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Abstract 

Background: High-throughput experiments provide deep insight into the molecu-
lar biology of different species, but more tools need to be developed to handle 
this type of data. At the transcriptomics level, quantitative Polymerase Chain Reac-
tion technology (qPCR) can be affordably adapted to produce high-throughput 
results through a single-cell approach. In addition to comparative expression pro-
files between groups, single-cell approaches allow us to evaluate and propose new 
dependency relationships among markers. However, this alternative has not been 
explored before for large-scale qPCR-based experiments.

Results: Herein, we present deltaXpress (ΔXpress), a web app for analyzing data 
from single-cell qPCR experiments using a combination of HTML and R programming 
languages in a friendly environment. This application uses cycle threshold (Ct) values 
and categorical information for each sample as input, allowing the best pair of house-
keeping genes to be chosen to normalize the expression of target genes. ΔXpress 
emulates a bulk analysis by observing differentially expressed genes, but in addition, it 
allows the discovery of pairwise genes differentially correlated when comparing two 
experimental conditions. Researchers can download normalized data or use subse-
quent modules to map differentially correlated genes, perform conventional compari-
sons between experimental groups, obtain additional information about their genes 
(gene glossary), and generate ready-to-publication images (600 dots per inch).

Conclusions: ΔXpress web app is freely available to non-commercial users at https:// 
alexi smuri llo. shiny apps. io/ dXpre ss/ and can be used for different experiments in all 
technologies involving qPCR with at least one housekeeping region.
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Background
Currently, the scientific community has been migrating towards high-throughput 
technologies that generate large volumes of data [1, 2]. Thus, many efforts have 
focused on analyzing gene expression data from Next Generation Sequencing (NGS) 
or microarray platforms [3, 4]. Nevertheless, these data need to be validated through 
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more specific techniques such as quantitative PCR (qPCR). Through this method, 
researchers can assess differentially expressed genes between two or more groups 
using a conventional approach. In this type of analysis, many tested genes could be 
excluded because of the absence of statistical differences in the comparison of their 
expression between the experimental groups, leaving aside the possible interactions 
that these genes may have with others in different cellular contexts.

After the description of tumor rewiring [5, 6], there is a need to study differen-
tially correlated genes, a term involving pairwise genes that change their correlation 
profiles according to different conditions, for example, biological or experimental 
treatments vs. control samples. Large volumes of data are required to run a robust 
correlation analysis, which is complicated to obtain using conventional bulk experi-
ments. Thereby, new research initiatives have proposed single-cell or large-scale 
experiments to understand the behavior of these genes among themselves. Accord-
ing to this hypothesis, by finding differentially correlated genes, researchers could 
describe additional targets for context-dependent regulatory pathways (Fig. 1).

Recently, researchers have used qPCR strategies for performing single-cell experi-
ments [7–9]. Here arises the need to implement reproducible and easy-to-use tools 
to normalize these data to obtain quick comparisons with additional information to 
answer the research hypotheses and to have the advantage of generating the graphics 
required for publication. Though some web-based applications have been published 
to analyze qPCR data [10–13], we supplement conventional analyses with perspective 
opportunities given by single-cell or large-scale techniques: the analysis of differen-
tially correlated genes.

Fig. 1 The ΔXpress app can be applied for proposing markers in bulk and single-cell qPCR-based 
experiments. The conventional comparative analysis of gene expression levels enables to find deregulated 
genes and propose possible regulatory pathways. In addition, changes in the correlation profile between two 
genes would provide insights regarding a potential context-dependent disruption of regulatory pathways. 
Single-cell or large-scale bulk approaches can be used to represent both scenarios to increase our discovery 
applications
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For the ΔXpress application, besides conventional strategies for comparing expression 
levels between groups, the analysis of co-dependent genes through a differentially cor-
related profile would be very helpful and relevant for understanding different mecha-
nisms of gene regulation. We envisage that this strategy would allow researchers to find 
evidence of gene disruption, as it has been proposed for diseases such as cancer [6, 14], 
which results in direct or indirect effects on pairwise genes to aggregate information on 
genetic profiles for a determined group.

