 
in Snakemake.

Raw sequence read data workflow

The raw sequence read data module is comprised of 24 rules (Additional file 1: Table S1; 
Additional file 1: Figure S1), not including the rule ‘all’, which is designated as the driver 
of the workflow to provide the final desired output VCF. Each of these rules has been 
optimized using the “resource” directive, allotting for a specific time and memory 
request specific to each rule. Some rules may be branched into hundreds of jobs based 
on the number of samples. Job scheduling systems are more likely to run a queued job 
with smaller dedicated time and memory requests for smaller tasks. Some of the rules, 
such as downloading annotations files, are only necessary to be run once. Iliad will 

Fig. 1 Workflow schematic for each of the modules. A user can run the modules independently or 
simultaneously. The sequence data modules, raw FASTQ and stored CRAM, follow the same base set of rules 
after variant calling

http://collectl.sourceforge.net/
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re-use those general annotation files for later runs and cache them so that the other Iliad 
modules have access and can skip redundant downloads. There are instances when input 
data, such as a reference genome assembly FASTA file, is already locally available on a 
system. If so, adding ‘true’ to the ‘IhaveReference’ variable in the configuration file will 
trigger its automatic use. Similarly with input FASTQ reads or CRAM alignment files, 
placing the data into the appropriate directory and declaring the ‘--ignore-incomplete’ 
flag in command line invocation is all that is required if a user does not need the auto-
matic downloading feature.

The main workflow handles raw sequence data which can be used for reference or tar-
get data. The first advantage is a download checkpoint that uses ‘wget’ to acquire the 
user’s FASTQ data from the specified URL in the config file. Since many studies include 
multiplexed sequencing runs across many lanes, all the files associated with a particu-
lar sample name will be downloaded into a temporary ‘downloads’ folder where they 
will be accessed for a concatenation rule and output as one set of unzipped paired-end 
reads into the ‘fastq’ folder. If the user already has FASTQ data placed in the ‘fastq’ direc-
tory, the checkpoint will be satisfied. Quality control of the FASTQ data is performed 
via FASTQC [27], and reports are generated in HTML format which is a valuable step 
for users to check the raw sequence quality of downloaded data. Iliad will proceed with 
completing other rules based on the input data. Since read mapping is next for FASTQ 
data, the rule for obtaining the reference genome indicated in the configuration file will 
begin to produce the remaining and necessary input files that the read mapping rule 
requires. The reference genome is retrieved using a script modified from the reference 
wrapper, ‘0.74.0/bio/reference/’, in the “dna-seq-gatk-variant-calling” workflow found 
on the Snakemake workflow catalog [28]. With a specific reference assembly and corre-
sponding index file, Iliad will then begin read mapping using the burrows-wheeler align-
ment (BWA) package (v0.7.17). The main workflow, then, pipes the BWA output (SAM 
file) to Samtools ‘sort’ and creates a sorted BAM file. Sorting of the file through a pipe 
eliminates the need for a higher storage capacity by reducing intermediate files. After 
this step, the main workflow implements the BCFtools variant caller to produce VCFs 
that contain the genotypic information. Due to user configuration included in this work-
flow, variant calling parameters set for BCFtools can be adjusted if the user wishes to 
set specific thresholds or flags for the ‘mpileup’ and ‘call’ algorithms. The same is true if 
application of the ‘norm’ flag is desired. This allows Iliad to keep up to date with any new 
developments in BCFtools variant calling scripts.

Rather than performing variant discovery and calling all possible variants found in the 
alignment file, Iliad utilizes a curated list of variants (n = 120,046,375) from the New 
York Genome Center [29] to perform genotyping as this list comprises of stable vari-
ants observed across the 1000 Genomes Project dataset. A rule in the main workflow 
automatically downloads these files from the associated FTP site [30]. There is one file 
per human chromosome, 23 in total. The next rule splits each chromosome into equally 
divided chromosomal regions to further mitigate the computational reading and writing 
time observed when using BCFtools ‘view’ on one chromosome file in its entirety. The 
number of chunked region files can be customized in the configuration file by the user 
to fit any system-specific requirements. Any ambiguity in chromosome naming conven-
tions is also handled within this rule. The chunking methodology is used to drastically 
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increase speed either in series or in parallel, however, using workers in parallel is the 
faster approach. We chose BCFtools as our variant calling software because it provides a 
wide array of filtering options and useful plugins that maximize user customization and 
data flexibility. Within the Iliad workflow this gives users the ability to modify BCFtools 
commands as needed, particularly when new versions of the software become available. 
It has consistently been one of the preferred performance-evaluated variant calling tools 
[31–34] for sequencing data whilst including a capability for analyzing other data types 
(i.e., microarray data). Furthermore, the implementation of BCFtools concatenation and 
merging features complement the chunking methodology to optimize VCF generation of 
multiple samples from whole genome sequence (WGS) data.

