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Abstract 

Background:  A Raman spectroscopy method can quickly and accurately measure 
the concentration of ofloxacin in solution. This method has the advantages of accuracy 
and rapidity over traditional detection methods. However, the manual analysis meth-
ods for the collected Raman spectral data often ignore the nonlinear characteristics 
of the data and cannot accurately predict the concentration of the target sample.

Methods:  To address this drawback, this paper proposes a novel kernel-Huber loss 
function that combines the Huber loss function with the Gaussian kernel function. This 
function is used with an improved genetic algorithm-convolutional neural network 
(GA-CNN) to model and predict the Raman spectral data of different concentrations 
of ofloxacin in solution. In addition, the paper introduces recurrent neural networks 
(RNN), long short-term memory (LSTM), bidirectional long short-term memory (BiLSTM) 
and gated recurrent units (GRU) models to conduct multiple experiments and use root 
mean square error (RMSE) and residual predictive deviation (RPD) as evaluation metrics.

Results:  The proposed method achieved an R2 of 0.9989 on the test set data 
and improved by 3% over the traditional CNN. Multiple experiments were also con-
ducted using RNN, LSTM, BiLSTM, and GRU models and evaluated their performance 
using RMSE, RPD, and other metrics. The results showed that the proposed method 
consistently outperformed these models.

Conclusions:  This paper demonstrates the effectiveness of the proposed method 
for predicting the concentration of ofloxacin in solution based on Raman spectral data, 
in addition to discussing the advantages and limitations of the proposed method, 
and the study proposes a solution to the problem of deep learning methods for Raman 
spectral concentration prediction.
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Introduction
Ofloxacin is a synthetic quinolone [1] with excellent antibacterial properties. However, 
its excessive use has resulted in increased resistance of bacteria and other microorgan-
isms [2], reducing its efficacy against bacterial infections. The abuse of ofloxacin in farm-
ing has become frequent in recent years. Humans who consume food with excessive 
antimicrobial drugs may develop symptoms such as diarrhea and headache, which pose 
a threat to human health [3]. Several countries have introduced regulations and stand-
ards to control the use and residues of ofloxacin. For example, China banned the use of 
antibacterial drugs such as ofloxacin in farming [4] and restricted the use of key antibac-
terial drugs for zoonotic diseases. Therefore, accurate and rapid detection methods for 
monitoring ofloxacin levels in food are important. Regression analysis model is a com-
mon prediction method [5], and this paper aims to use an improved CNN regression 
analysis model to predict the ofloxacin level and evaluate its performance.

Raman spectroscopy has many applications in fields such as biomedicine and food 
safety because of its easy operation [6], fast detection, and high accuracy [7]. Traditional 
methods for processing Raman spectra, such as partial least squares regression (PLSR) 
and principal component regression (PCR), assume linearity and ignore the nonlin-
ear characteristics of spectral data [8]. These methods are also susceptible to noise and 
background interference, which can lead to poor prediction accuracy. Moreover, fac-
tors such as human errors and instrument errors during Raman spectral data acquisi-
tion can affect the analysis of nonlinear relationships between spectral concentrations 
[9]. Recently, with the rapid development of artificial intelligence technology, machine 
learning (ML) methods have been used to process Raman spectroscopy data due to 
their excellent predictive performance [10]. Liu et  al. [11] predicted the concentra-
tion of benzo(a) pyrene in peanut oil using support vector machine (SVM) algorithm, 
and the results outperformed traditional methods such as PLSR. Lin et  al. [12] devel-
oped a slurry concentration prediction model using an artificial neural network (ANN) 
approach, and the results showed that ANN had better nonlinear predictive ability than 
PLSR. ML methods can solve some nonlinear problems, but they have limitations when 
dealing with more complex nonlinear relationships in real data [13]. Deep learning [14], 
especially the wide application of CNN and graph convolutional networks (GCN) [15, 
16], aims to overcome the limitations of traditional ML methods. In comparison to tradi-
tional ML methods, deep learning has stronger generalization ability and better perfor-
mance in handling nonlinear problems [17]. CNN, a classical algorithm of deep learning, 
is widely used in many fields because of their superior feature extraction [18]. While Wu 
et al. [19] employed CNN to predict honey concentration for authentication, it exhibited 
reduced robustness with limited data. Pian et al. [20] enhanced accuracy and robustness 
by applying the residual connectivity technique to CNN for quantitative blood glucose 
analysis and prediction. Chen et al. [21] proposed a regression analysis method with loss 
function combined with kernel function. The method used Gaussian kernel function to 
compensate for the weak nonlinear characteristics of the mean square error (MSE) loss 
function.