Implementation
The ΔXpress is a web application produced for analyzing qPCR data using cycle thresh-
old (Ct) values as input. It allows the processing of a large volume of data in a few min-
utes, for example, as provided by single-cell experiments. This application was developed 
using the R software v.4.3.0 with the following packages: shiny (v.1.7.4), readxl (v.1.4.2), 
tidyr (v.1.3.0), tidyverse (v.2.0.0), dplyr (v.1.1.2), ggplot2 (v.3.4.2), ggpubr (v.0.6.0), 
scales (v.1.2.1), EnhancedVolcano (v.1.18.0), Hmisc (v.5.1–0), plotly (v.4.10.2), biomaRt 
(v.2.56.1), and shinycssloaders (v.1.0.0). Once this application is stored on the Shinyapps 
server, it does not require any software besides your browser.

This app is based on seven modules: Input, Data Normalization, Expression Analysis, 
Volcano Plots, Correlation Analysis, Scatter Plots, and Glossary (Fig. 2). The Input mod-
ule allows the researcher to upload a .txt, .csv, .xls or .xlsx-format file containing a first 
column with sample names, a second column with a group classification, and the follow-
ing columns with the Ct values for all evaluated genes (including housekeeping genes).

After loading the data, it is possible to use the Data Normalization module to identify 
the more stable housekeeping genes within the set of samples analyzed. The system will 
choose the best pair of genes for data normalization using the stability values for each 
gene provided by the NormFinder algorithm [15]. Then a table with the normalized data 
can be downloaded in comma-separated value (CSV) format. The analytic strategies will 
continue in one of the following four modules, or the researcher will choose to learn 
more about their genes in the Glossary module.

Fig. 2 Representation of the main results produced by the ΔXpress app with custom data. After loading 
the spreadsheet containing your Ct values in the web app, you can normalize your data and perform: (1) 
conventional comparisons such as boxplots to show the expression of a gene per group and volcano plots, 
or (2) innovative comparisons such as dot plots to show differentially correlated genes between pairwise 
groups and scatter plots
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Data normalization

The ΔXpress application uses a customized edition of the NormFinder algorithm 
[15] to normalize expression levels (Ct values). Unlike their original version, we 
edited the NormFinder algorithm for only processing Ct values from samples 
belonging to experimental groups (second column of the input table). The system 
can detect technical replicates using the same identifiers in the first (sample name) 
and second (primary group name) columns. If the system detects two Ct values for a 
technical replicate, a geometric mean Ct value will be used for the next steps. After 
evaluating Ct values, the NormFinder algorithm will show two gene lists (single and 
paired) with their respective stability values. Lower stability values mean more sta-
ble gene(s). With this observation, the system will use the best pair of genes to calcu-
late the mean value per sample and normalize all genes using the Livak method [16]. 
It is essential to mention that the Livak equation assumes the PCR reaction primer 
efficiencies are similar (usually between 90 and 110%) between the genes of interest 
and the housekeeping genes. This efficiency is usually already checked in the design 
of primers in large-scale (or single-cell) qPCR or must be checked manually before 
entering the data in the ΔXpress application. Otherwise, the Pfaffl equation [17] 
accounts for any efficiency differences and must be used by including quantification 
cycle values for a calibrator sample run along with samples in the analysis. In this 
version, the ΔXpress app does not support the Pfaffl equation.

As an additional and customizable feature, which is restricted to researchers 
inputting a .xlsx (or .xls) file, the system can accept a user-selected list of housekeep-
ing genes to perform this normalization. This alternative must be applied if your 
analysis only includes one housekeeping region. After data normalization, all sub-
sequent modules automatically receive the table containing the sample names, their 
main classification, and normalized expression (−ΔCt) of all genes.

