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Abstract 

Background: N6, 2’-O-dimethyladenosine  (m6Am) is an abundant RNA methylation 
modification on vertebrate mRNAs and is present in the transcription initiation region 
of mRNAs. It has recently been experimentally shown to be associated with several 
human disorders, including obesity genes, and stomach cancer, among others. As 
a result, N6,2′-O-dimethyladenosine  (m6Am) site will play a crucial part in the regula-
tion of RNA if it can be correctly identified.

Results: This study proposes a novel deep learning-based  m6Am prediction model, 
EMDL_m6Am, which employs one-hot encoding to expressthe feature map of the RNA 
sequence and recognizes  m6Am sites by integrating different CNN models via stack-
ing. Including DenseNet, Inflated Convolutional Network (DCNN) and Deep Multi-
scale Residual Network (MSRN), the sensitivity (Sn), specificity (Sp), accuracy (ACC), 
Mathews correlation coefficient (MCC) and area under the curve (AUC) of our model 
on the training data set reach 86.62%, 88.94%, 87.78%, 0.7590 and 0.8778, respectively, 
and the prediction results on the independent test set are as high as 82.25%, 79.72%, 
80.98%, 0.6199, and 0.8211.

Conclusions: In conclusion, the experimental results demonstrated that EMDL_
m6Am greatly improved the predictive performance of the  m6Am sites and could 
provide a valuable reference for the next part of the study. The source code and experi-
mental data are available at: https:// github. com/ 13133 989982/ EMDL- m6Am.
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Introduction
In recent years, dynamic epigenetic changes of RNA have drawn considerable attention 
in biological study. There are already more than 160 different forms of RNA modifica-
tions known [1]. According to reports, the majority of RNA modification enzyme muta-
tions have an important role in the emergence of human disorders [2]. In rat messenger 
RNA (mRNA), the N6-methyladenosine  (m6A) modifications were discovered [3], while 
N6-2′-O-methyladenosine  (m6Am) alterations were discovered shortly [4]. One of the 
most prevalent post-transcriptional modifications of mRNA is N6,2′-O-methyladenosine 
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 (m6Am), which was found on the second base of the modification close to the m7G cap 
[4]. In the meantime,  m6Am, a terminal alteration generally 2′-O-methylated at the sec-
ond base close to the 50 cap in mRNA, together with further methylation at the N6 posi-
tion, has just recently been Identified as a promising target for FTO removal from the 
human obesity gene [5], associated with obesity [6].

Through the experimental studies, researchers have been able to uncover more and 
more hidden characteristics of  m6Am. Recent research has gradually revealed the 
importance of  m6Am in biological functions, including in the field of cardiac biology [7] 
research, gene expression regulation [8], tumor development, and more [9]. For exam-
ple, PCIF1 and  m6Am were experimentally proven to be essential in the development 
of gastric cancer by Zhuo et al. [10]. The progression of gastric cancer is accelerated by 
increased methyltransferases driven by  m6Am methylation changes (PCIF1). By pro-
viding resistance to DCP2-mediated mRNA capping,  M6Am confers mRNA [11]. Fur-
thermore,   m6Am may also control other processes involving the metabolism of RNA. 
The experimental findings of Jan Mauer et  al. [11] demonstrated that  m6Am plays a 
significant role in the stability [11–13] and translation [14] function of mRNA. Overall, 
research on  m6Am’s biological effects is still in its early stages, and its primary functions 
are yet unknown. There are numerous wet-lab experimentation techniques available. 
As an illustration, Hawley et al. [15] developed miCLIP, a mapping of  m6A and  m6Am 
at single nucleotide precision, to find the  m6Am sites. Additionally, m6ACE-seq was 
introduced by Koh et al. [16] to statistically map  m6A and  m6Am across the transcrip-
tome. There is also the MeRIP-seq  (m6A-seq), which has limited resolution, antibody 
cross-reactivity, and inability to differentiate between cap-m6Am and  m6A in 50 RNA 
fragments.

Many other researchers are still striving to find  m6Am sites  using wet experimental 
approaches nowadays, including Sun et al. [17], they used antibodies to  m6Am to rec-
ognize  m6Am, but there was a limitation that they cannot precisely distinguish between 
 m6Am and 5′-UTR  m6A. Because the existing wet experimental techniques are expen-
sive and time-consuming, it is vital to develop new computational methods for the exact 
identification of  m6Am sites.

