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Background
Enhancers play a critical role in controlling gene transcription by interacting with cis-
acting DNA regulatory regions. Unlike proximal regulatory elements, enhancers are 
located at distal positions from target genes [1–4]. Over long genomic distances, it can 
approach distant promoters and enhance the expression of its target genes. It exhib-
its dynamic characteristics that vary across different tissues and lineages. Identifying 
enhancers can be challenging due to their diverse properties in different tissues and their 
ability to act bidirectionally with respect to their target genes. With the advent of high-
throughput sequencing technology, researchers have discovered that active enhanc-
ers are capable of transcribing DNA into RNA, known as enhancer RNAs (eRNA) [5, 
6]. Unlike the mRNAs produced by promoters, eRNAs are typically short, 5-capped, 
transcribed bidirectionally in the nucleus, abundant, no polyadenylated, and relatively 
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unstable [7, 8]. They serve as a hallmark of enhancer activity and can interact with pro-
teins to regulate gene expression. The expression level of eRNAs is positively correlated 
with the expression of their target genes, and knocking down eRNAs leads to decreased 
expression of the corresponding target genes [6, 9, 10]. Furthermore, searchers have 
found that the eRNAs are tissue-specific and can provide explanatory power for some 
cancer phenotypes [8, 11, 12].

Regarding the database of enhancers, in the FANTOM5 enhancer atlas, 65,339 candi-
date eRNA enhancers were identified by detecting eRNA expression through cap analy-
sis of gene expression (CAGE) sequencing across 1829 cell lines, providing coverage of 
enhancers in the majority of human cell types and tissues [13–15]. In addition, a com-
prehensive database, EnhancerDB, has been proposed [16]. It integrates experimental 
data from the FANTOM5 project with valuable informations on transcription factors 
and microRNAs that interact with enhancers. By leveraging these reliable resources, 
EnhancerDB and FANTOM5 provide more comprehensive and accurate tools for the 
identification of enhancers.

Recently, a plethora of computational methods have emerged for the identification of 
enhancers. As Table 1 shows, these methods can be divided into two categories: unsu-
pervised learning and supervised learning [17–27]. In unsupervised learning methods, 
the main goal is to identify the histone modification patterns and the regulatory ele-
ments. In supervised learning. It is mainly based on two categories algorithm models: 
SVM and deep learning. The input features include DNA sequence information and his-
tone modifications. For DNA sequence information, it is important to note that the posi-
tions of enhancers can vary across different states of the same cell, which means that 
relying solely on fixed features may limit the ability to identify enhancer sites accurately. 
The advancement of computational methods has significantly expanded the repertoire of 
predicted enhancers across various cell lines. However, there are only two reports on the 

Table 1 Published prediction methods for enhancer and eRAN

Method name Target Features Algorithm model Years

ChromHMM Chromatin state Histone modifications + TF bind-
ing

HMM 2012

ChroModule Chromatin state Histone modifications + open 
chromatin

HMM 2013

Segway Regulatory pattern Histone modifications + TF bind-
ing + open chromatin

DBN 2013

ChromeGenSVM Enhancer Histone modifications SVM 2012

RFECS Chromatin state Histone modifications RF 2013

Enhancer-CRNN Enhancer Histone modifications RNN 2019

kmer-SVM Regulatory pattern DNA sequence SVM 2013

iEnhancer-2L Enhancer/strength DNA sequence SVM 2016

SeqEnhDL Enhancer DNA sequence MLP, CNN, and RNN 2021

iEnhancer-RD Enhancer/strength DNA sequence DNN 2021

LSTMAtt Enhancer/strength DNA sequence Bi-LSTM 2022

Logistic Regression 
Model (Without 
name)

eRNA Histone modifications Logistic regression 2013

DeepITEH Tissue-specific eRNAs DNA sequence + histone modi-
fications

Bert + Bi-LSTM + DNN 2023
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prediction of eRNA. Zhu et al. performed logistic regression on eRNA based on histone 
modified signals. And Zhang et al. performed a deep learning framework for identifying 
tissue-specific eRNAs. But neither of these methods pays attention to the noise problem 
in CAGE-seq data. Additionally, there are limitations on availability.

