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Background
Computational methods that predict protein folding and binding stability are crucial in 
diverse areas of study ranging from molecular evolution to biomedicine. The changes 
in stability due to missense mutation can alter protein function, with implications for 
disease mechanisms and evolutionary trajectory. The ability to efficiently screen protein 
variants is also essential in protein engineering and drug discovery. Protein stability is 
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Background: Computational methods of predicting protein stability changes 
upon missense mutations are invaluable tools in high-throughput studies involv-
ing a large number of protein variants. However, they are limited by a wide variation 
in accuracy and difficulty of assessing prediction uncertainty. Using a popular compu-
tational tool, FoldX, we develop a statistical framework that quantifies the uncertainty 
of predicted changes in protein stability.

Results: We show that multiple linear regression models can be used to quantify 
the uncertainty associated with FoldX prediction for individual mutations. Compar-
ing the performance among models with varying degrees of complexity, we find 
that the model precision improves significantly when we utilize molecular dynam-
ics simulation as part of the FoldX workflow. Based on the model that incorporates 
information from molecular dynamics, biochemical properties, as well as FoldX energy 
terms, we can generally expect upper bounds on the uncertainty of folding stabil-
ity predictions of ± 2.9 kcal/mol and ± 3.5 kcal/mol for binding stability predictions. 
The uncertainty for individual mutations varies; our model estimates it using FoldX 
energy terms, biochemical properties of the mutated residue, as well as the variability 
among snapshots from molecular dynamics simulation.

Conclusions: Using a linear regression framework, we construct models to predict 
the uncertainty associated with FoldX prediction of stability changes upon mutation. 
This technique is straightforward and can be extended to other computational meth-
ods as well.

Keywords: Protein stability, Protein mutations, Stability prediction, Error prediction, 
Statistical model

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Sapozhnikov et al. BMC Bioinformatics          (2023) 24:426  
https://doi.org/10.1186/s12859‑023‑05537‑0

BMC Bioinformatics

*Correspondence:   
crmiller@uidaho.edu

1 Program in Bioinformatics 
and Computational Biology, 
University of Idaho, Moscow, ID 
83844, USA
2 Department of Biological 
Sciences, University of Idaho, 
Moscow, ID 83844, USA
3 Department of Physics, 
University of Idaho, Moscow, ID 
83844, USA
4 Department of Chemical 
and Biological Engineering, 
University of Idaho, Moscow, ID 
83844, USA
5 Institute for Modeling 
Collaboration and Innovation, 
University of Idaho, Moscow, ID 
83844, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05537-0&domain=pdf


Page 2 of 18Sapozhnikov et al. BMC Bioinformatics          (2023) 24:426 

quantified by a thermodynamic measure, Gibbs free energy ( �G ), and the difference 
between �G of a wild-type and �G of a mutant ( ��G ), indicates how strongly a muta-
tion stabilizes or destabilizes folding or binding (Fig. 1).

While experimental measurement of �G is laborious and costly, numerous computa-
tional methods that predict protein stability are available and enable quick screening of a 
large number of protein variants. There are several methods of constructing force fields 
to calculate protein stability. Physical effective energy functions, also referred to as phys-
ical-based potentials, explicitly calculate energies based on the mechanics of physical 
forces between atoms. Statistical effective energy functions, or knowledge-based poten-
tials, use statistical analysis of existing structure data [1–3]. A third category, empirical 
effective energy functions, is based on empirical data from experiments on single or mul-
tiple site mutations, and is the basis of the FoldX program that is the focus of this work 
[2, 4, 5]. Other methods, such as those utilizing machine-learning algorithms rather than 
explicit computation of energy contributions have also proliferated in recent years, add-
ing to the wide array of tools available for in silico experiments in various fields [6–11].

FoldX is a popular tool due to the ease of use and computational speed. It cal-
culates �G as a linear combination of contributing energy terms (see Table  2 for the 
list of energy terms) which is fitted to experimental data [2, 5]. After computing �G 
between unfolded and folded (or unbound and bound) states, ��G is then calcu-
lated as the difference between �G of the wild-type and �G of the mutant protein, i.e., 
��G = �GMutant −�GWT . In this definition, a negative ��G indicates stabilizing 
mutation while a positive ��G indicates destabilizing mutation.

FoldX has been an integral tool in our group’s body of work that combines molecular 
modeling and mutagenesis experiments [12–14]. However, a measure of uncertainty sig-
nificantly improves the usefulness of the computational prediction. With the exception 
of MAESTRO, multi-agent machine-learning-based algorithm that returns a consen-
sus predicted value along with confidence estimation [10], the only way to estimate the 
accuracy of most programs is through the published performance metrics available in 

Fig. 1 Visualization of protein folding energetics. ��G is the difference between �GWT  and �GMutant , and 
informs the stability effect of a missense mutation. A mutation is destabilizing if it results in higher energy 
when folded than the wild-type, and stabilizing if the mutant achieves lower energy when folded than the 
wild-type. The energy curve colored in red illustrates a case of a destabilizing mutation
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literature. However, benchmarking results from different sources vary widely and are not 
likely to offer practical insight for a particular experiment. For example, the developers 
of FoldX reported the correlation between predicted ��G and experimentally-deter-
mined ��G to be 0.81 [5], but other studies have reported different levels of correla-
tions, from as low as 0.19 to as high as 0.73 [15, 16]. In addition to this wide variation, 
interpreting these values is complicated by the fact that correlation depends not only 
on the error in FoldX but also on the range and distribution of ��G values among the 
mutations studied.