Raman spectra acquisition generates noise and outliers, which the Huber loss func-
tion can address by combining squared and absolute errors [22]. To further improve the 
regression model’s robustness, we propose a new Gaussian kernel Huber loss function 
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that more accurately measures the deep learning error’s nonlinearity and handles noise 
or outliers better [23]. Combining intelligent algorithms with neural network algorithms 
has become a main research direction in recent years to address the difficulty of param-
eter control in neural network building [24]. Therefore, we propose a concentration 
prediction model of CNN with an improved adaptive step size genetic algorithm and 
Gaussian kernel Huber loss function, aiming to achieve fast and accurate prediction of 
the ofloxacin solution concentration.

Algorithm model
Kernel‑Huber loss function

Traditional linear regression methods can predict common regression problems effec-
tively. However, they have limitations when faced with nonlinear problems. For exam-
ple, the instrumental and manual biases in the Raman spectroscopy acquisition process 
may cause noise [25], which makes the nonlinear features of the actual data unfitted and 
affects the final results. CNN can automatically extract and learn features from the data 
and extract more advanced features through layer-by-layer learning, thus enabling non-
linear modeling. This study uses an improved CNN algorithm and proposes a new loss 
function (Kernel-Huber Loss) based on the Huber loss function and Gaussian kernel 
function. The new loss function has better robustness in the regression task and can bal-
ance the fitting and generalization ability of the model, thus improving the model pre-
diction accuracy.

Traditional Huber loss function

The Huber loss function is a regression loss function that reduces the outlier sensitivity 
and avoids their excessive influence on the model [26]. The basic principle of the tradi-
tional Huber loss function as shown in Eq. (1).

where y is the real data, f(x) is the predicted data, and δ is the truncation tolerance that 
measures the difference between y and f(x). The squared error measures the error when 
|y− f (x)| ≤ δ , and the linear error similar to mean absolute error(MAE) measures the 
error otherwise. However, the traditional Huber loss function may not handle outliers or 
noisy data well when the data distribution is complex or noisy.

Kernel‑Huber loss function

The human error of the collected Raman spectral data and the molecular interaction can 
disrupt the linear relationship between Raman peak intensity and concentration, par-
ticularly when concentrations are too high [27]. An effective method for considering the 
nonlinear characteristics of spectral concentration prediction is to map the input data to 
a high-dimensional space and perform vector inner product operations using a kernel 
function to mitigate the curse of dimensionality. Specifically, the original data is mapped 
to the Hilbert Space [28] for calculation, with φ as the feature mapping function, and the 
inner product calculation formula in Eq. (2):

(1)Lδ(y, f (x)) =
1
2 (y− f (x))2 if |y− f (x)| ≤ δ

δ|y− f (x)| − 1
2δ

2 otherwise
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Gaussian kernel function and polynomial kernel function are widely used in ML. 
Gaussian kernel function is more flexible than polynomial kernel function. It can handle 
nonlinear separable data and does not change the relative position between data points 
[29], which makes it excellent in many ML tasks such as classification, regression, etc. 
The Gaussian kernel function is shown in Eq. (3).

The Huber loss function combined with the Gaussian kernel function can be written 
as Eq. (4).

where y(i) represents the data value in the original input space, f (x)(i) stands for the pre-
dicted value for the ith input data point, and f (x)(j) denotes the predicted value after 
mapping to the new feature space.