In fact, previous studies analyzing CAGE-seq data have struggled to effectively 
account for the inherent stochasticity in RNA production, resulting in noisy measure-
ments of eRNA expression.

In this study, we have introduced novel statistical methods and prediction models that 
effectively filter out the noise associated with eRNA expression. Using the FANTOM5 
database, we first fitted the data distribution of eRNA expression obtained from CAGE-
seq using maximum likelihood estimation to identify highly reliable and effective eRNA 
expression. Subsequently, we developed a user-friendly eRNA prediction model that 
exhibits reduced reliance on specific omics data, thereby enabling researchers to predict 
the eRNA with greater accuracy.

Results
Effectively remove the noise of eRNA

eRNAs are expressed at relatively low levels, so using the CAGE-seq method to detecte 
eRNA is susceptible to random transcriptional noise [28]. In FANTOM 5 database, the 
eRNA expression level is quantified by transcript per million (TPM). Previous studies 
have not extensively examined the noise introduced by CAGE-seq, often considering all 
measured RNA as eRNA expression. However, in this study, we observed that the data 
distribution of expression values obtained through CAGE-seq might comprise two dis-
tinct distributions. Figure 1A shows the distribution of eRNA expression, indicating the 
presence of different data distribution within the measured expression data. This obser-
vation suggests the existence of potential noise or variations in the measured eRNA 
expression values, which necessitates further investigation and analysis.

In previous studies, the determination of eRNA production by enhancers was often 
based on a threshold, typically considering TPM values greater than 0 as indicative of 
eRNA expression. However, in this study, we took a different approach by fitting the 
data distribution and estimating its parameters. This allowed us to capture both the dis-
tribution of noise signals and the true expression of eRNA more accurately. Using this 
method, we identified a total of 11,584 and 6939 true eRNAs in GM12878 and HepG2 
cells. By employing this approach, we were able to reduce false positives in eRNA iden-
tification, improving the reliability of our results. EP300, an important marker of active 
enhancers, was used in our analysis. We separately calculated the overlap ratio of EP300 
with the regions identified as noisy and true eRNA, based on the designated cutoff. In 
GM12878, we observed overlap ratios of 0.0573 and 0.268 for EP300 with the regions 
identified as noise and true eRNA, respectively. Similarly, in HepG2, the overlap ratios 
were 0.0159 and 0.125 for EP300 with noise regions and true eRNA regions. These over-
lap ratios indicate a significant difference between the two categories. By fitting the data 
distribution and estimating its parameters, we were able to preliminarily eliminate the 
noise associated with eRNA.

It is crucial to get more accurate and reliable samples when building an accurate 
model. To enhance the accuracy of the model, we relied on additional omics data 
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profiles to obtain more precise eRNA information. In this study, we utilized DNase 
hypersensitivity sites as indicators of chromatin states. Enhancers that have the ability 
to generate eRNA are generally located in open chromatin regions. By incorporating 
DNase-chip peak data, we established a more stringent approach for defining candi-
date regions. This allowed us to identify more accurate positive and negative samples. 
Figure  1B illustrated the distribution of positive samples in GM12878, HepG2, and 
K562 cells, with 7693, 4168, and 2007 positive examples defined, respectively. Addi-
tionally, a total of 46,074, 50,102, and 50,967 negative examples were also defined 
separately. By employing such a refined strategy, we aimed to improve the accuracy 
and reliability of our model by utilizing more precise and better-defined positive and 
negative samples.