Expression analysis

In this module, the ΔXpress app will emulate a bulk analysis for comparing gene 
expression levels between experimental groups. After running the expression anal-
ysis, the system will filter the selected gene and check the data for normal distri-
bution for each group using the Kolmogorov–Smirnov test. The p values for each 
group will be displayed on the “Normality” tab. According to the data distribution, 
the system will automatically choose the proper (parametric or non-parametric) test 
to compare means between groups. The system uses the Mann–Whitney test (non-
parametric) or Student t-test (parametric) to estimate p values between two groups. 
Additionally, the system will display the name of pairwise groups being compared, 
the number of samples for each group, the median expression level, and the fold 
change between groups in the “Results” tab. Since this analysis is limited to pair-
wise comparisons, the reference group can be customized. Finally, this module uses 
two boxplot schemes to graphically show differences in the expression levels in the 
selected genes between all groups. The first boxplot shows the current -ΔCt values, 
whereas the second plot calculates this data in relation to a specific group using the 
relative expression analysis  2(−ΔΔCt) [16]. In this last plot, the user-selected reference 
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group will have its median value of  2(−ΔΔCt) equal to 1. In both plots, the statistical 
significance will be represented by asterisk format: p ≥ 0.05 (ns), p < 0.05 (*), p ≤ 0.01 
(**), p ≤ 0.001 (***), and p ≤ 0.0001 (****).

Volcano plots

For this module, the system has been configured to filter normalized data for all 
genes in two user-selected groups. After, all genes will be compared using paramet-
ric or non-parametric tests (depending on the user’s preferences). With these results, 
a table will be built containing information about the number of samples for each 
group, the median level, fold change, and p value for each gene. Then, p values will 
be adjusted using the Benjamini–Hochberg method [18]. This table will be displayed 
on the “Table” tab, while a volcano diagram will be shown on the “Graphs” tab. For 
the volcano plot, it is possible to choose for adjusted or unadjusted p values as well as 
fold change and p value thresholds. The volcano plot displays labels for featured genes 
based on fold change and p value parameters.

Correlation analysis

In the Correlation Analysis module, the normalized data will be divided according to 
pairwise groups. For each pairwise group comparison, the system will create a matrix. 
Then the system will use its algorithm to estimate the correlation coefficients and p 
values between gene pairs based on Spearman or Pearson correlation (according to 
the data distribution). Given the user-defined p value threshold, all p values above 
that threshold will be converted to zero once a non-significant p value shows no cor-
relation regardless of its correlation coefficient (R-value). Then these values will be 
operated using the next equation:

Therefore, for each pair of genes, the system will produce n∗(n−1)
2  values in which 

“n” is the number of groups. The result of the cited equation represents the dR-val 
and ranges from 0 to 2. If the dR-val is equal to 0, there is no alteration in the cor-
relation profile, but if this value is equal to 2, it means a complete alteration in the 
correlation profile. A completely altered correlation profile represents the transition 
of pairwise genes from strong positive to strong negative correlation (or vice versa) 
between two experimental groups. All values will be plotted in a dynamic dot plot 
showing all combinations involving a user-defined group. Then, it is possible to pass 
the mouse cursor over one of those points to know the value of the equation and the 
pair of genes involved.

Scatter plots

The Scatter Plots module will filter normalized data by selecting only two groups and 
two genes defined by the user. The filtered data will be displayed in an XY plot (with 
each gene represented in an axis). This graph will be divided into two fields (one for 
each selected group). Each plot field includes a trend line with r and p values from 
correlation analysis.

dR-val=|R valueGroup 1 − R valueGroup 2|
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Glossary

This module will collect gene identifiers (Gene Name, Ensembl Gene ID, Ensembl 
Transcript ID, or NCBI Entrez ID) from the input table. Then, authors must indicate 
the proper format of gene identifiers and the corresponding species. After obtaining 
the latest available information, the system will search for complementary informa-
tion such as the genome version of the database, Entrez ID, Gene Name, and Gene 
Description using the Ensembl database [19]. In addition, the system will retrieve 
external links to GeneCards [20], GenBank [21], and Ensembl sources. Currently, the 
ΔXpress app supports information for human, rat, mouse, and D. melanogaster spe-
cies. However, additional species can be added at the request of research groups, even 
for less studied species with an appropriate NCBI/Ensembl annotation.

Results and user‑guide
Example file

To test the ΔXpress application, we run a single-cell experiment to produce a data set of 
expression levels of 68 genes in 328 samples distributed in four main groups: Group1, 
Group2, Group3, and Group4. The list of 68 genes includes five housekeeping genes 
identified as A (ACTB), B (B2M), C (GAPDH), D (GUSB), and E (HPRT1). You can 
download a zipped folder from the Additional file 1 and choose one of the files for run-
ning the app. Please note that this spreadsheet includes some missing values as blank 
cells.