Despite the fact that prediction of  m6Am sites have not been studied for a long time, 
a number of prediction techniques have been developed. The first one bases its predic-
tion identification on conventional machine learning model. Based on RNA sequence 
and employing electron–ion interaction and pseudo-EIIP (PseEIIP) coding to predict 
sites, Jiang et al. [18] developed a predictor called m6AmPred, and the team continued 
to identify  m6Am sites computationally using deep learning algorithms with proposing 
a new predictor called MultiRM [19]. As deep learning framework, based on the LSTM-
attention mechanism combined with Word2vec embedding module, can perform multi-
tag prediction, including prediction of  m6A,  m6Am, and other 12 RNA modification 
sites with powerful features.

Recently, Luo et al. [20] used a different coding approach and model than Jiang to pre-
dict  m6Am. They used three coding approaches—one-hot coding, nucleotide chemi-
cal properties, and nucleotide density—as well as three base classifiers—multi-headed 
attention, two parallel embedding modules, CNN and BiLSTM, and a prediction module 
for  m6Am sites. As a whole, the computational identification of  m6Am sites has made 
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some strides, that the algorithms now in use can predict  m6Am sites with a high level of 
performance and accuracy. However, there is still a lot that can be done to increase the 
precision of these predictors for  m6Am sites identification.

Based on the above-mentioned consideration, we propose EMDL_m6Am, a stacking 
ensemble deep learning model, in response to the current mission of identifying  m6Am 
sites. It ismotivated by those  m6Am data and the certain sites prediction models. The 
whole flowchart is displayed in Fig.  1. The model consists of an encoding module for 
features and a feature extraction module. The raw data is initially encoded in one step. 
Then, three deep learning models—A, B, and C—are divided up into the feature extrac-
tion module, and stacking integration is added later. Conv1D is for a one-dimensional 
convolutional layer. Avepooling1D stands for an average pooling layer, a fully connected 
layer is denoted Dense for, and BN for batch normalization.

As shown in Fig. 1, first, we attempted to use a number of popular RNA sequence cod-
ing techniques, such as one-hot, nucleotide chemical property (NCP), and nucleotide den-
sity (ND), both singly and in combination. Through the prediction performance obtained 
from the experiment, we finally selected the most straightforward, effective coding tech-
nique, one-hot, for RNA sequence coding. Second, we examined the performance of differ-
ent deep learning predictors, including: DenseNet [21, 22], Inflated Convolutional Network 
and Deep Multiscale Residual Network(MSRN) [23] and Bidirectional gating recurrent unit 
(BiGRU), and got some inspirations from them. Through carefully testing, we discovered 
that the DenseNet network based on one-hot encoding performs well. DenseNet still has 
drawbacks when compared with the currently state-of-the-art predictor DLm6Am, though. 

Fig. 1 Schematic graph of the EMDL_m6Am model
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Hence, giving that the performance gaps amongst the three deep learning classifiers are not 
very large, we built a stacking ensemble deep learning model and used a straightforward 
logistic regression model for prediction in the second layer of stacking. Three deep learning 
models are employed in the first layer of stacking to forecast the original data to obtain the 
prediction results, and the second layer filters the first layer’s prediction outcomes. Nota-
bly, we optimized the input of the second layer of the stacking model in this work, i.e., the 
output values of the first layer were stitched with the original dataset to serve as the input 
of the second layer, in order to avoid losing the original feature map information, which was 
inspired by the stacking prediction model from Jia et al. [24]. Finally, the code is obtainable 
in the Github repository (https:// github. com/ 13133 989982/ EMDL- m6Am).

Materials and methods
Benchmark dataset

Lately, Sun et al. [17] proposed a new sequencing approach, m6Am-seq, which can effec-
tively distinguish  m6Am from  m6A using RNA immunoprecipitation and selective external 
demethylation. From this, they used this sequencing approach to provide 2166  m6Am sites 
in the entire human transcriptome at mononuclear resolution with a high confidence level 
for these sites. Subsequently, luo et al. [20] did a three-step process on the sites information 
provided by m6Am-seq: first, a sample sequence was extracted using a sliding window of 
(2δ + 1)− nt, as shown in Eq. (1), and a sequence can be displayed as:

whereas in BCA (B = C, G, or U) motifs, K stands for the nucleotide adenosine and A for 
the nucleotide next to K. The distance between each nucleotide and the central site K is 
indicated by the subscript, with A_(−δ) standing for the δ-th upriver nucleotide from 
the middle, A_(+δ) denoting the δ-th downriver nucleotide from the center, and so on. 
In this study, the δ value was configured for 20. The sequence fragment is regarded as 
a positive sample if the  m6Am site is in the middle of it; otherwise, it is a negative sam-
ple. Secondly, sequences with more than 80% similarity were removed using the redun-
dancy removal tool CD-HIT [25], Finally, negative samples were chosen at random in a 
1:1 ratio to create the ultimate benchmark dataset, from which 80% of the samples were 
chosen as the training set and the residual 20% as the independent test set. The data-
set used in our work is from the dataset created in three steps by Luo et al. and we did 
not do additional processing on their dataset. The size of the dataset used is shown in 
Table 1, the training set contains 1419 positive samples and 1419 negative samples, and 
the test set has 355 positive samples and 355 negative samples. The ratio of positive to 
negative samples is 1:1 in both sets of data.