Next, the DNA methylation level and the distribution of H3K27ac for the three 
groups of samples were calculated. As Fig. 1C, D show, the DNA methylation level and 
the distribution of H3K27ac were different between negative and positive samples in 
GM12878. Positive samples exhibited the expected absence of DNA methylation. In 
contrast, negative samples displayed higher levels of DNA methylation, particularly 
in proximity to the enhancer center regions. This differential DNA methylation pro-
vides evidence to support our initial biological hypothesis regarding the association 

Fig. 1 The distribution of eRNA expression and the labeled samples used for model training and evaluation. 
A The distribution of eRNA expression. By fitting the data distribution, false-positives in eRNA recognition can 
be reduced. B The number of samples labeled in GM12878, HepG2, and K562 cells. C There were significant 
differences in the expression of DNA methylation levels among the three types of samples. D H3K27ac 
enrichment in three types of samples in GM12878
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between eRNA production and DNA methylation. Regarding the distribution of 
H3K27ac, negative samples exhibited a lack of H3K27ac signal, as expected. How-
ever, positive samples showed higher levels of H3K27ac compared to fuzzy regions. 
This enrichment of H3K27ac in positive samples further validates our hypothesis 
that enhancers producing eRNA events are often associated with increased levels of 
H3K27ac. Taken together, the distinctive patterns in DNA methylation and H3K27ac 
distribution observed between negative and positive samples in GM12878 cells pro-
vide strong evidence supporting our initial biological hypothesis, reaffirming the 
relationship between eRNA production, DNA methylation, and the enrichment of 
H3K27ac in the central region of enhancers.

Intra‑cell validation

The Random Forest (RF) and Extreme Gradient Boosting (XGBoost) are high-perform-
ing machine-learning algorithms and can better perform imbalanced multiclassification. 
We employed algorithms to predict eRNA. They were evaluated on the independent test 
set using different combinations of omics features in the same cell. As shown in Fig. 2A, 
when using DNA methylation as a single feature, the model exhibited a high sensitiv-
ity (Sn) in predicting eRNA. However, the specificity (Sp) was lower than the sensitiv-
ity. This could be attributed to the presence of open chromatin regions with low levels 
of DNA methylation that do not actually transcribe eRNA. These findings suggest that 
additional necessary elements might be required for the transcription of eRNA when 

Fig. 2 Performance of the model. A The performance of the model trained and tested in the same cell. B 
The performance of the model was tested in cross-cells. C The model used identified eRNA in three cells. 
The counts of eRNA and negative regions were identified in three cells. D The heatmaps of H3K27ac signal in 
different regions. E The average gene expression value within the enhancer regions was calculated
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chromatin is open. Solely relying on DNA methylation data may lead to erroneous pre-
dictions of regions that do not actually produce eRNA.

To improve the accuracy of the model, histone modification signals were incorporated 
as additional features. When both H3K27ac and DNA methylation were used as features, 
the AUC values of RF in GM12878, K562, and HepG2 were 0.9374, 0.9630 and 0.9564, 
respectively. The AUC values of XGBoost model were consistently higher than 0.943 
across all three cell types. It was observed that using H3K27ac as a feature yielded better 
performance compared to using H3K9ac. Furthermore, the inclusion of gene expression 
as a feature significantly improved the predictive capabilities of the model. The combina-
tion of gene expression, DNA methylation, and H3K27ac as features led to a substantial 
increase in the predicted AUC of the RF model, exceeding 0.961. These results highlight 
the robustness of using omics data, such as H3K27ac and DNA methylation, for accurate 
prediction of eRNA.

Validation of enhancer predictions cross‑cell type

To evaluate the performance of our supervised method across various cell types, we con-
ducted cross-cell validation. The training data and testing data were extracted from dif-
ferent cell types. In three cells, 539 positive regions and 34,401 negative regions were 
shared (as shown in Additional file  1). Shared negative regions account for 74.66% of 
all negative regions, while the shared proportion of positive cases is only 4.75%. We 
assessed the performance of the models using different combinations of features, includ-
ing DNA methylation and histone modification signals like H3K9ac and H3K27ac. The 
results demonstrated that models incorporating both DNA methylation and H3K27ac 
features achieved high AUC values, indicating their effectiveness in predicting eRNA 
expression across different cell types (as shown in Fig. 2B). Notably, H3K27ac exhibited 
superior performance compared to H3K9ac in terms of prediction accuracy and suitabil-
ity as a feature. Furthermore, we observed that the random forest model outperformed 
the XGBoost model in our experiments. This suggests that the random forest algorithm 
was better suited for accurately predicting eRNA expression levels in different cell types 
when utilizing DNA methylation and H3K27ac as features.