Stored sequence read data workflow

Sequence alignment files (SAM or BAM), especially for the human genome, create 
impending hard disk storage challenges that can become quite costly. Therefore, com-
pressed sequence alignment (CRAM) files are a very popular storage file format com-
monly found on publicly available project FTP sites such as 1000 Genomes Project [5], 
Human Genome Diversity Project [6], and Simons Genome Diversity Project [7]. The 
CRAM file format is continually undergoing modifications and updates to improve 
speed and accuracy [35] therefore this workflow is particularly up to date with devel-
opments in data compression. Iliad incorporates a stored sequence read data module 
that downloads desired open-source CRAM data from a server and performs the above-
mentioned steps for variant calling on the retrieved files, just as it would perform variant 
calling on sorted BAM files in the raw sequence module. This is a critical module that 
supports in-house development of WGS reference panels and enables a fast and efficient 
addition of standard reference data sets that are publicly available. Iliad is one of the first 
Snakemake workflows that specifically manages the automation of CRAM to VCF data 
processing using BCFtools and user-controlled software flags. It is important to note, 
especially for new users, the exact same genome reference assembly that was used by the 
research group that generated the CRAM data is required. Iliad’s configuration file pro-
vides a binary variable to declare which reference genome assembly must be used and 
the reference genome file path if it must be supplied by the user. For example, variant 
calling CRAM files from HGDP [6] require the ‘GRCh38_full_analysis_set_plus_decoy_
hla.fa’ reference genome.

SNP array data workflow

An important feature of this pipeline is the ability to integrate the processing of SNP 
array data from its raw IDAT form. Typically for Illumina-specific SNP array files, the 
data must either be uploaded to a Windows only software (GenomeStudio) or utilize 
numerous command line applications. To simplify this entire process and seamlessly 
integrate Illumina SNP array data processing into our workflows, we containerized the 
open-source programs and included download steps for programs with end user license 
agreements, such as IAAP-CLI.

With the proper tools in the workflow environment, the procedure to obtain a VCF 
is facilitated by passing the raw data through the appropriate conversion steps. Initially, 
the data must be physically located in the “./Iliad/data/snp_array/idat/” directory, so that 
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the IDAT files can be converted to GTC files using IAAP-CLI ‘gencall’. There are product 
and support files that assist this conversion which include manifest and cluster files. It 
is imperative that the user knows which reference assembly their study will need and 
to indicate as such in the configuration file for their automatic retrieval. The Infinium 
Multi-Ethnic Global-8 v1.0 microarray web links for product and support files corre-
sponding to Homo sapiens GRCh37 and GRCh38 reference assemblies are included and 
may provide assistance to users locating their specific array support documentation. The 
correct product and support files will be used as input for follow-up third party tools to 
continue the conversion.

A BCFtools plugin, ‘+gtc2vcf,’ is included in the singularity container and is called to 
convert all sample GTC files into one VCF file located in the same directory (“./Iliad/
data/snp_array/gtc/”). Illumina support files, acquired automatically, update obscure 
loci names to widely accepted rsIDs. Although this may be a sufficient endpoint for some 
analyses, we included a filtering step that will find overlapping rsIDs from the dbSNP 
annotation VCF from NCBI [36]. Users can configure which dbSNP file corresponds 
with their desired genome reference assembly to produce a quality VCF that can be eas-
ily joined with other genomic data using standard rsIDs. Finally, raw IDAT files provide 
metadata for GenTrain and ClusterSep scores for every variant and can be used to filter 
out calls of poor quality. At present, there are default upper and lower thresholds for 
GenTrain (0.7 and 0.67) and ClusterSep (0.45 and 0.4) built into the workflow, but these 
can be adjusted according to user preferences. Final outputs include a summary graph 
and a quality controlled VCF file.