(1)fδ(K ) = A−δA−(δ−1) · · ·A−2A−1KA+1A+2 · · ·A+(δ−1)A+δ

Table 1 Distribution of the benchmark data set

Dataset Positive Negative

Training 1419 1419

Independent 355 355

https://github.com/13133989982/EMDL-m6Am
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Feature extraction methods

Use of an appropriate sequence coding approach is essential for site identification. 
Researchers have created a number of feature encoding techniques to express RNA 
sequences with numerical vectors since the input of the majority of models is a numeri-
cal vector. As an illustration, we consider the encoding based on the structural or 
sequence information. In this research, we employ three of the most well-applied coding 
techniques at present, including one-hot, NCP, and ND [26, 27].

One hot encoding

One-hot coding is one of the most prevalent coding techniques and is well-liked by 
scientists since it can effectively and simply represent nucleotide sequences. The four 
nucleotides A (adenine), C (cytosine), G (guanine), and U (uracil) are typically denoted 
by (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1), accordingly.

Therefore, a nucleotide sequence of length L = 41 is represented in this study as a 
41 × 4 two-dimensional matrix, where all matrix elements are 0 and 1.

Nucleotide chemical property (NCP) and nucleotide density (ND))

The chemical characteristics of nucleotides (NCP), which was proposed by Bari et  al. 
[28], based on the construction of chemical structures of nucleotides, have been used in 
many recent investigations [29–31].

1. The nucleotides are classified into these two categories based on the various ring 
configurations. As purines, A and G are represented by the number 1, whereas pyri-
midines, C and U, are denoted by the number 0.

2. According to their chemical functions, nucleotides are separated into two groups: 
those representing amino groups, designated by the number 1, such as the nucleo-
tides A and C, and those representing keto groups, denoted by the number 0, such as 
the nucleotides G and U.

3. Based on the different strengths of the hydrogen bond interactions between base 
pairs, the nucleotides are divided into two groups. One party comprised the strong 
interactions and is represented by 1, which is A and U, while the other group repre-
sents the weak interactions and is represented by 0, which is G and C.

In this way, each nucleotide is represented by the following three-dimensional vector.

where xi =
{

1, Hi ∈ {A,G}
0, Hi ∈ {C ,U} denotes the ring structures, yi =

1, Hi ∈ {A,G}
0, Hi ∈ {G,U} indi-

cates the chemical efficiency, zi =
{

1, Hi ∈ {A,U}
0, Hi ∈ {C ,G} represents the interaction strength 

of hydrogen bonds.
The frequency and location distribution information of each nucleotide can be dis-

played in the nucleotide density (ND). The density (di) of a nucleotide can be calculated 
as di = n/i, where n is the number of times the nucleotide appears before the i-th position 

(2)Hi =
(

xi, yi, zi
)



Page 6 of 20Jia et al. BMC Bioinformatics          (2023) 24:397 

(including the i-th position). For example, the density of A for the sequence "AGT AUU 
CA" is 1, 0.50, and 0.375 in the first, fourth, and eighth bits, respectively. Likewise, U is 
0.20, 0.33 for positions 5 and 6, respectively, etc.

Combining the chemical properties and density of nucleotides for encoding, then each 
nucleotide can be encoded as a four-dimensional vector shown in Eq. (3).

where l stands for the sequence’s length. Each sequence data of length 41 nt can be 
encoded as a two-dimensional numerical matrix of 41 × 4.

Classification model

It is necessary to select the right model in order to correctly anticipate the  m6Am sites. 
As the main network structure in this study, three deep learning models were selected, 
and stacking was then employed to integrate them for site prediction.

DenseNet and attention

DenseNet

Considering the DenseNet [32], a dense connectivity technique, each network layer is 
connected to the next by a feedforward connection that transfers data across layers. 
In order to prevent model overfitting, the gradient disappearance problem is effec-
tively addressed, feature propagation is enhanced, feature reuse is promoted, and the 
number of parameters is drastically reduced. It has been demonstrated that DenseNet 
outperforms conventional CNNs because it focuses on both low-level and high-level 
feature information based on a dense hopping connection mechanism to satisfy the 
goal of mutual and complementary information transfer. Figure 2 shows the connecting 
mechanism.