Comparison with other methods

We focus on predicting eRNA, which is nascent RNAs transcribed from active enhanc-
ers When compared to two published eRNA methods, the regression model cannot be 
directly compared due to the inability to obtain valid code, and the DeepITEH model 
depends on more histone modifications and complex DNA sequence feature extraction 
methods with input feature limitations. We have compared our method with the per-
formance of other DNA-based enhancer activity prediction algorithms. Additionally, we 
compared and analyzed our prediction results with the ChromHMM annotation results 
that annotates strong and weak enhancers. When compared with two recently published 
methods (iEnhancer-RD and LSTMAtt), we found that only using DNA sequences is 
not sufficient for eRNA prediction. As shown in Table 2, iEnhancer-RD and LSTMAtt 
display very low sensitivity, MCC, and F1-score. iEnhancer-RD and LSTMAtt display 
very low sensitivity, MCC, and F1-score. Our method, which relies on DNA methylation 
and H3K27ac as input features and utilizes both RF and XGBoost models, outperforms 
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iEnhancer-RD and LSTMAtt. eRNA undergoes changes across different cells and tissues, 
while DNA sequences remain unchanged. Therefore, predicting eRNA requires intro-
ducing other dynamic signals. Our method depends on WGBS and H3K27ac, which 
are relatively easy to obtain and have low sequencing costs. Additionally, the traditional 
algorithms we used have low computational requirements, indicating high feasibility of 
our method.

Prediction of transcribed eRNA in three cell lines

Utilizing the model trained within each individual cell type, we were able to predict 
eRNA regions across all three cell types, including those regions that were previously 
defined as fuzzy. This approach, which involved leveraging accurate data for model 
training and subsequently utilizing the trained model to predict fuzzy regions, effec-
tively improved the identification of eRNA regions. By employing this strategy, we were 
able to achieve higher accuracy compared to solely relying on the variability of eRNA 
expression. The RF model, utilizing joint DNA methylation and H3K27ac as features, 
yielded high values for AUC, Sn, and Sp. This model, being characterized by these fea-
tures, proved to be an effective tool for analyzing and identifying eRNA regions in all 
three cell lines.

As Fig. 2C shows, 14,921, 10,501, and 10,120 eRNAs were identified in GM12878, 
HepG2, and K562, respectively. To assess the overlap between the identified eRNA 
regions and EP300, the overlap ratios were calculated, resulting in ratios of 0.2486, 
0.1032, and 0.3328 for the three cell lines, respectively. In contrast, the ratios for 
regions defined as negative samples were much lower, with values of 0.0086, 0.0011, 
and 0.0138. The presence of H3K27ac signal was found to be associated with eRNA 
and reflected enhancer activity. The heatmaps of the H3K27ac signal in the identi-
fied eRNA and negative regions are shown in Fig. 2D. Notably, there was a significant 