Residual connected CNN

1D depthwise separable convolution

To solve the problem of gradient vanishing and exploding in deep neural networks, the 
residual network is used to optimize the neural network based on the improved CNN. 
The one-dimensional depthwise separable convolution decomposes the ordinary con-
volution process into two independent convolution processes, which can reduce the 
parameter number and the overfitting phenomenon by decomposition [30]. In short, 1D 
depthwise separable convolution decomposes the ordinary convolution process into two 
steps: depthwise convolution and pointwise convolution. First, depthwise convolution is 
applied to each input channel of Raman spectral input data, and then pointwise convolu-
tion is applied to the results of different channels. This is illustrated in Fig. 1.

(2)K (y, f (x)) = �φ(y),φ(f (x))�

(3)K (y, f (x)) = exp

(

−
(

y− f (x)
)

2

2σ 2

)

(4)L(y, f (x)) =
∑

i,j K (y(i), f (x)(j))Lδ(y(i), f (x)(i))
∑

i,j K (y(i), f (x)(j))

Fig. 1  a Standard 1D convolution schematic and b 1D Depthwise schematic
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The ratio of the computational effort of 1D Depthwise Separable Convolution to 
ordinary convolution is shown in Eq. (5).

where Dk represents the convolution kernel size, DF represents the input data length, 
when the number of convolution kernels is taken as K and the number of input feature 
data channels is M, the number of parameters can be reduced by about 1Dk

.

Design of residual structures

The residual connection in neural networks allows the deeper extraction of Raman 
spectral feature information in the network [31], and the residuals can superimpose 
the nonlinear variation of the input data, which reduces the gradient vanishing in 
deep neural networks. The residual connection’s basic structure is illustrated in Fig. 2.

Adaptive GA‑CNN

The GA-CNN combined model applies a genetic algorithm to optimize an improved 
CNN. Since Raman spectral data exhibit nonlinear characteristics, this model lev-
erages the selection and crossover operations of the genetic algorithm to find the 
global optimal solution for the weights of the CNN [32], thus achieving better non-
linear modeling. The model aims to build a Raman spectral concentration prediction 
model by using an optimized CNN. The genetic algorithm creates initial populations 
based on the initial weight matrix of the CNN to be optimized, and each popula-
tion contains information on all values in the CNN. The GA-CNN model uses the 
error between the actual value and the predicted value as a fitness function. It iterates 
through the processes of population selection, crossover and mutation, and eventu-
ally obtains the optimal weights of the individual with the minimum error as the ini-
tial weights for GA-CNN. Moreover, it introduces an adaptive improvement for the 
crossover and mutation probabilities of the conventional GA to achieve faster conver-
gence [33], as shown in Eq. (6), and the detailed procedure of the GA-CNN model is 
shown in Fig. 3.

(5)
Dk ×M × DF +M × N × DF

Dk ×M × N × DF
= 1

N
+ 1

Dk

Fig. 2  The schematic diagram of residual connection
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The equation shows the values of Pc and Pm , which are the crossover and mutation 
probabilities. The upper and lower limits of Pc are Pcmax and Pcmin , and the upper and 
lower limits of Pm are Pmmax and Pmmin . The equation also includes the individual fit-
ness f, the average fitness favg and the maximum fitness fmax . Finally i represents the 
current iteration number and G represents the maximum number of iterations for the 
genetic algorithm.

Data acquisition and processing
Experimental reagents

Sodium citrate (C6H5Na3O7 , Belgium ACROS company), ofloxacin (content ≥ 99%). The 
hexane, chloroform and ethyl acetate used in the experiment were all analytically pure, 

(6)

Pc =











Pcmin +
(Pcmax−Pcmin)

�

1− i
G

�

1+e
A
2(f−favg)
fmax−favg

if f ≥ favg

Pcmax f ≤ favg

Pm =











Pmmin +
(Pmmax−Pmmin)

�

1− i
G

�

1+e
A
2(f−favg)
fmax−favg

if f ≥ favg

Pmmax f ≤ favg

Fig. 3  The structure of the prediction model for the concentration of of ofloxacin
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carboxymethyl cellulose (CMC, Shanghai Tixi Chemical Trading Co, Ltd.) and diato-
mite. Ultra-pure water was used in all the experiments.