We also note that the error of an experimental measurement of ��G is another source 
of uncertainty. It is generally assumed that the experimental error is small, given identi-
cal experimental conditions, but can range from 0.1 to 0.5 kcal/mol [17]. While the issue 
of experimental error is not the focus of this study, it should be clear that this is a source 
of potential uncertainty. Here, we make the assumption that the experimental ��G val-
ues in databases represent the “truth.”

Our goal in this study is to develop a framework for quantifying the uncertainty 
associated with ��G prediction by FoldX. To that end, we constructed a set of linear 
regression models using datasets containing 1187 mutations (672 for folding stability 
and 515 for binding stability), generated prediction intervals around the point estimate 
of each individual mutation, and assessed model performance based on interval width 
and coverage. We built models across a spectrum of complexity: obtaining ��G by run-
ning FoldX on a single experimental protein structure vs on snapshot structures from 
a molecular dynamics (MD) simulation, and predictor variables ranging from FoldX 
energy terms to biochemical properties. We find that incorporating MD simulation 
greatly improves model performance, and that the uncertainty of FoldX is typically on 
the order of ± 3 kcal/mol for folding stability, and even larger for binding stability. The 
result further shows that we can infer the magnitude of the error based on major energy 
contribution terms in FoldX and biochemical properties intrinsic to the mutated resi-
due. Our findings provide a more realistic interpretation of FoldX predictions and pro-
vide a framework that can be extended to other similar programs.

Methods
Datasets

Ten protein systems with experimentally-determined ��G of folding were selected 
from the ProTherm database [18] and ten protein complex systems with experimen-
tally-determined ��G of binding from the Skempi database [19], as we have previously 
described [20]. The criteria for system selection included having both stabilizing and 
destabilizing mutations and having more than 20 mutations that were not all to alanine. 
Table 1 lists the selected systems along with their PDB IDs, the number of residues of the 
protein, the number of mutated residues, and number of mutations.

Obtaining predicted ��G

The details of preparing structures, MD simulation, and FoldX analyses are described 
in Miller et  al. [20]. To summarize, structure files downloaded from the PDB web-
site using their PDB IDs (Table 1) were prepared for analysis by editing out unnec-
essary chains, fixing the missing residues, and standardizing the nomenclature. The 
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edited structure files were then used to perform 100  ns-long MD simulations with 
the GROMACS 5.0.3 MD package to sample the configurational variation of proteins 
observed under physiological conditions. 100 snapshots, each 1  ns apart, were cap-
tured from each MD simulation. Each snapshot was then analyzed using FoldX 4.0 
to calculate ��G of folding and binding upon mutations with available experimen-
tally measured ��G values. ��G values per mutation from each of the 100 snap-
shots were then averaged to obtain the final ��G . For comparison, we also built a set 
of analogous but separate datasets with ��G values calculated from using a single 
experimental structure file and analyzing with FoldX. Typically, a FoldX �G calcula-
tion output file contains the �G values associated with each energy term (Table  2). 
We used these output files to generate additional datasets with ��G values of indi-
vidual energy terms resulting from FoldX calculations with MD snapshots and an 
experimental structure alone. Subsequent model selection and validation procedures 
described below were performed separately on these datasets.

Defining variables

Our goal was to predict the uncertainty of the FoldX-calculated ��G ( ��GFoldX ) assum-
ing that the experimentally-determined ��G ( ��Gexp ) represents the truth. We defined 

Table 1 PDB IDs and descriptions of the selected protein systems

The dataset is comprised of 1187 mutations from 10 protein systems and 10 protein complexes for which experimental 
��G values are known
a Sequence length as provided by RCSB Protein Data Bank. In case of protein complexes in binding stability dataset, a 
number is given for each mutagenized chain

Stability type PDB ID Total number of 
 residuesa

Number of mutated 
residues

Number of 
mutations

Folding 1BNI 110 67 163

1BVC 153 37 56

1HFZ 124 12 23

1LZ1 130 53 116

1PIN 163 32 56

1RN1 104 23 48

1RTB 124 22 50

1VQB 87 34 92

1WQ5 268 11 41

2ABD 86 20 27

Total – – 672

Binding 1A4Y 460/123 29 32

1BRS 110/89 17 30

1CBW 58 15 31

1IAR 129 20 36

1JTG 263/165 35 37

1LFD 87 17 19

1PPF 56 10 190

2JEL 85 32 43

2WPT 86/134 22 26

3HFM 214/215/129 21 71

Total – – 515
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this quantity, Error (Fig. 2), as the absolute difference between ��GFoldX and ��Gexp , and 
assigned it as the response variable in the model search.