Wang et al. [21] employed DenseNet to predict Lysine Acetylation Sites and achieved 
great performance. Jia et al. [33] successfully implemented the lysine succinylation sites 
prediction in the DenseNet network in while utilizing an attention module to assess the 
significance of various feature information. As a result, we were motivated to use the 

(3)Ni =
{

xi, yi, zi, di
}

(i = 1, 2, 3, . . . l)

Fig. 2 Connection of the dense convolutional layer
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model’s denseblock module to record feature data at various levels. The output of all the 
preceding layers is passed on to the next layer as input by each layer in the DenseNet. 
Therefore, L(L + 1)/2 connections exist across all layers of a DenseNet with X layers. In 
other words, Eq. (4) represents the output of the network’s L-th layer.

where H(∙) stands for the non-linear transformation function and eLU and conv1D are 
included.

SENet

We investigated incorporating attention mechanisms into the model to help the model 
learn crucial feature knowledge in the principle of earlier studies [21, 34]. We inves-
tigated the individual and joint impacts of channel attention, spatial attention, and 
Squeeze-and-Excitation Networks (SENet). For instance, adding channel attention at the 
end of the dense net output and adding SENet attention after each dense block inside 
the DenseNet constitute the combined application of the attention mechanism. The best 
results, according to ablation investigations, came from applying compressed attention 
by itself.

Since the attention layer is directly related to the input matrix, it is important to note 
that we introduced it before DenseNet. This helps the model pay attention to the under-
lying data and supports the identification of critical location information to avoid dis-
traction. The results of the experiment showed how valuable an attention layer like this 
is for improving the accuracy of model predictions.To increase the weight of impor-
tant information and sharpen the attention on it, SENet is added concurrently after 
each denseblock to the feature map information output. The standard implementation 
of SENet looks like this.First, the input feature map is initially subjected to globelAvg-
Pooling, which results in the feature map’s spatial dimension being compressed. Second, 
to reduce dimensionality and suit the correlation between channels, a fully connected 
operation is performed on the compressed feature map.Next, the compressed feature 
map is connected in its entirety. The downscaled feature map is upscaled in the third 
phase such that Sigmoid can be used to obtain the normalized weights between 0 and 
1.Finally, to create the final feature map weighting, the normalized weights are added to 
the features of each channel.

Specially, this study’s SENet is a modified version of the original SENet. In order to 
achieve feature map information weighting while reusing the original feature map to 
prevent information loss, the concept of residual network was specifically used to add 
the original feature map to the matrix created after compression.

DCNN and BiLSTM

Holschneider et al. [35] initially announced dilation convolution, which added intervals 
to conventional convolution [36] while maintaining the resolution of the feature map. In 
contrast to standard convolution, dilation convolution contains an additional parameter 
called the dilation rate, which is primarily used to describe the size of the dilation. It is a 
normal convolution when the dilation rate is 1.

(4)xi = Hi([x0, x1, . . . , xi−1])
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Wang et al. [23] developed the integrated multiscale deep learning predictor EMDLP, 
which combined inflated convolutional neural network (DCNN) with BiLSTM for the 
prediction of RNA methylation. Shortly after, Liu et  al. [37] proposed MSNet-4mC, 
which combined residual network concepts to identify 4mC loci and used DCNN to 
extract feature map data at various scales. We adapted the joint application of DCNN 
and BiLSTM to the loci prediction of  m6Am after being encouraged by the prior studies. 
Starting with sequence data, the learning function f(x) of  m6Am divides into four seg-
ments: one-hot encoding, dilated convolution to extract features, splicing feature map, 
and extracting contextual information using BiLSTM as shown in Eq. (5).

The formula for the dilated convolution in a one-dimensional circumstance is given 
in Eq.  (6). Different dilution rates can be thought of as adding different of blank gaps 
among each convolution kernel.

where xi is the i-th input item, yi is the i-th DCNN array’s output, ω is the filter’s weight, 
N is the filter’s longer, and k is referred to by the dilution rates (DR).

The dilution rate for each of the three blocks of DCNNs in the DCNN stage is 1, 2, and 
3, the information of the feature map is learned from three different sensory fields. And, 
each DCNN block consists of a max-pooling layer with a dropout unit, a dilated convo-
lutional layer with the rectified linear unit (ReLU) as its active function, and a dilated 
convolutional layer.

MSRN and BiGRU 

To find the circRNA-RBP interaction locations, Niu et  al. [23] employed a deep mul-
tiscale residual network and a network made up of BiGRU with a self-attention mech-
anism. Both MSRN and BiGRU can effectively represent high-level features and are 
competent at learning local and global contextual information. Thus, aiming at predict-
ing the  m6Am sites, we attempted to cascade multiple CNNs of various scales and use 
them in conjunction with BiGRU. The residuals are introduced in the CNN cascade to 
ensure that important feature map features are not lost during the convolution phase. So 
as to prevent information loss, the model also includes BiGRU, which handles the long-
term dependencies of the sequences and maintains important aspects utilizing a range 
of gating functions.