Table 2 Comparison with two recently published methods, iEnhancer-RD and LSTMAtt

Cell Method Sn Sp AUC MCC F1‑score

GM12878 iEnhancer-RD 0.1323 0.9471 0.6494 0.1135 0.1774

LSTMAtt 0.2838 0.8068 0.2290 0.0783 0.2325

eRNA_RF_methyl_H3K27ac 0.9315 0.9433 0.9374 0.7942 0.8203

eRNA_RF_methyl_H3K27ac_gene 0.9780 0.9445 0.9613 0.8277 0.8467

eRNA_XGBoost_methyl_H3K27ac 0.9634 0.9317 0.9475 0.7890 0.8122

eRNA_XGBoost_methyl_H3K27ac_gene 0.9780 0.9397 0.9589 0.8166 0.8363

K562 iEnhancer-RD 0.1361 0.9855 0.7181 0.1690 0.1800

LSTMAtt 0.3849 0.8132 0.3131 0.0956 0.1257

eRNA_RF_methyl_H3K27ac 0.9719 0.9541 0.9630 0.6491 0.6207

eRNA_RF_methyl_H3K27ac_gene 0.9883 0.9575 0.9729 0.6721 0.6444

eRNA_XGBoost_methyl_H3K27ac 0.9386 0.9536 0.9461 0.6271 0.6020

eRNA_XGBoost_methyl_H3K27ac_gene 0.9442 0.9573 0.9508 0.6465 0.6239

HepG2 iEnhancer-RD 0.1752 0.9709 0.7260 0.2001 0.2276

LSTMAtt 0.3667 0.8213 0.3012 0.1268 0.2087

eRNA_RF_methyl_H3K27ac 0.9612 0.9515 0.9564 0.7520 0.7559

eRNA_RF_methyl_H3K27ac_gene 0.9849 0.9476 0.9663 0.7535 0.7534

eRNA_XGBoost_methyl_H3K27ac 0.9410 0.9453 0.9431 0.7191 0.7242

eRNA_XGBoost_methyl_H3K27ac_gene 0.9812 0.9429 0.9620 0.7360 0.7351
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enrichment of H3K27ac signal upstream and downstream of the identified eRNA 
regions. In addition, the mean values of 10 genes located upstream and downstream 
of the enhancer regions were calculated. The gene expression levels were measured 
by TPM. As shown in Fig.  2E, the gene expression levels near the eRNA enhancers 
were higher compared to those in the regions that do not produce eRNA. The distinct 
overlap observed between EP300, histone modification signals (H3K27ac), and gene 
expression further validates the accuracy and biological significance of identifying 
eRNA regions.

In addition, we compared our results with those from ChromHMM annotation. As 
expected, in the three cells, 72.79%, 71.24%, and 51.74% of the positive examples we 
identified were annotated as enhancements in ChromHMM (shown in Fig. 3A). Nega-
tive examples only accounted for 10.77–15.68%. We conducted further analysis on 
the overlapping parts. As shown in Fig. 3B most of the samples predicted as positive 
examples were strong enhancers, while negative examples were mostly weak enhanc-
ers. The activity of eRNA and enhancers is related, so it is not unexpected that most 
positive examples were strong enhancers, while negative samples were mostly weak 
enhancers. These findings provide strong evidence for the relevance and functional-
ity of the identified eRNAs in the regulatory landscape of the three cell lines. Our 

Fig. 3 Comparison with ChromHMM. A The proportion of regions annotated as enhancers in ChromHMM to 
positive and negative sample sizes. B The distribution of strong/weak enhancers in the region where positive/
negative samples overlap with those annotated as enhancers by ChromHMM
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research has further confirmed a correlation between the strength of enhancers and 
eRNA, but the details still need further research.

Discussion
The biological function of enhancer RNAs has been a subject of debate among research-
ers, with some considering it to be a result of stochastic transcription. Previous stud-
ies often overlooked the noise in CAGE-seq sequencing, which led to false positives in 
eRNA identification. However, our study successfully mitigates this issue by fitting the 
distribution of measured eRNA expression levels. By filtering out the noise, it can be 
inferred that the transcription level of real eRNAs significantly higher than those result-
ing from stochastic transcription. Reducing the noise interference of stochastic tran-
scription can improve the accuracy of research on the biological function of eRNA and 
unify scholars’ views on the biological function of eRNA. This, in turn, has the poten-
tial to contribute to a more unified perspective among scholars regarding the biological 
functions of eRNAs.