(1)Error = ��GFoldX −��Gexp

Table 2 Predictor variables for the full model

Potential predictors in model search are all ��G terms (constituent energies and the total energy) output by FoldX and 
biochemical properties. The energy terms have standard deviation values that arise from averaging of MD snapshots and 
are used as predictor variables as well
a Zamyatnin [21]
b Monera et al. [22]
c Kabsch and Sander [23]
d Tien et al. [24]

FoldX energy terms (Refer to the online FoldX documentation for descriptions of these terms)

Backbone van der Waals clash
Cis bond
Disulfide bond
Electrostatic
Electrostatic Kon

Entropy, main chain
Entropy, side chain
Helix dipole
Hydrogen bond, backbone
Hydrogen bond, sidechain
Ionization

Solvation, hydrophobic
Solvation, polar
Torsional clash
Total energy
Van der Waals
Van der Waals clashes

Biochemical properties

 Mutation involving proline: 0 or 1
 Volume change: absolute difference between van der Waals  volumesa of the wild-type and the substituted 
amino acids in Å3

 Hydrophobicity change: absolute difference between the hydrophobicity  indicesb (at pH 7) of the wild-type 
and the substituted amino acids

 Charge change: absolute difference between the side chain changes of the wild-type and the substituted 
amino acids

 Secondary  structurec: DSSP classification (B, E, G, H, I, S, T, or none)
 Relative solvent  accessibilityd: ranges from 0 (for completely buried) to 1 (completely exposed)

Fig. 2 Conceptualization of Error and the error bound. We define Error as the absolute difference between 
��GFoldX and ��Gexp (Eq. 1). We construct a linear regression model that predicts the Error, and the model’s 
95% prediction interval (the upper bound of the interval, specifically, since the prediction is an unsigned 
magnitude) captures ��Gexp (the “ground truth”) approximately 95% of the time
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��G of individual energy terms, e.g., van der Waals energy, solvation energy, entropy 
terms, etc. (Table 2), that contribute to the calculation of total ��GFoldX were consid-
ered as potential predictor variables in the model search. This allows us to learn if an 
increase in any particular energy types correlates with increased error. When fitting 
models on the dataset generated from the MD snapshots where ��GFoldX is an aver-
age from 100 snapshots, the standard deviation (SD) of ��GFoldX was also included in 
the pool of predictors. A large SD indicates that a large amount of conformation varia-
tion is observed across the MD simulation, and may have an effect on the Error. We also 
considered biochemical properties of mutated residues such as secondary structures and 
solvent accessibility as potential predictors (Table 2).

Model selection and evaluation

All model search process, validation, and subsequent analyses were performed using R 
4.1. Two methods were used in the model selection: the stepwise selection method and 
the best subset selection method. In stepwise selection, predictor variables are alter-
natively added and removed one at a time until the best model is reached based on a 
selection criterion (i.e., all further steps produce models with poorer fit). On the other 
hand, best subset selection compares models with every possible combination of predic-
tor variables. step function in stats package and regsubsets function in leaps 
package were used for these methods respectively. Both functions take a dataframe con-
sisting of a response variable and all potential predictor variables as an input, perform 
the described search algorithm, and outputs the best model based on a given criterion. 
Bayesian information criterion (BIC) was our selection criterion of choice and is given 
by: BIC = −2loglike + (log(n)) • d where loglike is the maximum log likelihood of the 
fitted model, n is the number of observations, and d is the number of predictor variables. 
BIC applies a heavy penalty for an increased number of parameters and thereby avoids 
overfitting.

We searched for five different types of models of varying levels of complexity, using 
the two selection methods (Table 3). For Model 1, the response variable, Error, is cal-
culated based on a single experimental structure ��GFoldX , and the potential predic-
tor variables made available to the model search were restricted to the individual energy 
terms from FoldX output (Table 2, “FoldX energy terms”). Model 2 is similar to Model 
1 but the pool of predictor variables also included biochemical properties (Table  2, 

Table 3 Five types of resulting models

We constructed and tested models with various levels of complexity. Models 1 and 2 were based on datasets with ��G 
calculated from a single experimental structure while Models 3–5 were based on MD snapshot averages. We also varied the 
types of predictor variables.

Model Source of input structure to 
calculate ��G

Predictor variables used in model search

Model 1 Single experimental structure FoldX energy terms

Model 2 Single experimental structure FoldX energy terms and biochemical properties

Model 3 MD snapshots FoldX energy terms

Model 4 MD snapshots FoldX energy terms and biochemical properties

Model 5 (full model) MD snapshots FoldX energy terms and their associated SD, 
and biochemical properties
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“Biochemical properties”). For Model 3, the response variable, Error, is calculated based 
on average ��GFoldX from 100 MD snapshots. The potential predictor variables dur-
ing model search were the individual energy terms from FoldX output (MD snapshot 
averages). Model 4 is similar to Model 3 but the potential predictors also included bio-
chemical properties, and Model 5 also included SD values associated with each averaged 
energy term.