Inputting files

The ΔXpress application accepts a  .txt,  .csv,  .xls, or  .xlsx-format file (Fig.  3A) that 
includes two mandatory columns (sample and group names) with their corresponding 
Ct values for all analyzed genes. To record Ct values, the ΔXpress application accepts 
two commonly used formats (Fig.  3B): a large table with only four columns (sample 
name, group name, gene name, and Ct values) and a table with an indeterminate num-
ber of columns (sample name, group name, and a column per gene). After selecting the 
proper format for your data, you need to upload the file and click "Start" to read it. If the 
data from the file matches the format selected in the app, the system will retrieve the fol-
lowing message “File correctly loaded. Please, click on Start!”. Otherwise, the system will 
display “Please, verify the format of the input file.”. Next, the system will retrieve a sum-
mary table that displays information about your data (Fig. 3C).

You must check if all the data was recorded correctly. If the data is correct, you can go 
to the next section. Otherwise, you can change the name of some gene/group or revise 
the input file. In our example file, the housekeeping genes were identified as A, B, C, 
D, and E. We can then use the option to rename genes by replacing A for ACTB, for 
instance. Our dataset has 328 samples, so we expect 329 rows in the file with one col-
umn per gene (including the row with column names). However, the input file can have 
more rows if technical replicas are included. If you include technical replicas, be sure 
that all rows of the same sample have the same name in the first column. For example, 
"A_C94", instead of "A_C94_1", "A_C94_2", etc.
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Optionally, for researchers inputting Excel files, it is possible to include a second sheet 
with secondary characteristics of your data (Fig. 3D). To match these data with the pri-
mary data (first sheet of the input file), you must keep one identifier per sample in the 
first column. Starting in the second column, you can add information as one column per 
category.

Data normalization

After loading the data, you can identify the putative housekeeping genes you used in 
your analysis to evaluate their stability using the NormFinder algorithm. You can also 
run the stability analysis with all genes. However, to avoid misinterpretation, it is rec-
ommended that a specific list of endogenous genes be informed. In our example, we 
included the Ct values of five endogenous genes: A (ACTB), B (B2M), C (GAPDH), D 
(GUSB), and E (HPRT1). So, we specify this gene list in the application (Figs. 4A, B) and 
request their evaluation. The system will retrieve the stability values of these genes and 
their combinations. We can then request to normalize our data with default parameters 
(Fig. 4C) to use the best combination of two genes. As a result, the system will display 
a message informing which genes will be used to normalize the gene expression data 
(genes B and E). At this point, all normalized data will be submitted for all subsequent 
modules. A table with the normalized -ΔCt values will be available for download on this 
tab (Fig. 4D).

Fig. 3 Data Input module. (A) Visualization of the first module of the ΔXpress application before loading the 
input file. To input files, we need to define the format (1), select the file from our directory (2), and click on 
Start! (3). The ΔXpress app accepts four data formats (B). You can use these examples to define the format of 
your data. After uploading the input file, the ΔXpress app will display a summary of the data (C). If you agree 
with this information, you must click “Go to the next section” (4). Optionally, for researchers inputting Excel 
files, you can include a second sheet with additional information for each sample (D). You can use this space 
to add sample data to compare with gene expression in subsequent modules. Once you include information 
for all samples (identified in the first column), the system will automatically recognize it
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Expression analysis

After data normalization, all input fields of the Expression Analysis module will be 
filled with your data (gene names and group names; Fig. 5A). Then, you are requested 
to choose the groups that will be plotted, the reference group for statistical comparisons 
and calculation of  2(−ΔΔCt) values, and the gene of interest. Next, you click on the "Run 
Analysis" button to run comparisons and display results. The system will automatically 
run the proper statistical analysis depending on your data distribution. After running 
the analysis, you can check the Normality Analysis tab for evaluation of the p values of 
the data distribution about gene expression levels in each group (Fig. 5B). Then boxplot 