The accuracy of eRNA recognition can be enhanced through the utilization of intra-
cell eRNA prediction models. In our model, we incorporated the DNA methylation 
signal, which provides information about the chromatin state, and the H3K27ac sig-
nal as key features. When using DNA methylation alone as the prediction feature, the 
model achieved an AUC of approximately 0.8. This suggests that additional elements 
are required to induce eRNA transcription when the chromatin is in an open state. The 
inclusion of H3K27ac as a feature significantly improved the accuracy of the model, 
highlighting its importance in facilitating eRNA transcription.

Moreover, the results obtained from cross-model predictions further support the 
contributions of DNA methylation and H3K27ac to eRNA transcription [29–31]. Our 
approach to predicting eRNA demonstrates good accuracy, utilizing only two omics 
datasets. This enhances the accessibility and availability of prediction models for eRNA 
research. Our prediction strategy can also be extended to identify other regulatory ele-
ments. The detection technology for DNA methylation is relatively mature and reli-
able. The combination of histone modifications and DNA methylation modifications 
can efficiently reflect the state of chromatin. Integrating histone modifications, DNA 
methylation modifications, and DNA sequence characteristics can be applied to the 
recognition of other regulatory elements. In conclusion, our study not only highlights 
the importance of addressing noise in CAGE-seq expression profiles through a filtering 
method but also presents an effective eRNA prediction model that relies on a smaller set 
of omics data types. By reducing the complexity and data requirements, our approach 
offers a practical and efficient means of studying and predicting eRNA.

Conclusion
The expression of eRNA detected through CAGE-seq technology is prone to noise due 
to the inherent variability of RNA expression. To tackle this issue, we employed a filter-
ing approach based on the distribution of eRNA expression obtained from CAGE-seq. 
This methodology allowed us to filter out noisy signals and get more accurate eRNAs 
based on statistical methods. However, it is important to note that while this strategy 
can reduce false positives, it may also increase the likelihood of false negatives.
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Furthermore, we have developed a novel method for predicting eRNA by utilizing 
DNA methylation and histone modification signals. It is worth emphasizing that our 
prediction models based on traditional machine learning algorithms require limited 
computational resources. In addition, our models were demonstrated tolerance to the 
issue of data imbalance in eRNA prediction. The input features utilized in the model 
are conveniently extracted from biological experiments. Our model is efficient and user-
friendly. The R scripts and trained model can be accessed at https:// github. com/ Tracy 
HIT/ eRNA_ predi ct/.

Our experimental findings demonstrate that DNA methylation significantly con-
tributes to the accurate prediction of eRNA, while H3K27ac strongly correlates with 
enhancer activity and accessible chromatin. By utilizing both DNA methylation and 
H3K27ac, we can more precisely identify transcriptional enhancers based on the eRNA 
self-profile obtained through CAGE-seq technology. Moreover, the results of our cross-
cell validation indicate that it is feasible to directly predict transcribed enhancers using 
DNA methylation and H3K27ac. This reinforces the potential of these features as reli-
able indicators for the identification and characterization of eRNAs across different cell 
types.

Methods
Feature extraction

eRNA exhibits several distinct features that can aid in their prediction and identifica-
tion. These features include: (1) low levels of DNA methylation [30, 32]; (2) specific his-
tone modifications at enhancer loci [31, 33]; (3) accessible (open) chromatin [34]; (4) 
TF occupancy [35–37]; and (5) RNAP II occupancy [38]. To build a prediction method 
that is less dependent on omics data, DNA methylation, gene expression, H3K27ac, and 
H3K9ac were used as input features (as Fig. 4 shows). These data were all downloaded 