We compared the model performance using a modified leave-one-out cross valida-
tion, a common method in which the i-th observation in a dataset is excluded from 
model training. The model fitted with n− 1 observations is then tested on the excluded 
datapoint. This process is repeated to obtain n testing results and the aggregate is an 
indication of the overall model performance. This can be in the form of average mean 
squared error in cases involving continuous response variables, or an error rate in clas-
sification problems. While our model predicts Error that is on a continuous scale, we 
used the upper bound of the 95% prediction interval (Fig. 2) to calculate coverage as a 
performance metric. Also, because we were concerned about nonindependence among 
data from the same system and suspected qualitative differences among the systems, 
we modified the method by excluding all datapoints from one system as a testing set—
i.e., we leave one system out. The candidate model is fit using the rest of the datapoints 
from the remaining nine systems, and tested on the excluded datapoints. This process is 
repeated for each system and the coverage of a model is calculated as follows:

where N  is the total number of observations in the dataset, ni is the number of observa-
tions in i-th system, and Bj is the upper bound of the prediction interval of the Error at 
the j-th observation in the i-th system. The magnitude of the upper bound is an indica-
tion of the model precision, and we used the median width (to avoid over-influence of 
large values) as a part of the performance metric. All together, we produced and evalu-
ated a total of ten models: one set of five models (Table  3) using the folding stability 
dataset, and another set using the binding stability dataset.

Results
Leave‑one‑system‑out cross validation result

With datasets comprising of single amino acid mutations with known experimental 
��G ( ��Gexp ) and FoldX-predicted ��G ( ��GFoldX ), we used stepwise selection 
and best subset selection methods of model search to produce five pairs—one from 
each selection method—of different models (Table  3) for each of the folding dataset 
and binding dataset. We then determined the better model from each pair by leave-one-
system-out cross validation where the model is fit with data from nine protein systems 
and tested on the remaining datapoints iteratively. The coverage rate from this process 
(Eq. 2) is the proportion of the prediction intervals that capture the Error when tested 
on the data the model was not trained on. Based on this measure of model accuracy and 
the median interval widths, a measure of model precision, we found that models from 
the best subset selection method performed better than those from stepwise selection 

(2)Coverage =
1

N

10
∑

i=1

ni
∑

j=1

I
(

Errorj < Bj

)
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method. We tested backward elimination as well but further removal of predictor vari-
ables did not improve performance when tested with cross validation.

After we determined the final five sets of models (Table 3) for each of the folding and 
binding datasets, we assessed the performance among them. Comparing models built 
with single-structure ��G (Models 1 and 2) and those with MD snapshots (Mod-
els 3–5), coverage was similar in all cases at approximately 95%. However, the median 
width of the prediction interval decreased considerably in Models 3–5, especially in the 
folding dataset (Table 4). This implies that the additional information supplied by MD 
simulation brings a marked improvement in model precision. This is also evidenced by 
the large decrease in BIC between Models 1–2 and Models 3–5 (Table 4). Subsequent 
results and discussions will focus on the full model (Model 5), but we emphasize that 
qualitative results among shared variables are similar in all models.

While the models achieve 95% coverage overall, a closer analysis of the cross validation 
results reveals that the coverage varies widely among protein systems as shown in Fig. 3 
(panels B and D), and Table 5. For the folding energy dataset, there were a total of 36 
outliers—i.e., those not captured by the prediction interval—out of 672 datapoints and 
19 of them were mutations in 1VQB, 7 in 1BNI, and 5 in 1WQ5 (p-value = 0.00050, chi-
squared goodness-of-fit test). Out of 27 outliers for the binding energy dataset, 15 were 
from 3HFM, and 4 from 1PPF (p-value = 0.00050, chi-squared goodness-of-fit test).

Significant predictors

For the folding energy dataset, the predictors of the final models are van der Waals 
energy, van der Waals clash, side chain entropy, SD of total energy, involvement of pro-
line, and secondary structure. For binding, the predictors are van der Waals clash, SD of 
backbone clash, SD of side chain entropy, SD of total energy, secondary structure, and 
relative solvent accessibility (RSA). Table 6 lists the predictor variables and their statisti-
cal details. Details for the entire ten models are available in the Additional File 1. Table 6 
also shows the effect of each predictor on the prediction interval width (see details in 
table legend).

Table 4 Comparison of model performances

Leave-one-system-out cross validation results show all models achieve approximately 95% coverage. Median widths 
decreased in Models 3–5 which used MD snapshots data. While R2 values were referenced during evaluation, more 
emphasis was given to the cross validation results (coverage and median width.)

Model 1 Model 2 Model 3 Model 4 Model 5 (full)

Folding dataset:

 Coverage (%) 94.5 94.5 94.5 94.3 94.6

 Median width (kcal/mol) 3.78 3.75 2.88 2.84 2.89

 Adjusted R2 0.17 0.22 0.42 0.45 0.44

 BIC 2279 2284 1928 1936 1930

Binding dataset:

 Coverage (%) 94.6 95.7 95.1 94.6 94.8

 Median width (kcal/mol) 3.81 3.74 3.52 3.51 3.47

 Adjusted R2 0.62 0.66 0.52 0.56 0.57

 BIC 1814 1813 1710 1709 1700
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Discussion
A novel approach to estimate the error of predicted ��G

This study seeks to quantify the uncertainty associated with computational predic-
tion of ��G to aid researchers in informed usage of the prediction. Specifically, we 
focused on FoldX because it is one of the popular and readily-available software. We 
built multiple linear regression models with predictor variables selected from a pool 
of FoldX energy terms and biochemical properties to predict the errors associated 
with each ��GFoldX value. We assessed models of varying complexity using an empir-
ical test of leave-one-system-out cross validation and determined that the perfor-
mance improves considerably in models trained on datasets based on ��GFoldX from 
MD snapshots (Models 3–5). The coefficients (sign and rank) of the shared predictors 
among these models were qualitatively similar. Furthermore, the full model had the 
best BIC score for binding ( �BIC = -9) and was similar to Model 3 for folding ( �BIC 
= + 2). Given this, we focused on the full model that contains the most diverse sets of 
predictors in order to explore the effects of the FoldX energy terms, MD simulation, 
and biochemical properties of the mutated residues, on estimating the error.