Fig. 4 Data Normalization module. After entering the data, it is recommended to indicate the list of 
housekeeping genes that you used (A). You must indicate that you have a list of genes (1), and new 
question bars will be opened (B). Here you should describe all candidate housekeeping genes separated 
by spaces (2) and request their evaluation (3). After observing the stability values (C), you can request a 
default normalization of your data using the best combination of housekeeping genes (4). Since you have 
normalized your data (D), you can download a table with the normalized −ΔCt values (5) or move on to the 
next modules
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graphs showing all participating samples will be displayed in the “−ΔCt Plot” (Fig. 5C) 
and “2−ΔΔCt Plot” (Fig. 5D) tabs. These figures include statistical comparisons with the 
reference group using the asterisk format and can be downloaded in 600 dots per inch 
resolution (ready for publication). In addition, you can obtain a downloadable table 
showing all pairwise group comparisons (Fig. 5E) that includes median expression levels 
by group, fold change, p value, and method used. Moreover, users can review statistical 
variations by running parametric or no-parametric tests.

Optionally, if you load secondary information for your samples using a  .xlsx (or  .xls) 
spreadsheet, you can access these classifications by changing the “variable to be com-
pared” in the input form (Fig. 5A).

In our example, we compared Group 1 against all other groups for AKT1 gene expres-
sion levels. Once three of the four groups showed significant p values (p < 0.01) in the 
normal distribution test (Fig. 5B), the Mann–Whitney test (non-parametric) was applied 
to compare AKT1 expression levels. Group 3 and Group 4 showed higher expression 
levels of the AKT1 gene than Group 1 (p < 0.001 and p < 0.05, respectively; Fig. 5C–E).

Volcano plots

For this module, we must select two groups for comparison of all gene expression 
levels. In the input panel, we can define parameters for the analysis and visualiza-
tion of the volcano plots (Fig. 6A). For the analysis, the system requires two different 

Fig. 5 Expression Analysis module. This module automatically receives the normalized data and update the 
option questions with your data (A). To run the expression analysis, you should confirm the variable that will 
be compared (1) and define the groups that will be analyzed (including the reference group) and the gene 
of interest (2). You can choose to run a parametric or non-parametric test (3). However, it is suggested that 
the system make this choice based on your data distribution. After defining all the input information, you 
can run the analysis (4). This module will show a normality analysis of the gene expression for each group 
(B), boxplots showing −ΔCt (C) and  2(−ΔΔCt) (D) data by primary groups, and a table summarizing all results 
generated for the selected gene (E). Red arrows show the respective buttons for downloading boxplots and 
the results table
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groups and the type of test to be performed (Mann–Whitney or Student t-test). In 
our example, we analyzed our gene expression levels (−ΔCt) using the Mann–Whit-
ney test between Group 1 and Group 2. For the volcano plot display, we can set the 
type of p value (adjusted or unadjusted) to plot and thresholds for fold change and p 
values. After running this module, the system displays the volcano plot, showing all 
differentially expressed genes between the selected groups (Fig.  6B). When the fold 
change (FC) between both groups and the p value exceeds the respective thresholds, 
a gene will be considered as differentially expressed. In our example, FC > 2 and p 
value < 1 ×  10–4. In addition, the system also shows a table with all results for each 
gene: the performed test, gene name, number of samples in both groups, median 
expression levels in both groups, fold change,  log2 of the fold change, p value, and 

Fig. 6 Volcano Plots module. (A) Input parameters required for the analysis. For this module, it is necessary 
to choose two different groups (1 and 2), define the type of analysis (3), set the type of p value to plot (4), and 
set the Fold Change (FC) (5) and p value (6) thresholds. Once all input information is defined, you can start 
the analysis (7). After estimating all fold changes and p values, the system will show the volcano plot (B) and 
the summary table (C). The volcano plot shows one point per analyzed gene, whose position depends on 
the  log2 of its fold change and the -log10 p value. Considering the parameters set in panel A, the volcano plot 
shows labels only for all differentially expressed genes. A color legend is included to classify genes according 
to the fold change and p value levels. Red arrows show the respective buttons for downloading boxplots and 
the results table
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adjusted p value (Fig. 6C). This module also allows downloading the plot and table in 
a publishable format. In our example, the comparison between Group 1 and Group 2 
reports 12 differentially expressed genes. TP53, CDH2, FOS, and SESN2 genes were 
upregulated in Group 1, whereas SOD2, SRC, HIF1A, CMBL, PCNA, SERPINE2, 
ALDH3A1, and SNAI1 genes were upregulated in Group 2. In this module, you can 
also create volcano diagrams for secondary sample classifications once this informa-
tion is successfully uploaded to the second sheet of the input file.