Fig. 4 Features and labels used in prediction models

https://github.com/TracyHIT/eRNA_predict/
https://github.com/TracyHIT/eRNA_predict/
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from the ENCODE [39] database. Additional file  2 provide information about these 
datasets. Generally, the transcription region on the genome is an open and unmethyl-
ated region. To capture the DNA methylation characteristics of candidate regions, the 
average methylation levels in these regions were calculated. Additionally, the candidate 
region was divided into three segments with an equal length. The average DNA meth-
ylation levels of the CpG dinucleotides within each of the three segments were calcu-
lated respectively. Totally, these four DNA methylation levels collectively represented 
the methylation characteristics of the region. Among many histone modification signals, 
H3 is a marker of the active enhancer. We applied a similar approach to extract histone 
modification features. It was worth noting that for histone modification signals, we cal-
culate the average coverage of the sequencing reads. eRNA transcription influences the 
expression of nearby genes bi-directionally. The number of genes regulated by individ-
ual enhancers may also vary. The relationship between enhancers and gene regulation is 
complex. In this study, the expression levels of 10 upstream and downstream genes were 
also extracted as features. Additionally, the maximum expression level of these 20 genes 
was also taken into account as gene expression feature. In order to enhance the accu-
racy of the model without the addition of further biological experimental testing data, 
sequence features were introduced by counting the frequency of CG content. We then 
analyzed the importance of a total of 32 features. As shown in Additional file 3, H3K27ac 
is extremely important in both models. Additionally, the level of DNA methylation and 
the maximum value of gene expression also possess high predictive value. Due to the 
limited input features of the model and the need to analyze different experimental data 
scenarios in our research, we conducted multiple feature combinations. The specific fea-
ture combinations are detailed in Table 3.

Recognition of effective eRNA expression

Our study utilized data from the FANTOM5 database, which includes 65,407 enhanc-
ers identified across 1829 cell types detecting by CAGE-seq. The download link is: 
https:// fantom. gsc. riken. jp/5/ datafi les/ latest/ extra/ CAGE_ peaks/ hg19. cage_ peak_ 
phase 1and2 combi ned_ tpm. osc. txt. gz. Due to the extensive coverage of cell types, 
we proposed that the 65,407 potential enhancers in FANTOM5 likely encompass 
all regions with the capability of expressing eRNA in human cells. After converting 
the reference genome from hg19 to GRch38, the dataset contains 65,399 enhancer 
regions. In the eRNA expression data obtained from CAGE-seq experiments, we 

Table 3 Combinations of features were used in prediction models

Index Feature combination

1 Methyl, GC_precent

2 Methyl, H3K27ac, GC_precent

3 Methyl, H3K9ac, GC_precent

4 Methyl, H3K27ac, H3K9ac, GC_precent

5 Gene_expression, Methyl, H3K27ac, GC_precent

6 Gene_expression, Methyl, H3K9ac, GC_precent

7 Gene_expression, Methyl, H3K27ac, H3K9ac, GC_precent

https://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/hg19.cage_peak_phase1and2combined_tpm.osc.txt.gz
https://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/hg19.cage_peak_phase1and2combined_tpm.osc.txt.gz


Page 12 of 16Luo et al. BMC Bioinformatics          (2023) 24:414 

observed two distinct data distributions. As an example, we can consider the eRNA 
data of GM12878. All eRNA expression levels are quantified as TPM. Then, the TPM 
was logarithmically transformed and linearly amplified using the following formula:

To better visualize the level of eRNA expression, we converted TPM values to 
LogTPM . As shown in Fig. 1A, the eRNA expression data exhibits two noticeable dis-
tributions. The lower values on the left side of the distribution followed a Poisson 
distribution. Numerous studies have highlighted the presence of RNA Pol II in a vast 
number of extragenic regions, emphasizing the prevalence of stochastic transcription 
events within cells. These lower values likely arise from the noise introduced by the 
detection technology employed and the inherent stochastic nature of transcriptional 
noise signals. It is important to note these characteristics when analyzing the eRNA 
expression data and considering their implications in downstream analyses.