One of our major findings is that the margin of error in ��GFoldX is much larger 
than the general assumption in the field. According to the cross validation results of 
Models 3–5 which utilize MD simulation, intervals of approximately ± 2.9  kcal/mol 

Fig. 3 Coverage of the full model. The Error of each mutation is sorted by the width of the prediction interval 
(blue line) and plotted. Datapoints are colored red if they were outside of the bound. Approximately 95% 
of the datapoints are captured within the bound when considered all together. A All 672 mutations in the 
folding stability dataset. B System-by-system breakdown of A. C All 515 mutations in the binding stability 
dataset. D System-by-system breakdown of C 
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for folding stability and ± 3.5 kcal/mol for binding stability around a given ��GFoldX 
are necessary in order to capture ��Gexp within 95% prediction interval. The inter-
vals are even wider for models based on single-structure calculation (i.e., no MD 
simulation). Given this wide margin, researchers should be cautious in how FoldX 
predictions are utilized.

While the median interval width provides a general idea of potential errors, the inter-
vals can be smaller or larger based on the unique characteristics of the mutated residue 
and the nature of the amino acid substitution. The mutation-specific estimated error can 
then be used as a weighting factor in downstream usage of ��GFoldX . The conventional 
way of error estimation is limited to the blanket rule-of-thumb based on published soft-
ware performance data, which has a wide range as pointed out previously. While the 
developers of FoldX reported a correlation of 0.81 with SD of 0.46  kcal/mol between 
��Gexp and ��GFoldX based on more than 1000 mutations [5], other studies have 
reported lower correlations: 0.54 based on a curated 605 mutations [25] and 0.50 based 
on another curated set of 1200 mutations [3]. Much lower correlations—as low as 0.19—
come from studies that tested FoldX on a limited set of mutations from a single protein 
[15, 26]. In addition to the wide variation of reported accuracy, another limitation is that 
a summary measure such as the correlation coefficient does not fully inform the extreme 
ends of the variability in error.

Some studies suggest FoldX performs better as a qualitative predictor. In the afore-
mentioned study by Potapov et  al., the accuracy (percentage of correctly predicted 

Table 5 System-by-system breakdown of the model performance

Inspection of the model performance (full model) separately for each protein system reveals a wide variation

Energy type PDB ID Mutations Median Error Coverage (%) Median width

Fold 1BNI 163 0.63 96 2.90

1BVC 56 0.70 100 2.73

1HFZ 23 0.63 100 2.93

1LZ1 116 0.75 100 3.08

1PIN 56 0.53 98 2.94

1RN1 48 0.55 100 2.72

1RTB 50 1.00 94 3.03

1VQB 92 1.28 79 2.77

1WQ5 41 1.13 88 2.93

2ABD 27 0.52 96 2.77

Total 672 0.73 95 2.89

Bind 1A4Y 32 0.35 100 3.46

1BRS 30 2.27 90 3.78

1CBW 31 0.84 97 3.65

1IAR 36 0.30 100 3.89

1JTG 37 0.94 100 3.99

1LFD 19 0.39 100 3.13

1PPF 190 1.17 96 3.29

2JEL 43 0.17 98 3.05

2WPT 26 0.54 100 3.53

3HFM 71 1.40 79 3.46

Total 515 0.90 95 3.47
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stabilizing or destabilizing mutations out of all mutations) of FoldX was 69.5% based on 
1200 mutations with the classification determined by whether ��G was greater or less 
than 0 kcal/mol. Accuracy increased to 74.2% when only the mutations with |��G| > 
2  kcal/mol were considered [3]. However, FoldX has a tendency to predict destabiliz-
ing mutations with higher accuracy than stabilizing mutations. This biased prediction 
accuracy is a well-known drawback of many computational programs, arising from the 
fact that a random mutation tends to be destabilizing and thus most training datasets are 
comprised of mostly destabilizing mutations [27–29].

