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Introduction
Long non-coding RNAS, also known as lncRNAs, is a series of single-stranded poly-
nucleotides (no less than 200 nucleotides each), consisting of non-protein coding 
transcripts [1]. lncRNAs play a key role in various biological processes such as gene 
expression regulation, epigenetic regulation, and cell differentiation, attracting wide-
spread attention in recent years [2]. LncRNAs can interact with proteins, DNA, and 
other RNA molecules. Among them, lncRNA–protein interactions (LPIs) have been 
widely studied due to their key roles in cellular processes and contributions to under-
standing the molecular mechanisms of various diseases, including cancer, neurodegen-
erative diseases, and cardiovascular diseases.

Originally, biologists detected lncRNA–protein interactions by biology experiments, 
such as RNA pulldown [3], Crosslinking and Immunization (CLIP) [4], Capture Hybridi-
zation Analysis of RNA targets (CHART) [5] and RNA Binding Protein Immunoprecipi-
tation (RIP) [6]. Although these methods can distinguish lncRNA–protein interactions 
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reliably, they are too cumbersome and time-consuming for high throughput screening 
of lncRNA–protein interactions. The use of computational intelligence in identifying 
LncRNA–protein Interactions (LPI) has attracted significant attention from research-
ers due to its potential benefits, including cost reduction in laboratory experiments 
and improved speed and accuracy [7].Therefore, many prediction algorithms based on 
machine learning have been developed to predict LPI.

Machine learning techniques can predict LPIs by integrating various features, such as 
sequence, structure, and functional information. For example, lncpro [8] is developed to 
extract the secondary structure of RNA and protein, which can effectively discriminate 
between interacting and non-interacting RNA–protein pairs and predict RNA–protein 
interactions within a given complex. SFPEL-LPI [9] is an extracted method of the fea-
ture vector of lncRNA and protein, it define the interaction spectrum between lncRNA 
and protein according to the known lncRNA–protein interaction. learning framework to 
make predictions. Shen et al. proposed LPI-KTASLP to identify lncRNA–protein inter-
actions with kernel target alignment and a semi-supervised link prediction model using 
multivariate information [10]. DeepLPI [11] is a multimodal deep learning method for 
predicting the interactions between lncRNAs and protein isoforms, which can predict 
the interactions between lncRNAs and protein isoforms with corresponding confidence 
scores. Besides, during the training of a machine learning model, the presence of noise 
or irrelevant information in the input data can lead to inconsistencies or misleading pat-
terns that the model may mistakenly learn. Consequently, this can result in a decrease in 
the accuracy of the model. To mitigate the negative impact of data noise, it is important 
to preprocess the data by removing outliers, cleaning up errors, and filtering out irrel-
evant features. Reweighting in machine learning refers to the adjustment of the impor-
tance or contribution of training instances or features in a learning algorithm [12]. It 
can address the issue of noisy data or give more emphasis to certain examples or fea-
tures during the learning process. The reweighting model can focus on the important or 
minority instances, leading to better performance and results. Besides, the high dimen-
sionality of the feature space and the complexity of LPI on performance of the prediction 
model are key problems predicting LPI.

Feature selection is a key step in building an accurate LPI model, which can reduce 
the dimension of the feature space, reduce overfitting, and improve the generalization 
ability of the model [13]. The common feature selection methods applied in LPI include: 
Filter method, it evaluates the statistical properties of each feature independently of 
the target variable, such correlation analysis, chi-square tests, and mutual information 
[14]. Wrapper methods, it assess the quality of features by considering their impact on 
the performance of a specific machine learning algorithm [15]. The embedded method, 
incorporates feature selection as part of the model building process itself. Techniques 
like LASSO (Least Absolute Shrinkage and Selection Operator) and Ridge regression 
apply regularization to penalize irrelevant features, effectively performing feature selec-
tion [16]. Therefore, these feature selection methods can be effectively utilized to mine 
lncRNA features related to protein interactions and improve prediction accuracy while 
reducing the computational cost.

In conclusion, our study presents a novel approach, reweighting boosting feature 
selection (RBFS), for addressing the challenge of lncRNA–protein interaction (LPI) 
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prediction. We construct an extensive feature set by integrating diverse bioinformatics 
data sources, and leveraging sample reweighting to select optimal feature sets for LPI 
prediction. Through multiple iterations of feature ranking using feature selection, we 
obtain a robust and accurate final LPI prediction model based on the best feature set.