Accordingly, the larger values on the right side of the distribution correspond to 
effective eRNA expression signals originating from enhancers. Based on the detec-
tion technology principle, the eRNA expression distribution follows a negative bino-
mial distribution. We assume that the lower data measurements x from noise follow a 
Poisson distribution with parameter u , while the quantity of eRNA transcribed from 
enhancers follows a binomial distribution characterized by parameters r and p:

The final data distribution of fusion is:

where a represents the probability of RNA originating from noise transcription. And 
1− a represents the probability of eRNA transcribed from enhancers. Then maximum 
likelihood estimators are employed to estimate the parameters of the probability distri-
bution based on the observed data. Nonlinear function optimization is used for maxi-
mum likelihood estimation. The interface between two distributions can be considered 
as a threshold. Values above the threshold suggest a higher likelihood of a true eRNA 
signal, rather than noise, while values below the threshold indicate the opposite. We 
then divided the data into two parts. The kurtosis and skewness were calculated for each 
distribution, and the parameters of the Poisson distribution were estimated for the noise 
data, resulting in p-values less than 0.05. Therefore, by integrating prior knowledge, the 
data distributions, and statistic results, we have determined that the two distinct distri-
butions in the CAGE-seq data can be identified.

To enhance the reliability of positive and negative samples during the construction 
of our algorithm, we included DNaseI data to represent the chromatin state. DNaseI 
data provide valuable insights into the accessibility of chromatin regions, indicating 

(1)LogTPM = 10× ln(TPM)+ 4, (TPM > 0.001)

(2)Ppois(x = k) =
uke−u

k!

(3)Pbinom(x = k) =
(k + r − 1)!
k!(r − 1)!

pr(1− p)k

(4)P = aPpois(x = k)+ (1− a)Pbinom(x = k)
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whether a particular genomic region is open and accessible for transcription factors 
and other regulatory elements. As shown in Fig. 1B, the regions’ LogTPM values were 
above the threshold, and the chromatin states of the regions were open, the regions 
were more likely to be classified as positive samples. Conversely, regions with closed 
chromatin states and  LogTPM values below the cutoff were considered negative sam-
ples. Any regions that do not fall into the categories of positive or negative samples 
were considered as fuzzy regions, meaning they cannot be clearly defined as either 
positive or negative examples. Throughout the process of building, training, and eval-
uating our model, we exclusively utilized the positive and negative samples. These 
well-defined samples allowed us to effectively train and evaluate the model’s perfor-
mance, ensuring that it can accurately classify enhancer regions into their respective 
categories.

Random forest and XGBoost modeling

In this study, the negative samples outweigh the positive samples, leading to an imbal-
anced dataset. To tackle this issue, Random forests and the Extreme Gradient Boosting 
models were employed, as they can tolerate data imbalance. The 65,399 regions were 
extracted from FANTOM5. According to the expression of CAGE-seq and the coinci-
dence of DNaseI, these regions were divided into three sets: PR (positive regions), FR 
(fuzzy regions) and NR (negative regions). For the intra-cell analysis, 80% of the regions 
were allocated for training the model, while the remaining 20% were set aside for inde-
pendent testing. For the cross-cell analysis, we used data from cells not included in the 
model training process.

For the random forest model, the number of binary tree variables (mtry) and the 
number of decision trees (ntree) were two hyperparameters that were fine-tuned 
by evaluating the out-of-bag error (OOB) one by one. For XGBoost, there were three 
hyperparameters were considered: nroundsi, max_depthi, etai. They were also selected 
by OOB. To determine the best values for these hyperparameters, fivefold cross-valida-
tion was utilized.

Model evaluation

To evaluate the performance of models trained using active enhancers and various fea-
ture combinations, we utilized the following metrics for evaluation: (1) area under the 
ROC curve (AUC), (2) sensitivity (Sn), (3) specificity (Sp), (4) Matthew’s correlation 
coefficient (MCC), (5) F1-score

(5)Sn =
TP

TP + FN

(6)Sp =
TN

TN + FP

(7)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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where TP, FP, TN, and FN represent true-positive, false-positive, true-negative, and 
false-negative values, respectively.
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