Submodules for additional VCF optimization

To best serve additional data processing applications, Iliad features several submodules 
that assist with build conversions and the merging of VCF files with other datasets avail-
able to the user e.g., reference data. Variant genomic positions largely depend on the 
reference assembly used for alignment, therefore datasets from different sources may 
have varying VCF ‘POS’ fields that inevitably represent the same SNP but cannot be 
merged correctly. The most comprehensive submodule functions as an automatic Lift-
over and Merge task (Fig. 2). Users simply “drag and drop” their datasets into the direc-
tory (‘./Iliad/data/vcf_Lift-and-Merge’), provide a project name and reference assembly 
preference in the configuration file, and list the files to merge in the text file (‘./Iliad/
config/mergeTheseVCFs.txt’). Doing so results in a tidy project space dedicated to a spe-
cific project and build conversion. The submodule enables users to perform multi-VCF 
merges on compressed or decompressed data represented by Homo sapiens GRCh37 or 
GRCh38 positions. Once configuration variables have been set and the ‘Lift-and-Merge_
Snakefile’ executed, the pipeline detects and updates genomic positions and naming con-
ventions, then initiates the merge of autosomes and the X chromosome using BCFtools. 
The submodule also automatically detects which version (GRCh37 or GRCh38) each 
VCF file is before passing it to the correct processing channel for generation of the final 
build expressed by the user. Processes to filter the independent VCFs and quality check 
the final merged VCF then occurs, also based on user configuration (maximum SNP and 
individual missingness).
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Fig. 2 Workflow schematic for the Lift and Merge submodule. VCF data files from independent datasets with 
genomic positions that reflect either the Homo sapiens GRCh37 or GRCh38 genome reference assemblies 
can be merged. This depicted workflow is specifically for a final merged VCF file configured to have genomic 
positions in GRCh38. The orange denoted pathway represents GRCh37 data input and the blue denoted 
pathway represents GRCh38 data input
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The Lift-over and Merge options also have split submodules for ease of use. There 
are two independent lift-over options that convert Homo sapiens GRCh37 positions to 
Homo sapiens GRCh38 positions and vice versa. The ‘liftoverTo37_Snakefile’ or ‘lifto-
verTo38_Snakefile’ must be passed to your Snakemake command and VCF files migrated 
to the ‘./Iliad/data/liftover’ directory. These perform a lift-over on VCF(s) but do not 
merge them. The data merging submodule can be performed on its own or with inte-
gration in the main sequence and SNP array modules with the execution of the ‘targe-
tRefMerge_Snakefile’. This is especially useful when processing both reference and target 
data for a particular analysis.

Results and discussion
Iliad was designed to simplify the arduous task of downloading and converting raw 
sequence data from thousands of individuals for both WGS and SNP array data into a 
single optimized and clean VCF for downstream applications using an all-in-one suite of 
workflows customizable for the user. A greater in-depth how-to guide hosted by “Read 
the Docs” (https:// iliad. readt hedocs. io/ en/ latest/) makes the process extremely simpli-
fied for biologists who may not be as comfortable working with the large datasets they 
may generate. Baseline estimates of time, computational resources, and storage required 
for the three main Iliad modules are provided in Additional file 1: Tables S1–3. Addi-
tional testing occurred on a number of platforms including Google Cloud Platform 
(GCP), Windows, and MacOS. Summarized evaluation metrics (Table 1) illustrate the 
resource and time estimates a user will need. One must be prepared with ample disk 
space when working with big data genomics, however, Iliad mitigates storage challenges 
by eliminating unnecessary intermediate files. After running through the tutorial data 
in the raw sequence module, roughly 33 GB is stored. Approximately 28 GB includes 
the reference genome assembly and annotation files, while the remaining 5 GB is the 
resulting VCF data footprint for the tutorial data of a single sample (paired-end reads; 
FASTQ). Tests with 1 to 5 CRAM samples from 1000 Genomes Project resulted in a 
14.3 to 21.6 GB VCF file. An example run of the SNP array module generated a VCF of 
17.2 GB for 190 in-house samples typed using the Illumina MEGA array (n = 1,686,450 
SNPs). These 190 in-house samples are not provided in our demo due to Institutional 
Review Board (IRB) restrictions. Ultimately, Iliad’s novelty is established as an all-in-one 