The overall accuracy of qualitative prediction is mostly driven by the fact that FoldX 
tends to correctly predict destabilizing mutations that often make up a larger part of 
the training dataset as in our case (Fig. 4A). In panel B, we can see that more than 75% 
of the mutations predicted to be destabilizing are correctly identified (pink, non-shaded 
areas). In contrast, more than half of the mutations which FoldX predicted to be stabiliz-
ing ( ��G < -0.5 kcal/mol, the two leftmost bins) are actually neutral or destabilizing 

Table 6 Significant predictors in full models and their statistical details

The coefficients and p‑values are from the model fitted to all datapoints. The effect of each predictor on interval width (right 
column) is a rescaled version of the coefficient. It is the difference in interval width between two hypothetical mutations—
one representing the upper and one the lower 10% quantile of the predictor—while holding all other predictors constant. 
More precisely, for each predictor, we generated two contrasting mutations with predictor values equal to the mean of the 
predictor among the upper and lower 10% quantiles, set all other predictor values to their dataset‑wide averages, used the 
predict() function in the model to predict the upper bound on their error, and took the difference. In the case of the proline 
predictor, the contrasting mutations were with and without proline (with everything else at their averages)

Energy type Predictor Coefficient estimate p value Effect on 
interval 
width

Fold Van der Waals 0.631 5.67e−14 1.241

Van der Waals clash 0.431 < 2e−16 0.705

Entropy, side chain 0.531 3.16e−7 0.775

SD of total energy 0.569 8.55e−6 0.519

Mutation involving proline 0.724 2.08e−4 0.761

Secondary structure—B Reference N/A N/A

Secondary structure—E 0.239 0.375 N/A

Secondary structure—G 0.069 0.847 N/A

Secondary structure—H − 0.181 0.499 N/A

Secondary structure—None 0.026 0.924 N/A

Secondary structure—S 0.144 0.633 N/A

Secondary structure—T − 0.148 0.604 N/A

Bind Van der Waals clash 0.418 3.28e−5 2.531

SD of backbone van der Waals clash 6.69 3.63e−4 0.864

SD of van der Waals clash − 1.06 5.69e−4 − 2.518

SD of entropy, side chain − 1.21 9.08e−4 − 0.748

SD of total energy 1.32 4.85e−6 3.791

Secondary structure—B Reference N/A N/A

Secondary structure—E 0.240 0.655 N/A

Secondary structure—G − 0.617 0.434 N/A

Secondary structure—H 0.116 0.830 N/A

Secondary structure—None − 0.236 0.659 N/A

Secondary structure—S 0.336 0.547 N/A

Secondary structure—T 0.250 0.650 N/A

RSA − 1.45 3.51e−7 − 0.977
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(shaded white and pink areas). In Fig. 4C, where the colors indicate possible classifica-
tion based on our error bounds instead of ��Gexp , we can see that most of the muta-
tions near zero ( ��GFoldX ±2  kcal/mol) cannot be classified with confidence. With 
folding dataset, we can be more confident with mutations whose ��GFoldX > 2.5 kcal/
mol to be truly destabilizing. The unexpected trend in binding dataset where the uncer-
tainty increases again, with ��GFoldX > 8 kcal/mol in particular, is due to all of the 15 
mutations in that bin belonging to a single protein system, 1PPF, having an unusually 
large ��GFoldX and error bounds.

We were next interested in identifying the extent to which the type of mutation 
(stabilizing vs destabilizing) affects the misclassification problem. The misclassifica-
tion rates seen in Fig. 4B are influenced by the underlying distribution of ��G for the 
mutations chosen in a particular study as well as the variance and bias of the prediction 
method, such as FoldX. Specifically, the low proportion of correctly-identified stabilizing 

Fig. 4 Analysis of classification errors. A Histograms of 672 mutations in folding energy dataset and 515 
mutations in binding energy dataset show the unequal distributions of stabilizing ( ��Gexp < − 0.5 kcal/
mol), neutral (between − 0.5 and 0.5 kcal/mol), and destabilizing (> 0.5 kcal/mol). B The relative frequencies 
of the stabilizing, neutral, and destabilizing mutations are plotted along intervals of ��GFoldX . Shaded 
areas indicate incorrect prediction by FoldX. FoldX tends to predict destabilizing mutations correctly than 
stabilizing mutations. C Same sets of mutations are classified according to the interval ��GFoldX ± error 
bounds, and their relative frequencies are expressed along ��GFoldX
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mutations in Fig. 4B is a result of the inherent bias of FoldX and the low frequency of 
stabilizing mutations in our data. In order to understand the effect of the underlying 
distribution, we created a dataset by resampling (with replacement) 1000 observations 
from each bin along ��Gexp , essentially simulating a scenario of picking mutations 
from a uniform distribution of ��Gexp . When we visualize the proportion of correctly-
predicted classifications, we see similar accuracy among stabilizing and destabilizing 
mutations (Fig.  5A). Essentially, a uniform sampling of ��Gexp yields high classifica-
tion accuracy among mutations observed to be strongly stabilizing and destabilizing. 
However, misclassification remains a problem for mutations with ��Gexp values near 
zero. As Fig. 5B shows, only those predicted to be strongly destabilizing can be classified 
unambiguously, which was also the case before resampling (Fig. 4C). Altogether, we find 
that the uncertainty of FoldX prediction is large enough that classifying mutations based 
on ��GFoldX is not reliable.