Correlation analysis

This module evaluates differences in the correlation profiles of two genes between two 
groups. For that, we need to select a reference group and the alpha value (Fig. 7A). The 
analysis will show only the combinations in which the reference group participates. In 
our example, the dataset has four groups (Group 1, Group 2, Group 3, and Group 4). We 
then select Group 1 as the reference. So the system will show the variations in the corre-
lation values of all gene pairs for the following pairwise comparisons: Group 1 vs. Group 
2, Group 1 vs. Group 3, and Group 1 vs. Group 4. Then, the alpha value will be used to 
determine which correlations are considered statistically significant. All r-values with a p 
value higher than the alpha value will be converted to zero. After running the analysis, a 
dynamic dot plot will be displayed (Fig. 7B). Since the example dataset has four groups, 
three comparisons involving Group 1 (reference) will be shown. For each comparison, 
the number of plotted dots was determined by the number of pairwise gene combina-
tions. Therefore, each point represents the variation in the correlation value for a pair 
of genes between the two groups in the analysis, the differential r-value (dR-val). Then, 
it is enough to slide the mouse over each point to observe the participating genes and 
the variation in the correlation values. In Fig. 7B, the pair involving KDM5B and PCNA 

Fig. 7 Correlation analysis module. This module will show the most differentially correlated gene pairs. To run 
it, we need to define the reference group (1) and the alpha value (2) in the setting panel (A). After defining all 
the input information, you can run the analysis (3). The system shows pairwise group comparisons, including 
the reference group, and will estimate the variation in correlation values for each pair of genes. Then, all 
values will be displayed in a dynamic plot (B). You can slice the mouse to get information for each pair of 
genes in each pairwise group comparison. Although this is not a plane figure, you can download a snapshot 
by clicking on the camera featured by the red arrow
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genes shows a high variation rate equal to 0.91 between Group 1 and Group 3. There-
fore, it may possibly represent the signature of some regulatory disruption between the 
two genes, which proposes itself as a new putative interaction/biomarker. Again, we can 
run this test for primary or secondary sample information based on its availability.

Scatter plots

After we evaluate the differentially correlated pair of genes, we can validate these obser-
vations using the last analytical module. In this module, we need to inform the two 
groups and two genes to be shown. Following our example, we found that KDM5B and 
PCNA were differentially correlated between Group 1 and Group 3 (Fig.  7B). We will 
use these data to construct the scatter plot (Fig.  8A). After clicking in “Run Analysis” 
button, we see a two-panel figure (one panel per group) showing an XY plot with the 
representation of one gene per axis (Fig. 8B). Each panel includes a trend line and cor-
relation features (r and p values). After screening data in the previous module, Fig. 8B 
shows the change in the correlation profile between PCNA and KDM5B genes in Group 
1 and Group 3. It changes from a moderately positive correlation (r = 0.43) in Group 1 
to a moderately negative correlation (r = − 0.48) in Group 3. In this module, we can also 
evaluate secondary information for the analyzed samples. You only need to choose the 
appropriate variable to analyze in the setting panel (Fig. 8A).

Glossary

This module allows us to get more information about the analyzed genes. Herein, you 
only need to specify the species (human, rat, mouse, or D. melanogaster) and the format 
of the gene list: Gene Name (e.g. "AKT1"), Entrez ID (p.e. 207), Ensembl Gene ID (p.e. 
"ENSG00000142208"), or Ensembl Transcript ID (p.e. "ENST00000649815"). After run-
ning this module (Fig. 9A), you can observe data from your gene list as an external gene 
name, Entrez ID, Ensembl ID, and external links to Ensembl, Genbank, and GeneCards 
databases (Fig. 9B). The app will also display the genome version of the Ensembl data-
base that was loaded into the system.