Table 1 Computational resources and time necessary to perform each of the main workflows with 
the described sample data. These benchmarks were recorded from the Ulysses HPC and run without 
a job scheduler. *Provided tutorial data as an auto-download for demonstration purposes when Iliad 
is retrieved

Workflow Initial file 
type

Tutorial 
sample

Tutorial 
sample size 
(GB)

Maximum 
RAM (GB)

Disk space 
(GB)

Cores Time (hours)

Raw 
sequence 
(~ 12x)

FASTQ KPGP-00127* 17.3 10 33 32 7.6

Stored 
sequence 
(~ 30x)

CRAM NA12718* 14.3 0.5 34 32 37.3

SNP array IDAT 190 In-house 
samples

10.6 3 45.2 16 3.4

https://iliad.readthedocs.io/en/latest/
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suite that is managed by a single configuration file with the ability of the workflow to 
flexibly commence at any phase of data processing due to the Snakemake framework. 
Many annotation files will be reused by other processes, so they are conveniently cached 
and available to any and all of the workflows within Iliad, including the submodules.

With regards optimal memory and timesaving performance as well as storage out-
comes, a comparison of Iliad’s Raw Sequence module and OVarFlow [15] was also con-
ducted (Fig. 3). It is important to note that OVarFlow’s main purpose is variant discovery 
which would require additional processing and filtering steps over Iliad’s selective vari-
ant genotyping, and this was the closest workflow comparison available to record the 
time elapsed while processing raw sequence reads to obtain a clean, ID-annotated VCF 
file in an automated fashion. For OVarFlow’s installation and ease of use, the Conda 
environment required a Snakemake version update from 5.26.1 to 7.8.5 in order for it to 
begin the run. It also required the user to manually download the reference genome; a 
GFF file - if not present with the reference genome, and input FASTQ data. These extra 
manual preparation steps required more user intervention than Iliad, typically adding at 
least 60 min of computational task time.

Overall, the two pipelines were completed within 0.5 h of each other for paired-end 
reads of one sample from the open-source Korea Personal Genome Project [37, 38] 
(KPGP) using 4 cores for 4 jobs in parallel. Within this figure, we also provide informa-
tion on the time it took for OVarFlow to generate a combined VCF for all variant calls 
(labeled ‘Genotype Calls VCF Data’) before pipeline completion, to show OVarFlows 
performance prior to unique variant filtering. This gave a difference of 1.9  h between 
both pipelines.

Fig. 3 Time and storage comparisons between Iliad’s Raw Sequence Read Data module and OVarFlow. 
The left Y-axis represents the time elapsed in hours for the selected steps completed (X-axis) by each of 
the workflows at 4 and 32 cores. The right Y-axis and shaded area of the graph represent the amount of 
cumulative storage in gigabytes (GB) for the selected steps completed (X-axis) by each of the workflows, 
regardless of the number of cores. The Genotype Calls VCF Data and the Final VCF Data are the same for Iliad’s 
Raw Sequence Read Data workflow
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However, Iliad quickly gained time improvements with increasing processing 
power and at 32 cores it finished nearly 3 times faster for 32 jobs in parallel at 7.62 h 
compared to OVarFlow’s 21.4 h. This is due in part to the default processing power 
settings of OVarFlow that is set to 6 cores and Iliad which is set to 12 cores. Iliad 
capitalizes on more cores because of the flexibility in adding more chromosome splits 
for variant calling using BCFtools. Several other factors may also contribute to these 
time differences such as the subtle differences in variant calling between BCFtools 
and GATK. Worthy to note, however, is the difference in storage observed after pipe-
line completion. Iliad contains many clean-up steps that are intrinsic to the workflow 
that reduce the storage footprint for raw sequence data processing by a factor of 4 
when compared to OVarFlow, which can aid users if they are processing hundreds of 
samples at once.

The time expenditures for Iliad when job sizes were scaled to 5 and 10 samples were 
recorded at 17.5 and 31  h, respectively, when using 32 cores for 32 jobs in parallel. 
Time and resource usage of the chromosome splitting methodology was recorded 
across multiple combinations of splits and cores allocated (Figure S4). Chromosome 
22 from sample KPGP-00127 from the open-source KPGP repository was used for 
testing. The limiting factor of Iliad’s speed was simply the supplied number of cores. 
Significant advantages lie in the reuse of commonly used files, such as annotation files 
and genome reference assemblies. For instance, rerunning Iliad to retrieve and pro-
cess new samples amounted to decreased run times in comparison to a clean install 
simply due to file download limitations from the human genome servers [39], thus 
reaffirming its efficiency. Although we were unable to directly compare our other 
main modules as we could not find any other comparable pipeline that focuses on 
CRAM files and IDAT files, we do offer benchmark results in Tables S2 and S3 for 
future comparisons.