First, we extracted features from a one-hot encoded feature map using six cascaded 
multi-scale residual blocks (MSRBs), each of which consists of three convolutional lay-
ers and 64 convolutional kernels.The output of each MSRB is then integrated to produce 
global feature fusion. A further 1D convolution and average pooling procedure is then 
carried out with 192 convolution filters.

Second, to improve the recognition performance of the model and to make up for 
the fact that the multiscale residual network can only extract sequence correlation 

(5)h = f (x) = fBiLSTM
(

fconcat
(

fDCNN

(

fone-hot-encoding (x)
)))

(6)yi = f

(

N
∑

n=1

xi+k∗nωn + b

)
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and not context-linked information, the output of the deep multiscale residual net-
work is fed into BiGRU to obtain contextual information [38].

Stacking ensemble

In general, a prediction task will produce the different prediction outcomes in distinct 
predictors. Ensemble learning can combine numerous classifiers to obtain the predic-
tion results that are superior to those by a single classifier. Among them, stacking is 
a key data science technique that depends on the outcomes of numerous models. By 
the stacking approach, the prediction outcomes of various models are trained once 
again as features, and the resulting prediction consequences frequently beat those of 
a single strong model.

DenseNet, DCNN, and MSRN were the three classifiers we intended to use in this 
study as the basic classifiers in the first layer. In particular, in order to prevent the 
information loss and overfitting, the outputs of the first-layer’s three classifiers were 
mixed with the original dataset as the input for the second-layer’s classifier. Here, the 
second-layer classifier that we used was a straightforward logistic regression model. 
Figure 3 displays the structural framework of the stacking ensemble model.

Performance evaluation

The foundation for evaluating the effectiveness of various models is the employment 
of common and scientific measures. The following four metrics are commonly used 
to predict performance for binary classification problems [39, 40] in general machine 
learning, as represented by the following metric equations:

Fig. 3 The stacking ensemble model scheme
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where respectively, TP, TN, FP, and FN stand for the quantity of incorrect predictions 
in the positive classification, the quantity of incorrect predictions in the negative clas-
sification, the number of accurate predictions in the positive category, and the number 
of correct predictions in the negative category. In addition, the model’s efficiency is often 
evaluated using the area under the receiver operating characteristic curve (AUROC) and 
the area under the precision and recall curves (AUPR).

Result and discussion
Contrasting various feature extraction techniques

Regarding our experiments in the feature extraction section, we use the three feature 
encoding techniques one-hot, NCP, and ND. The majority of studies [15, 18, 20] use 
NCP in conjunction with ND. There are three possible combinations in this manner: 
one-hot alone, NCP and ND combined, and one-hot and NCP, ND combined. As indi-
cated in Tables  2 and 3, we compare the performance of different feature extraction 
approaches by performing fivefold cross-validation on the training set and independent 
tests on the test set, where the best predicted results are shown in bold.

We used one-hot coding as the only coding method for RNA sequence data as the 
model input data, because Tables  2 and 3 show that when one-hot coding alone was 
used as the feature coding method, and the important evaluation indexes like Sn, Sp, 
ACC in cross-validation and independent testing were higher than other individual or 
combined coding methods.

(7)

Sn = TP
TP+FN

Sp = TN
TN+FP

Acc = TP+TN
TP+TN+FP+FN

MCC = TP×TN−FP×FN√
(TP+FN )×(TN+FN )×(TP+FP)×(TN+FP)

Table 2 Ablation studies of the feature encoding ways on train set

The best experimental results are shown in bold

Encoding 
methods

Sn ± SD (%) Sp ± SD (%) ACC ± SD (%) MCC ± SD AUC ± SD AUR ± SD

One hot 86.62 ± 0.11 88.94 ± 0.09 87.78 ± 0.09 0.7590 ± 0.1725 0.8778 ± 0.0878 0.8428 ± 0.1078

NCP and ND 84.64 ± 0.08 84.29 ± 0.07 84.47 ± 0.07 0.6908 ± 0.1294 0.8447 ± 0.0654 0.7948 ± 0.0756

One-hot, 
NCP and ND

84.08 ± 0.07 85.06 ± 0.07 84.57 ± 0.06 0.6928 ± 0.1209 0.8457 ± 0.0609 0.7977 ± 0.0738

Table 3 Ablation studies of the feature encoding ways on test set

The best experimental results are shown in bold

Encoding methods Sn (%) Sp (%) ACC (%) MCC AUC AUR 

One hot 82.25 79.72 80.98 0.6199 0.8211 0.7626

NCP and ND 81.13 78.31 79.72 0.5946 0.8191 0.7621

One-hot, NCP and ND 80.28 79.44 79.86 0.5972 0.8230 0.7716
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Comparison of models with different denseblocks

The parameters of the predictor are optimized in DenseNet by setting different numbers 
of denseblocksand the performance of the model is compared by ACC and MCC values. 
It can be clearly seen in Fig. 4 that the predictor performs best when DenseNet picks 
6denseblocks.