Fig. 8 Scatter Plots module. This module allows us to confirm the findings of the correlation analysis module. 
Here, you must define in the input panel (A) two groups (1 and 2) and two genes (3 and 4) to be compared. 
Once you set all input information, you can run the analysis (5). The result will show two XY plots with one 
gene per axis (B). Each plot corresponds to a group and includes correlation features that reflect the variation 
observed in the previous module. The red arrow signs the button for downloading the figure in 600 dpi 
resolution
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Discussion
Since there are different tools to analyze single-cell data generated by NGS [3, 22] but 
not many for qPCR [10–13], the ΔXpress application arises to analyze qPCR data on 
a large scale in a freely available, responsive, easy-to-use, reliable, and reproducible 
way. According to our records, some instruments have been developed to allow high-
throughput data analysis by running single-cell or large-scale experiments by qPCR 
[7–9]. Although they have dedicated software for data preprocessing, that applica-
tion software does not normalize or compare expression levels with categorical sam-
ple information, making our application unprecedented for this function in scalable 
qPCR-based experiments.

In addition, some academic web servers have been proposed to run qPCR data analy-
ses, specifically for bulk essays. Table 1 summarizes web-based applications still available 
on line that allow users to analyze their qPCR data without requiring any software or 
expertise in additional programming languages. Herein, the ΔXpress app shares some 
functions with other web-based apps. For example, the Ct normalization by the Livak 
method and a user-friendly appearance provided by R and Shiny software. Neverthe-
less, the ΔXpress app also concentrated relevant functions to accept four different input 
formats, run a stability evaluation of housekeeping candidate regions before normaliza-
tion, allow comparing more variables per run (using the same input file), automatically 
choose the proper test (parametric or no-parametric) for comparing your data according 
on their distribution, and allow downloading selected results for each run, which saves 
local memory and computational resources. All these functions are applicable for bulk, 
large-scale, or single-cell analyses. Moreover, only the ΔXpress app integrates four mod-
ules for advanced data visualization: Volcano Plots, Correlation Analysis, Scatter Plots, 
and Glossary. In particular, the Correlation Analysis and Scatter Plots modules allow us 
to envisage a single-cell approach to find differentially correlated genes.

Finally, the exclusive Glossary module gives additional information for analyzed 
regions in an automatized way, representing a high differential compared with previ-
ously launched software.

Among additional functions observed in other software and absent in ΔXpress, the 
current version of our app cannot filter replicated samples by their variability or set 
a range of acceptable Ct values before running analyses. This is because single-cell 
experiments accept each cell-related expression value as one replicate, and the qual-
ity evaluation is performed after the lecture in the equipment, excluding dead cells, 
duplets, or triplets, as well as expression values with low reference quality.

Fig. 9 Glossary module. In this module, you only need to inform in the setting panel (A) the specie (1) and 
the format of your gene list (2) to search for it in the database (3). For all genes found in the database, you can 
see additional information and links to external sources (B)
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Interestingly, the PIPE-T software allows users to impute missing data in analyzed 
datasets (Table 1). For the ΔXpress app, we excluded data imputation as we cannot con-
trol auxiliary variables required to reduce biased information in entered results [23, 24].

Naturally, as our application is provided using different R-packages and previously 
published algorithms such as NormFinder, we envisage their limitations as a source of 
improvement. Many of these limitations are related to the different input/output for-
mats between these algorithms. To mitigate it, we developed additional code to make a 
built-in system that connects all these formats in a user-friendly environment.

As the ΔXpress application aims to map potential codependent regions through dif-
ferentially correlated pairwise genes, this version of the app does not include unsuper-
vised analyses such as heatmaps, principal component analysis (PCA), or t-Distributed 
Stochastic Neighbor Embedding (t-SNE). We restricted unsupervised functions for a 
second application, which will be open for a broad range of counts produced in omics-
related experiments (genes, proteins, or metabolites). Ideally, we plan to connect both 
applications in an integrated analytical suite.