In sum, although time assessments are quite comparable given the number of 
variant calls generated in both VCFs using WGS data (Table 2), the main difference 
between the pipelines is in their utility for downstream applications. Iliad performs 
variant calling on specific genomic positions detailed in a region file in an effort to 
combine and clean datasets of multiple builds, cohorts and datatypes, whereas 
OVarFlow utilizes genotyping for more stringent variant discovery on a single data-
set. Iliad has been designed to facilitate data generation for downstream GWAS and 
candidate association studies that require large numbers of individuals for increased 
power. It offers a general easy-to-use genomic data processing workflow that provides 

Table 2 Comparison of genotype and variant data type between Iliad and OvarFlow calculated 
with BCFtools ‘stats’ flag. The ‘Genotype Calls VCF’ represents the count of records in Step “06_
combined_calls” within OVarFlow. The ‘Final VCF’ (records) generated from OVarFlow’s pipeline is the 
reduced variant-only file. Iliad produces a singular final VCF within its pipeline that calls a specific set 
of annotated genomic positions from NYGC [30]. A breakdown of the number of SNPs and INDELs 
within the VCF is reflective of the pipelines’ respective variant callers

Workflow Genotype Calls VCF Final VCF SNPs INDELs

Iliad’s Raw Sequence 
Module

– 119,960,362 9,520,169 498,893

OVarFlow 610,405,020 4,034,429 3,623,864 411,214
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human genetic researchers greater accessibility to a set of variants across the genome 
as opposed to variant discovery. However, if researchers choose and wish to alter 
BCFtools commands (as provided in this pipeline), they may opt to exclude region 
files and perform exhaustive variant calling on the entire available sequence informa-
tion, thus facilitating the capture of additional alternative variant calls found in the 
datasets.

Iliad submodule workflows may prove the most useful to researchers with multi-
ple VCF files that normally require meticulous data wrangling prior to merging. For 
biologists who do not have the time to conduct repetitive tasks and troubleshoot 
small data discrepancies on multiple datasets, the submodules built into Iliad are 
of extreme value due to their simplistic and timesaving properties. File aggregation 
across all data types and projects using a singular pipeline is a prime example of this. 
Users can simply ‘drop and run’ by putting several VCF files into one folder to merge 
them into a single VCF regardless of compression, genome build, ’CHR’ naming con-
ventions, file size, and number of SNPs or samples. This capability is available for 
all researchers but may be of particular interest for those that want to merge tens to 
hundreds of data files (VCF) that they may have at their disposal; a time-consuming 
and confusing task is now made very easy and efficient. The final steps in the merger 
also include quality control measures which are specified by the user and sum up an 
extremely beneficial and time efficient module. Demo data [40–42] was not provided 
with Iliad for this submodule, although, example data can be freely obtained from 
the Estonian Biocentre (https:// evolb io. ut. ee/). Example datafiles from published lit-
erature [40–42] were downloaded in Bed, Bim, and Fam Plink [43, 44] formats from 
this site and converted into VCF files using Plink2 [43, 44]. Benchmarks are provided 
using this demo data (Table 3) to give users an insight into the resources required, and 
replication if needed. Manual dataset compilation is a demanding process whether 
the data consists of a small number of genotypes or WGS information. The Demo 
data consisted of genome-wide microarray data (n = 1,286,187 SNPs). The ability to 
generate a single quality controlled VCF from multiple files is an attractive workflow 
on its own, but combined with its ability to automatically detect which build and how 
to process the files greatly enhances the scope of Iliad’s suite of workflows

As for the future development of Iliad, it will be expanded to include other data file 
types such as Affymetrix’s CEL SNP array file types (Affymetrix, Inc. Santa Clara, CA, 

Table 3 Computational resources and time necessary to perform the lift over and merge 
submodule on demonstration data [40–42] without any genome build information given. The 
data can be accessed from the Estonian Biocentre (https:// evolb io. ut. ee/) or from data availability 
instructions associated with each study. The default Quality Control (QC) was set to remove variants 
and individuals with > 5% missingness