Model architecture ablation experiment

When choosing models, ablation studies were carried out to evaluate which of the three 
models—or which conjunction of the three—performed better. Table 4 and Fig. 5 dis-
play the predictions made by the three deep learning models alone and in conjunction. 
Similar to Table  4, the mark "√" in the row of every deep learning model denotes the 
model’s selection for this study; meanwhile, the absence of mark "√" (i.e. blank)—denotes 
the unselecting of the prediction model.

Fig. 4 Comparison of ACC, MCC values for predictors with different number of denseblocksin DenseNet

Table 4 Ablation studies of the models on train set

The best experimental results are shown in bold

DenseNet √ √ √ √

DCNN √ √ √ √

MSRN √ √ √ √

Sn ± SD (%) 77.10 ± 0.08 83.38 ± 0.09 75.61 ± 0.06 85.35 ± 0.10 85.63 ± 0.07 83.09 ± 0.10 86.62 ± 0.11

Sp ± SD (%) 75.33 ± 0.07 79.14 ± 0.08 75.54 ± 0.06 86.26 ± 0.07 86.69 ± 0.06 82.17 ± 0.07 88.94 ± 0.09

ACC ± SD 
(%)

76.22 ± 0.02 81.26 ± 0.07 75.58 ± 0.02 85.81 ± 0.07 86.16 ± 0.06 82.63 ± 0.06 87.78 ± 0.09

MCC ± SD 
(%)

76.29 ± 0.05 62.74 ± 0.15 75.88 ± 0.04 71.73 ± 0.15 72.47 ± 0.12 65.64 ± 0.12 75.90 ± 0.17

AUC ± SD 
(%)

76.30 ± 0.03 88.89 ± 0.07 75.50 ± 0.03 85.81 ± 0.08 86.16 ± 0.06 82.63 ± 0.06 89.78 ± 0.09

AUR ± SD 
(%)

52.99 ± 0.05 88.88 ± 0.07 51.49 ± 0.05 81.29 ± 0.09 81.62 ± 0.07 77.22 ± 0.07 84.28 ± 0.11
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Table  4 and Fig.  5 clearly show that when employing stacking to combine the three 
deep models DenseNet, DCNN, and MSRN, ACC and MCC for the model were greater 
than those of the other cases on the train and test sets. Therefore, to extract features 
from the original data and forecast the  m6Am sites in this study, we integrated DenseNet, 
DCNN, and MSRN using stacking.

Comparative analysis of other models

We compared the performance of EMDL_m6Am with a number of representative mod-
els, including the conventional machine learning model SVM, XGBoost and  the deep 
learning model CNN and BiLSTM. The results of the fivefold cross-validation of vari-
ous models on the training set were shown in Fig. 6. This demonstrated that the deep 
learning model outperformed machine learning in the extraction of features from huge 
datasets. Additionally, it was clear that EMDL_m6Am exceeds other models in terms of 
accuracy when predicting the  m6Am sites.

Fig. 5 Performance evaluation of seven classifiers with three different model combinations through test sets

Fig. 6 Comparison of performance between different models on training data
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To assess the prediction performance of EMDL_m6Am, we alse compared EMDL_
m6Am with several advanced models for analysis, including: Cross Stage Partial 
DenseNet (CSPNet) [41], VGG-16 [42], ResNet [43], VGG-19 [44], Inception V3. These 
models performed differently on the independent test set, as shown in Table 5. Among 
them, VGG-16 scored the highest in Sn, but the Sp score was too low, lost the balance 
between Sn and Sp, and had too much deviation for high prediction accuracy. In con-
trast, our model EMDL_m6Am achieved a balance between Sn and Sp with a deviation 
of less than 2.25%, and obtained the highest Sp, MCC, Acc, AUC, AUPR, Pre, and F1 
scores among several models, yielding the best prediction results overall. To clearly dem-
onstrate the superiority of EMDL_m6Am, we plotted Fig. 7 to show the performance of 
several models.