Preparation of SERS‑enhanced substrates

The glassware for preparing silver nanoparticles (AgNPs) was first immersed in aqua 
regia (HNO3/HCl, 1:3, v/v) for 20 min and then rinsed with ultrapure water. AgNPs were 
prepared by the sodium citrate reduction method [34]. 1 mL of 0.1 m/L AgNO3 aque-
ous solution was heated under reflux with stirring. Then, 4.0 mL of 1% sodium citrate 
was quickly added to the refluxing solution and the reflux continued for 30 min before 
cooling to room temperature. The prepared spherical AgNPs had a diameter range of 
50–60 nm.

Experimental method

A gradient solution of ofloxacin (loxacin dissolved in hydrochloric acid) ranging from 
100 to 1 ppm was prepared and spotted on a diatomaceous earth plate 1.5 cm from the 
bottom of the thin layer chromatography plate. The sample was separated by placing the 
plate vertically in the mobile phase at room temperature and then the retention factor 
was calculated by tracking the position of the analyte using a UV lamp (254 nm) with 
iodine colorimetry. Then, 3 µ L of 30-fold concentrated silver nanoparticles were depos-
ited on the analyte spots. Plots were made using Origin 2017. For rapid detection in the 
field, a portable Raman spectrometer (BWS465-iRman; B &W-Tek, USA) with a 785 nm 
excitation laser was used with a laser power of 30 mW and an integration time of 2 s. The 
Raman spectral data were saved as a csv file.

Results and discussion
Experimental setup

To effectively extract the spectral feature peak information and remove the fluorescence 
interference, baseline correction is required for the Raman spectral data. The adaptive 
iteratively reweighted penalized least squares (airPLS) [35] method is chosen for the 

Fig. 4  Comparison chart of preprocessing algorithm results
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baseline correction. Figure  4 shows the spectra of 100  ppm after airPLS baseline cor-
rection, ranging from 239 to 2400 cm−1 . In this range, the distribution of spectral fea-
tures and characteristic peaks is relatively dense, whereas characteristic peaks at other 
wavelength positions are not apparent at low concentrations. The intensity of the char-
acteristic peaks at (519–617 cm−1 ) and (1292–1713 cm−1 ) is significantly higher than the 
rest of the positions, which provides an important theoretical basis for accurate Raman 
spectral concentration classification. Therefore, the characteristic peaks in these ranges 
are selected for analysis and used as characteristic variables.

Evaluation indicators for quantitative analysis models

The MSE, RMSE, mean absolute percentage error (MAPE) of the training and test sets 
can measure the accuracy, performance and robustness of the proposed Raman spectral 
concentration analysis model. The higher the RPD indicator value, the more accurate 
the model is [36], and the higher the median absolute error (MedAE) indicator value, 
the less robust the model is. Eqs. (7), (8), (9), (10), (11), (12) show the specific calculation 
formulas.

where m and n represent the number of samples in the training and test sets, respec-
tively. yi and ŷi represent the actual and predicted concentrations of the ith sample in the 
test set, respectively; yj and ŷj represent the actual and predicted concentrations of the 
jth sample in the training set, respectively.

In this paper, five neural network architectures were compared: CNN, GRU, LSTM, 
RNN and BiLSTM for predicting the concentration of ofloxacin from its Raman spec-
trum. 51 Raman spectral data samples of ofloxacin were collected, of which 40 were used 
for training and 11 for testing. Models were developed for each of these datasets under 

(7)R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ)2

(8)MedAE(y, ŷ) = median(|y1 − ŷ1|, . . . , |yn − ŷn|)

(9)MAPE = 100%

n

n
∑
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∣

∣

∣
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the same preprocessing conditions (least squares for baseline correction), and Table 1 
summarizes the results. As Table  1 shows, the model proposed in this paper outper-
forms other concentration prediction methods in all aspects. It has the highest R2 and 
the lowest MedAE, MAPE and RMSE values for the test sets. In addition, its RPD values 
are significantly higher than those of other algorithms. The comprehensive analysis indi-
cates that the Kernel-Huber-based CNN has high accuracy and robustness. This means 
that the model can effectively fit the training sets data and generalize well to the test sets 
data, avoiding overfitting or underfitting problems.