Also, this application was intentionally developed with restriction for statistical com-
parison between two groups because of two reasons. First, the strategy to find poten-
tial co-dependent genes or molecular switches of pathways is more reasonable in the 
analysis of pairwise groups as it has been previously shown in the ACHILLES project 
[25], a comprehensive atlas for co-dependent genes using RNAseq data. And second, the 
inclusion of tests for comparing means in multiple groups could add setting parameters 
reducing the practicality of our application. On the other hand, large-scale normalized 
data is double affected by variations of Ct values from the target gene and the house-
keeping regions. Due to this reason, normalized expression data of qPCR experiments 
may not follow a normal distribution, which reinforces the use of median (instead of 
mean) and interquartile range (IQR, instead of standard deviation) for better represent-
ing their amplitude. Our app implements the use of medians and IQR as referential val-
ues per gene and group. In addition, the system evaluates the data distribution for each 
requested comparison and runs the proper statistical test (parametric or no-parametric).

Since qPCR can be used as an orthogonal or exploratory large-scale technique, we 
envision that the process for normalizing data and visualizing results should be user-
friendly, reliable, and reproducible. However, we include relevant options to make each 
module customizable. It regards the most important feature to be controlled in each 
analysis (p value threshold, type of analysis, or control group). Then, in agreement with 
transparency-in-science principles, the results of our application (for example, volcano 
graphs) will include the parameters defined by the user. Additionally, all images pro-
duced by our system are downloadable in a ready-to-publication resolution (600 dots 
per inch).

The most impactful feature of our app is related to the portability of data and their 
analyses. By simply uploading a file in the appropriate format, researchers can elabo-
rate tables and images without cluttering up their local storage. In our example, we 
loaded a table with data for 68 genes and 328 samples from four experimental groups. 
After normalizing the expression data of our target genes, we can download a table 
with –ΔCt values. We have chosen two housekeeping genes (out of five candidates) 
based on their stability across samples. Then, we can use the “Expression Analysis” 
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module to produce over 500 analyses with their respective images. It includes observa-
tions for all 63 target genes, selecting one of the four groups as a reference and show-
ing – ΔCt or  2(−ΔΔCt) values. For the “Volcano Plots” module, we can use the same 
dataset for performing six analyses for all pairwise group combinations and display 
12 volcano plots with nominal or adjusted p values. In the same way, the “Correla-
tion Analysis” module produces at least four dynamic images for this data set. Subse-
quently, these images can help to filter the results of the “Scatter Plots” module. This 
filtering is necessary since the last section allows us to show pairwise combinations 
for groups (four in our example) and target genes (63 in our example), which results in 
almost 12 thousand images. Therefore, using our application, researchers can visualize 
their results only downloading what they need, work on different computers while pre-
serving the code (and the results produced with their data), and reduce time consump-
tion and local storage as this app does not require additional software to be installed.

Currently, the Glossary is limited to a few species (Homo sapiens, Drosophila mela-
nogaster, Mus musculus, and Rattus norvegicus), but we can add other species upon 
request. All the other modules can be used for all biological data potentially available for 
qPCR experiments. For instance, our research has currently used this application look-
ing for differentially expressed genes between groups and also for mapping differentially 
correlated genes in a cancer environment. As a summary of functions and main charac-
teristics of the ΔXpress application, we elaborated a visual abstract in Fig. 10.

Conclusions
We developed the ΔXpress application to analyze single-cell or large-scale qPCR data from 
normalization to conventional gene expression analysis and differentially correlated gene 
mapping to add information about potential disruptions in context-dependent experiments, 

Fig. 10 Visual abstract of the ΔXpress application
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producing also ready-to-publication images. The application is available on the Shinyapps 
web server (https:// alexi smuri llo. shiny apps. io/ dXpre ss/) for non-commercial purposes.

Availability and requirements
Project name: deltaXpress (ΔXpress) app
Project home page: https:// alexi smuri llo. shiny apps. io/ dXpre ss/
Operating system(s): Platform independent
Programming language: R and HTML
Other requirements: Updated browser chosen by the user
License: GNU GPL-v3
45Any restrictions to use by non-academics: None

Abbreviations
FC  Fold change
IQR  Interquartile range
qPCR  Quantitative polymerase chain reaction
Ct  Cycle threshold
NGS  Next generation sequencing
dR-val  Differential R-value
PCA  Principal component analysis
t-SNE  T-distributed stochastic neighbor embedding

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 023- 05541-4.

Additional file 1. Example files for the ΔXpress app. Zipped folder containing example data in three file formats 
(.csv, .txt, and .xlsx).
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