Predictor variables and their role

In addition to providing a measure of uncertainty of individual ��GFoldX values, our 
model also gives an insight into the factors that influence that uncertainty. In their pub-
lication describing the development of the energy function used in the FoldX program, 
Guerois et al. conducted a detailed analysis of outlier mutations both in training data-
base and test database. Their explanations for the large discrepancy between predicted 
and experimental ��G include mutations that greatly affect the unfolded state, possible 
structural relaxation from removal of large side chains (most of these are mutations to 
alanine or glycine), and mutations from proline. Some of these outliers originate from 

Fig. 5 Analysis of classification errors with resampling. A After resampling 1000 observations from each 
interval of ��Gexp , the relative frequencies of the stabilizing, neutral, and destabilizing mutations are plotted 
along intervals of ��GFoldX . Shaded areas indicate incorrect prediction by FoldX. B Same sets of resampled 
mutations are classified according to the interval, ��GFoldX ± error bounds, and their relative frequencies are 
expressed along ��GFoldX
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a specific protein (1FMK in the training database and 1STN in the test database) and 
their analysis surmised that these discrepancies were not generalized [2]. While we also 
observe system-specific differences in median Error and the model’s predictive accuracy 
(Fig. 3 and Table 5), our model shows the Error is influenced by factors that are general-
izable across protein systems.

For the folding energy dataset, van der Waals and van der Waals clash terms appear 
consistently with significant effects in all five models. Holding other variables equal, hav-
ing high values for these predictors cause a significant increase in uncertainty, as can be 
seen in the Coefficient estimates and the Effects on interval width in Table 6. Mechanis-
tically, van der Waals energy arises from the electrostatic forces between atoms, relative 
to the distance between them. In the FoldX algorithm, van der Waals is determined by 
the transfer energy of the molecule from vapor to water. Increased van der Waals implies 
a large change in inter-atom forces as a residue is substituted. It may be that the larger 
this change, the more difficult and error-prone it becomes to predict the stability. Simi-
larly, amino acid substitutions that result in a large change in van der Waals clash appear 
to increase Error as well. Clashes occur when there is an overlap of atomic radii such 
as when a small amino acid is mutated to a large amino acid. While FoldX can com-
pute local rearrangement around the mutated residue, it cannot account for the more 
global rearrangement in the protein that may occur, leading to an inaccurate prediction. 
This may also be the reason that using MD snapshots tends to improve FoldX predic-
tion since the protein can change conformation near the mutation site. Van der Waals 
clash in FoldX is a corrective term to compensate for the overestimation of solvation 
and van der Waals energies arising from a steric clash [2]. Large clash values thus imply 
that energies are calculated from incorrect atomic positions and the compensation by 
the clash term may not be adequate for some mutations.

The effect of another significant predictor, side chain entropy, may follow a similar 
reasoning. The side chain entropy represents the entropic cost of fixing the side chain 
upon folding (or binding) —i.e., unfavorable �G contribution due to the decrease in the 
conformational space available to the side chain arrangement. A large difference in �S 
(entropy) between the wild-type and the mutated residue implies a severe steric restric-
tion such as when a bulky amino acid replaces a small one. As with van der Waals energy 
and van der Waals clash terms, the accuracy of FoldX seems to decline when it computes 
a large change in entropy.
SD of total energy indicates the variation among ��G of total energy calculated for 

each of the 100 MD snapshots, and is a significant predictor for the folding energy 
model. For binding energy, several SD terms, including van der Waals clash, backbone 
van der Waals clash and side chain entropy, appear significant and their contribution to 
the model performance is evidenced by the lowest BIC values (Table 4). Structures that 
exhibit large fluctuations of coordinates during MD simulation produces a large SD of 
the ��GFoldX values calculated from those snapshots. It may mean that ��G—whether 
experimental or computational—is difficult to measure accurately for mutated residues 
occurring in the regions with high conformational variability. Other SD terms in the 
binding model have negative effects on Error (larger the SD, smaller the Error), making it 
difficult to deduce the mechanism behind the observation. We can only surmise that the 
degree of conformational variation impacts the accuracy of FoldX calculation.
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As for biochemical properties, a notable predictor is proline—either a proline resi-
due in wild-type or a mutation to proline. With all other variables being equal, the 
involvement of proline increases the uncertainty (i.e. interval width) by approximately 
0.761 kcal/mol (Table 6). The cyclic structure of proline constricts bond angles and may 
disrupt the secondary structure of a peptide chain or introduce steric clashes, result-
ing in inaccurate ��GFoldX . Mutations involving glycine and alanine are also known to 
affect stability prediction and were tested during model search. However, in the presence 
of a larger pool of potential predictors (energy terms, etc.), only proline was significant 
enough to remain in the final models. We verified that this result was not due to sam-
ple sizes as the number of mutations involving proline (n = 27) was smaller than that of 
alanine (n = 251) or glycine (n = 105). The significance of proline mutations in spite of 
the small number of datapoints indicates that the unique biochemistry of proline makes 
accurate prediction of ��G challenging.

The main driver of protein folding is hydrophobic packing where hydrophobic residues 
aggregate in the core and minimize their exposure to the polar solvent. Since a mutation 
of a core residue is more likely to disrupt the stability of the folded protein than a sur-
face residue, we suspected that RSA, which measures how exposed or buried a residue 
is, might have a role in estimating the Error. Interestingly, RSA appeared only with the 
binding energy dataset, with a negative effect. A mutation occurring at a residue that 
has high RSA—i.e., more exposed and away from the binding interface—will not change 
��G significantly and therefore will have less error associated with the prediction. It 
appears that this effect of RSA on the Error is not as pronounced with ��G of fold-
ing stability in the presence of many other potential predictors as with ��G of binding 
stability.