Performance of Kernel‑Huber‑based CNN compared to other algorithms

To more intuitively represent the performance of the Kernel-Huber-based CNN in con-
centration prediction, Fig. 5 shows the prediction results of various models. At the same 
time, to verify the actual performance effects and differences of the six models, scatter 
plots of the predicted values versus the actual values of each model on the training and 
test datasets are plotted separately for comparison, and linear regression equations are 
fitted as Fig. 6 shows.

Figure 5 shows that under the same amount of data as the training data condition of 
the model, the accuracy of the Kernel-Huber-based CNN proposed in this paper is sig-
nificantly higher than the other five models. The kernel function allows patterns that 
would otherwise be linearly indistinguishable in lower dimensions to be linearly dif-
ferentiable in higher dimensions by mapping the data into a higher dimensional space. 
It helps to solve complex prediction problems. In Fig. 5, the Kernel-Huber-based CNN 
shows a slight deviation in predicting 20ppm concentration, while the other five algo-
rithms deviate at multiple concentrations, as shown in Fig. 5b–f. Figure 6 also shows 
that the Kernel-Huber-based CNN has the best prediction performance. It achieves 
the highest R2 value in all datasets, and the predicted and actual values are closely 
distributed on both sides of the linear regression line. This fully demonstrates that the 
Kernel-Huber-based CNN has a better performance in extracting Raman spectral fea-
tures and is more reliable in dealing with the Raman spectral concentration prediction 
problem.

Adaptive GA algorithm

To verify the effectiveness of the concentration prediction method based on the 
improved adaptive genetic algorithm proposed in this paper and to compare its 

Table 1  Model comparison

Models R
2 MedAE MAPE RMSE RPD RMSEC

OURS 0.9989 0.7650 2.8404 1.0207 29.8872 1.4909

CNN 0.9689 3.4168 27.3789 5.3790 5.6717 5.9278

GRU​ 0.9855 2.8889 16.1136 3.6696 8.3138 5.7840

LSTM 0.9562 4.7007 28.3233 6.3840 4.7788 6.0532

RNN 0.9466 7.1858 30.7423 7.0519 4.3262 4.8422

BiLSTM 0.9753 3.5844 15.3264 4.7926 6.3656 6.2974



Page 10 of 13Ma et al. BMC Bioinformatics          (2023) 24:409 

performance with the traditional genetic algorithm. As shown in Fig.  7, we chose the 
difference between the actual and predicted concentrations of the test set as the fitness 
function. The convergence curves of the two algorithms show that their fitness function 
values are similar because they both use Kernel-Huber-based CNN, but the improved 
adaptive genetic algorithm converges faster. This is because it adapts the crossover and 
mutation probabilities according to the fitness values and iteration numbers, which 
enhances the exploration ability of the model. Too high or too low probabilities will 
reduce the performance of the algorithm.

Fig. 5  Comparison between real value and measured value
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Conclusion
This paper introduces an adaptive genetic algorithm with improved loss function model 
for predicting the concentration of ofloxacin. By employing a Gaussian kernel func-
tion, the model improves the robustness of prediction and extracts the non-linear pat-
terns in Raman spectral data more effectively. The model also improves the crossover 
and mutation probability adjustment strategies, and adds the catastrophe and mutation 
operations, which enhance the convergence speed and global optimization finding abil-
ity. Although this study has potential applications, the computational complexity of the 
algorithm may increase with the increase of data size. Future research could focus on 
further enhancing the model’s parameter adaptive tuning strategy to alleviate parameter 
tuning challenges and enhance the model’s practical applicability. This study provides 
directions and insights for future research in the field of drug concentration prediction.

Fig. 6  Relationship between predicted ofloxacin concentration and actual ofloxacin concentration
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