Initial file 
type and 
version

Existing 
resource 
files

Demo 
sample* 
size (GB)

Maximum 
RAM (GB)

Final VCF 
size (MB)

Final variant 
count 
preQC(postQC)

Final 
sample 
count

Cores Time 
(hours)

2- VCFs 
(v37)

Yes 0.78 3 18.1 316,897 (18,615) 144 4 1.7

3- VCFs 
(v37 and 
v38)

No 1.05 3 30 553,649 (18,105) 193 4 2.1

https://evolbio.ut.ee/
https://evolbio.ut.ee/
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USA) in addition to the inclusion of other variant callers such as GATK or FreeBayes 
[45] should the user have specific needs. Additionally, human genomic data was used in 
the development, testing, and benchmarking of this study, however, it will also be pos-
sible to process genomic data from other model organisms using Iliad if the necessary 
genome reference was specified and certain features adapted. Future versions of Iliad 
aim to accommodate users with these enhancements.

Conclusion
The need for genomic data processing is expected to vastly increase based on con-
tinual NGS cost efficacy. Variant data files are a standardized solution for genotypic 
information derived from raw sequence data in a controlled and reduced format, but 
its generation is complicated by numerous software installations and program ver-
sions, disjointed file formats, and a lack of workflow consistency among research-
ers. Iliad standardizes this process by containerizing the required software tools 
and streamlining the entire workflow, whilst also leaving room for user quality con-
trol preferences. Accompanied by visual outputs of raw data quality, Iliad is the first 
workflow suite of its kind to simplify and automate the management of genomic data 
processing that will highly benefit biologists newer to the bioinformatics field.

Availability and implementation
The Iliad genomic data pipeline is open source and can be found on GitHub (https:// 
www. github. com/ ncher ric/ Iliad). It is easy and straightforward to setup on sev-
eral operating systems using containers and is considered an ‘out-of-the-box’ suite 
of workflows thanks to the thorough documentation and visual how-to guides that 
complement Iliad (https:// iliad. readt hedocs. io/). Program dependencies and exter-
nal downloads of supplementary files are automatically facilitated by Iliad. This suite 
of genomic data processing pipelines was tested using Windows, MacOS, and HPC 
Linux systems using both Singularity and Docker containers.

Project Name ILIAD

Project home page:

- GitHub https:// github. com/ ncher ric/ Iliad

- Read the Docs https:// iliad. readt hedocs. io/

- Sylabs Cloud (Singularity) https:// cloud. sylabs. io/ libra ry/ ncher ric/ iliad/ igdp- conta iner

- Dockerhub https:// hub. docker. com/ repos itory/ docker/ ncher ric/ iliad/ gener al

Operating system(s): Linux, Windows, and/or MacOS

Programming language: Snakemake, Python, and Bash

Other requirements: Singularity 3.6.4 or higher, Conda 4.13.0 or higher

License The MIT License

Documentation Creative Commons license CC-BY SA 3.0

Any restrictions to use by non-academics: None

GWAS  Genome-wide association study
SNP  Single nucleotide polymorphism
IAAP-CLI  Illumina Array Analysis Platform Genotyping Command Line Interface
CRAM  Compressed Reference-oriented Alignment Map
HGDP  Human Genome Diversity Project

https://www.github.com/ncherric/Iliad
https://www.github.com/ncherric/Iliad
https://iliad.readthedocs.io/
https://github.com/ncherric/Iliad
https://iliad.readthedocs.io/
https://cloud.sylabs.io/library/ncherric/iliad/igdp-container
https://hub.docker.com/repository/docker/ncherric/iliad/general
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GB  Gigabyte
SNV  Single nucleotide variant
SV  Structural variant
VCF  Variant call format
FTP  File transfer protocol
HPC  High-performance computing
NGS  Next-generation sequencing
rsID  Reference SNP cluster identifier
FASTA  Sequence data file format
FASTQ  Extension of FASTA to include sequence quality data along with sequence data
IDAT  Intensity data
IUPUI  Indiana University-Purdue University Indianapolis
BAM  Binary alignment map
SAM  Sequence alignment map
WGS  Whole genome sequence
BWA  Burrows-Wheeler aligner
IRB  Institutional Review Board
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