Table 5 Performance of several advanced models on independent test sets

The best outcomes are in bold

model Sn Sp MCC ACC AUC AUPR Pre F1

VGG-16 0.9662 0.1634 0.2173 0.5648 0.7643 0.7546 0.5359 0.6894

ResNet 0.6085 0.5859 0.1944 0.5972 0.6549 0.6500 0.5951 0.6017

CSPNet 0.7606 0.7155 0.4765 0.7380 0.8135 0.7094 0.7278 0.7438

VGG-19 0.5465 0.6986 0.2480 0.6225 0.6830 0.6604 0.6445 0.5915

Inception V3 0.5606 0.6423 0.2035 0.6014 0.6510 0.6482 0.6104 0.5844

EMDL_m6Am 0.8225 0.7972 0.6199 0.8098 0.8211 0.7626 0.8061 0.7960

Fig. 7 Comparison of the prediction performance of EMDL_m6Am and five advanced models on an 
independent test setComparison of different classifiers

Table 6 The fivefold cross-validation performance of different predictors

The conclusions were from the previous study, as stated by the asterisk (*) [20]

The best experimental results are shown in bold

Predictor Sn Sp ACC MCC AUC AUPR

MultiRM* 0.7378 0.6751 0.7065 0.4100 0.7827 0.7777

m6AmPred* 0.7378 0.7209 0.7294 0.4588 0.8085 0.8105

DLm6Am* 0.7921 0.7893 0.7907 0.5814 0.8545 0.8532
EMDL_m6Am 0.8662 0.8894 0.8778 0.7590 0.8778 0.8428
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We even farther confirmed the effectiveness of EMDL_m6Am by contrasting it 
with other present predictors for predicting  m6Am sites in RNA sequences, includ-
ing MultiRM, m6AmPred, and DLm6Am. The four models all used the same data-
set to ensure the validity of the experimental comparison. Tables 6 and 7 presented 
the findings of the fivefold cross-validation of the four models on the training and 
test sets. It was evident that EMDL_m6Am had significantly better prediction per-
formance on the training set than the other three models, and that it had 7% more 
Sn, 10% more Sp, 7%–8% more ACC, and 7%–8% more MCC than the most recent 
model, DLm6Am. When used to balanced datasets, AUPR is less accurate and is less 
effective and informative for dichotomizing since it is susceptible to sample distribu-
tion. Table 7 showed that EMDL_m6Am performed better than the other three mod-
els on the independent test set, which also indicated that EMDL_m6Am had good 
generalization ability. A direct viewing comparison of the two predictors was shown 
in Fig. 8. This demonstrated that EMDL_m6Am outperformed the current state-of-
the-art model DLm6Am.

Table 7 Comparison of different predictors on test dataset

The conclusions were from the research, as stated by the asterisk (*) [20]

The best experimental results are shown in bold

Predictor Sn Sp ACC MCC AUC AUPR

MultiRM* 0.7859 0.6366 0.7113 0.4273 0.8058 0.7977

m6AmPred* 0.7211 0.7408 0.7310 0.4621 0.8205 0.8208

DLm6Am* 0.8171 0.7740 0.7955 0.5916 0.8633 0.8634
EMDL_m6Am 0.8225 0.7972 0.8098 0.6199 0.8230 0.7716

Fig. 8 Comparison of EMDL_m6Am and DLm6Am on test Sets
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To test the robustness of the model and to evaluate the performance of the model on 
unbalanced datasets, we used the full transcript dataset and the mature RNA dataset 
from m6AmPred [18] on  m6Am. It is worth noting that we used the original unbal-
anced dataset, in which the full transcript dataset contains 2447 positive samples and 
the mature RNA dataset includes 1673 positive samples, with the ratio of positive to 
negative samples being 1:4. The full transcript dataset and the mature RNA dataset were 
randomly divided into a training set and a test set in the ratio of 8:2. Our model EMDL_
m6Am without any non-equilibrium processing on the dataset, only used the network 
framework structure of the model for feature extraction and weight assignment to get 
the final prediction results. Finally, the comparison of the results of EMDL_m6Am and 
m6AmPred on the two datasets was shown in Table 8.

As shown in Table 8, on the full transcript dataset, the Sn, ACC and MCC values of 
EMDL_m6Am were higher than those of m6AmPred, and only the Sp values were all 
slightly lower than it. The same was true on the mature RNA dataset. Collectively, our 
model EMDL_m6Am outperformed m6AmPred, and also illustrated that EMDL_m6Am 
performed equally well on the unbalanced dataset with good generalization ability.

In order to verify the robustness of EMDL_m6Am, we randomly selected negative 
samples several times to conduct five tenfold cross-validation experiments. The results 
of the experiments were shown in Fig. 9, and the results of the five tenfold cross-valida-
tion experiments were similar without too much difference. This indicated that EMDL_
m6Am had stable experimental results for selecting different sets of negative samples.