The role of secondary structure as a predictor is less straightforward. We treated the 
secondary structure as a categorical variable with seven levels following the DSSP clas-
sification scheme [23], excluding I which is a rare π-helix and not present in our data-
sets. We suspected that highly organized structures such as helices or β sheets (H, G, E) 
might show a significant contribution to the Error compared to less rigid structures such 
as loops (S, T), but did not see this pattern in our result. In spite of the unclear direc-
tionality of their effects and high p-values (Table 6), eliminating this predictor from the 
model resulted in inferior performance in cross validation.

Leave‑one‑system‑out cross validation to account for the variation among protein systems 

and complexes

The applicability of this study is twofold: (1) we learn the factors that influence the 
Error as discussed in the previous section, and (2) we can apply our trained models to 
a new protein system or complex in which we do not have experimental data on stabil-
ity. To achieve the second point, it was critical that we avoid overfitting and prioritize 
generalizability while keeping the loss of precision as minimal as possible. We used BIC 
that applies a heavier penalty on the number of parameters than AIC during the model 
search, and relied on the leave-one-system-out cross validation to determine the best-
performing model rather than on BIC alone.

The result of this cross validation method simulates a real-world scenario of apply-
ing a model trained on a dataset with known ��Gexp to a new set of mutations—most 
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likely in a protein that was not in the training data—where ��Gexp is unknown. The sys-
tem-by-system breakdown in Fig. 3 and Table 5 provides a glimpse of the best-case and 
worst-case scenarios. For example, we can expect coverage greater than 95% for most 
systems (7 out of 10 for folding stability and 8 out of 10 for binding stability). It may be 
as low as less than 80% in a minority of cases (as in 1VQB for folding energy and 3HFM 
in binding energy). The model precision (prediction interval width) also varies among 
systems but not as widely as the coverage.

The uneven distribution of the model accuracy (in terms of coverage) suggests there 
are system-specific factors that we are not able to incorporate in our models. Notwith-
standing, the utility of the model is in a comparative analysis of mutations: given a group 
of mutations with FoldX predictions, the error bounds can alert the user to particular 
mutations whose true ��Gexp are likely to deviate greatly from ��GFoldX based on the 
mutation-specific characteristics.

The role of molecular dynamics simulation

While MD is not a part of conventional FoldX workflow, it has been shown that averag-
ing of ��G from MD snapshots results in an improved correlation between ��GFoldX 
and ��Gexp [20, 30]. In order to test whether the improvement extends to the error 
estimation, we built models separately using datasets with ��G calculated from a sin-
gle experimental structure (Models 1–2) and datasets with averaged ��G from MD 
snapshots (Models 3–5). While all models maintained the coverage rate of approxi-
mately 95%, the median widths of the prediction interval noticeably decreased in the 
models with MD snapshots data (Table 4). The rationale for MD simulation stems from 
the fact that a single structure of a protein does not accurately represent the true con-
formational space in a natural, aqueous environment, and hence inaccurate ��GFoldX . 
MD snapshots sample various conformations of the protein, and the average ��GFoldX 
across these structures take this variation into account. Implicit in the SD values associ-
ated with each averaged ��GFoldX is the degree of the conformational variability, and 
we found that they are significant predictors of the Error (Table  6). We also saw that 
MD simulation contributes to the model precision, as the MD snapshots-based mod-
els showed tighter prediction intervals than the single-structure-based models (Table 4). 
However, we are unable to delineate whether the extra information from MD simulation 
directly contributes to the improved precision or if it only decreases the Error itself and 
the tighter interval is a consequence of the smaller Error estimate.

Altogether, the models are able to predict potential errors with much better preci-
sion when MD simulation is utilized. We recognize that MD simulation is a technical 
resource that may not be available readily. Even without it, we have shown that models 
can be built from single-structure datasets with comparable coverage albeit with wider 
prediction intervals. An addition of biochemical properties, that can be easily calculated, 
improves the precision slightly by shortening the intervals.

Conclusions
Computational methods of predicting mutational effects on protein stability are invalu-
able in high-throughput mutational studies. While there are abundant benchmark stud-
ies on the performance of various methods, few programs offer a measure of uncertainties 
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associated with individual predictions. Focusing on the popular program, FoldX, we built 
multiple linear regression models to predict the magnitude of the discrepancy between 
the experimental and computational stability changes due to single amino acid mutations. 
We found that the model performs best when supplied with information from MD simu-
lation of the protein and biochemical properties of the mutated residues. However, sim-
pler models based on only FoldX information can still be useful. Our models also provided 
mechanistic insight into the factors that contribute to the error. Because our models predict 
errors based on the mutation-specific predictors, the unique error estimates can then be 
used as weighting factors in downstream analyses using FoldX results. This method can be 
extended beyond FoldX and has the potential to be a tool for researchers to help guide their 
computational predictions.
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