Table 8 Performance comparison of m6AmPred and EMDL_m6Am on independent test sets

The best outcomes are in bold

Dataset Methods Sn Sp ACC MCC

Full transcript m6AmPred 0.5460 0.9865 0.9464 0.6352

EMDL_m6Am 0.6401 0.9771 0.9568 0.6577
Mature RNA m6AmPred 0.3791 0.985057 0.9299 0.4895

EMDL_m6Am 0.4567 0.9798 0.9371 0.4940

Fig. 9 Results of five tenfold cross-validation
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Sequence analysis of  m6Am sites and T‑SNE visualization of EMDL_m6Am

In this study, we explored the frequency of occurrence of 40 nucleotide bases 
around the  m6Am site on RNA sequences to find potential consensus motifs for 
the sequences. We used an efficient tool, TWO Sample Logo [45], to discover posi-
tion-specific sign composition differences at the  m6Am site. In this study, adenine 
(A) is at the center of the RNA sequence fragment with 20 nucleotides both before 
and after it. The experimental results were shown in Fig.  10. Nucleotides such as 
C(cytosine) and U(uracil) were highly represented near both  m6Am site and non-
m6Am site, and both appeared in the left position, which was common to both. 
However, the frequencies and positions of nucleotides at other positions of  m6Am 
site and non-m6Am site were different, for example, G (guanine), C (cytosine) and U 
(uracil) were in high proportions near the right side of  m6Am site. The frequencies 
of each nucleotide at the front end of the sequence and the back end of the sequence 
of non-m6Am site were similar to the extent that their expression was not obvious. 
Such analysis indicated that the distances and frequencies between different nucleo-
tides in the sequence played a crucial role in distinguishing  m6Am sites from non-
m6Am sites.

In addition, we used t-distributed stochastic neighbor embedding (t-SNE) to visu-
alize the two data features. One wasthe projection of the features by one-hot coding 

Fig. 10 A two-sample logo of  m6Am sites and Non-m6Am sites with L = 41
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of the original training data (Fig.  11a); The other was the total feature projection 
into two-dimensional space after stitching the important features learned by EMDL_
m6Am (3 dimensions) and the original training data one hot encoded features (41*5 
dimensions) (Fig. 11b). As can be seen from the Fig. 11, when no prediction is made 
using EMDL_m6Am, it is not possible to distinguish between positive and negative 
samples. Conversely, the separation boundary between  m6Am sites (red data points) 
and non-m6Am sites (blue data points) is very clear after extracting significant fea-
tures using the three models, which indicates that the proposed EMDL_m6Am has 
high predictive performance.

Conclusions
M6Am plays a key role in the regulation of RNA and in the identification and treatment 
of obesity genes and some cancers, therefore, it is crucial to develop predictors that can 
help detect  m6Am sites. In this work, we proposed a new predictor, EMDL_m6Am, by 
stacking three deep learning models together to perform  m6Am site detection in RNA 
sequences. It has several advantages over previous studies such as (1) EMDL_m6Am 
does not need to contain a complex feature extraction process like traditional machine 
learning, it feature coding is simple and advanced feature extraction is done by the model 
framework. (2) Traditional CNN cannot extract complex features, in this study, we take 
an ensemble approach by stacking three powerful deep learning models to extract use-
ful features from different dimensions. Also, we compared multiple traditional machine 
learning models, advanced deep learning models, and different predictors to highlight 
the predictive performance of EMDL_m6Am.

In addition, EMDL_m6Am may help to predict other more RNA post-modification 
sites as a way to discover their novel functions. In future studies, it may be possible to 
eliminate some of the modules with overlapping functions in the three models to sim-
plify the models, or to explore some of the RNA post-modification sites with unspecified 
functions.

Fig. 11 a Two-dimensional t-SNE visualization of training data with one-hot encoding. b Two-dimensional 
t-SNE visualization of the learned features from training data by EMDL_m6Am
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Abbreviations
m6Am  N6,2′-O-methyladenosine
CNN  Convolutional neural network
DenseNet  Dense convolutional network
DCNN  Inflated convolutional network
MSRN  Deep multiscale residual network
Sn  Sensitivity
Sp  Specificity
ACC   Accuracy
MCC  Mathew correlation coefficient
ROC  Receiver operating characteristics
AUC   Area under ROC curve
PseEIIP  Pseudo-EIIP
NCP  Nucleotide chemical property
ND  Nucleotide density
BiGRU   Bidirectional gating recurrent unit
SENet  Squeeze-and-excitation networks
LSTM  Long short-term memory
BiLSTM  Bidirectional long short-term memory
ReLU  Rectified linear unit
MSRBs  Multi-scale residual blocks
TP  True positive
TN  True negative
FP  False positive
FN  False negative
AUPR  The precision and recall curves
AUROC  The area under the receiver operating characteristic curve
XGBoost  Extreme gradient boosting
t-SNE  T-distributed stochastic neighbor embedding
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