Extensive evaluations on multiple benchmark datasets demonstrate the effective-
ness of RBFS. Comparative analysis against four state-of-the-art LPI prediction meth-
ods reveals that RBFS outperforms them in terms of key performance metrics including 
recall, precision and F1 score, as well as the area under the receiver operating character-
istic curve (AUROC) and the area under the precision-recall curve (AUPR).

Furthermore, we conduct a comprehensive analysis of the selected features, providing 
valuable insights into the underlying molecular mechanisms of LPIs and their potential 
implications in disease pathogenesis. Our findings contribute to the advancement of LPI 
prediction and offer promising avenues for further research in this field. The main con-
tributions of this paper are summarized as follows: 

(1)	 Reweighting can decreases the importance of outliers or noisy data to improve the 
performance of model.

(2)	 Feature selection can identify and select relevant important features.
(3)	 The results of testing indicate that the RBFS method has better performance than 

other existing methods.

The rest of the paper is organized as follows: In “Related work” section, this paper mainly 
introduces some work related to survival risk prediction. In “Methods” section, we 
describe the overall framework and specific content of the proposed method. In “Experi-
mental design” section, the datasets, experimental setup and results of our work are 
elaborated and analyzed. Section “Conclusion” section provides a conclusion.

Related work
Protein sequence data representation method

Protein structure prediction and function recognition are critical tasks in proteom-
ics research, which rely on the analysis and research of protein data information [17]. 
Several statistical analysis methods, including support vector machines, genetic algo-
rithm Bayesian networks, decision trees, and hidden Markov models, have been widely 
used for protein data analysis. To produce reliable and true results, correctly extract-
ing protein sequence information features is crucial in the early stages. Protein sequence 
information feature extraction can be divided into three categories: (1) amino acid com-
position-based methods, (2) physicochemical properties of amino acid residues-based 
methods, and (3) combination information-based methods. Sequence-based feature 
extraction methods have been widely applied, and the choice of feature extraction meth-
ods varies depending on the context of the application [18].

In recent years, deep learning techniques have gained significant attention for their 
application in representing protein sequence features. Notably, Bepler et al. introduced 
a model that effectively maps protein sequence information to embedded vectors, as 
depicted in Fig. 1. In this model, each amino acid is assigned a specific encoding that cap-
tures structural information, thereby facilitating comprehensive feature representation 
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of protein sequences [19]. The model leverages a bidirectional long short-term memory 
(BiLSTM) [19] architecture to learn the global structural similarity between protein net-
works and the characteristics of individual proteins based on their sequences. Further-
more, this approach extends to extracting features from RNA sequences. Specifically, for 
protein and RNA sequences, the BiLSTM model takes each amino acid or nucleotide as 
input and processes them through two LSTM layers, one in the forward direction and 
the other in the backward direction. This allows for considering both the information at 
the current position in the sequence and the information from its surrounding positions. 
By learning patterns and features within the sequence, the BiLSTM model can transform 
protein and RNA sequences into continuous vector representations for subsequent pre-
diction tasks.

Additionally, to incorporate local structural context within proteins, the framework 
includes position-level supervision derived from residue-residue contacts within a sin-
gle protein structure. The model effectively utilizes both the overall structural similarity 
between proteins and the residue-residue contacts within individual proteins for model 
training.

LncRNA–protein interaction prediction methods

Predicting interactions between long non-coding RNAs (lncRNAs) and proteins has 
been a significant research focus in recent years due to its critical role in various bio-
logical processes, such as gene regulation, cell differentiation, and disease development. 

Fig. 1  Diagram of the model for feature extraction from sequence information. (1) The encoder model 
transforms amino acid sequences into sequences of vector embeddings. (2) The similarity prediction module 
utilizes pairs of proteins represented by their vector embedding sequences to predict their shared structural 
classification of proteins (SCOP) level. Sequence alignment is performed based on the L1 distance between 
their vector embeddings, employing the sequence-structure alignment (SSA)method. Subsequently, a 
similarity score is computed from the alignment and linked to shared SCOP levels through ordinal regression. 
(3) The contact prediction module leverages the vector embedding sequence to predict contacts between 
amino acid positions within each protein. The contact loss is determined by comparing these predictions 
with observed contacts in the protein’s 3D structure. The parameters of the encoder are adjusted by utilizing 
error signals from both tasks
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Several computational methods have been proposed to predict lncRNA–protein inter-
actions, including sequence-based, structure-based, and network-based methods. 
Sequence-based methods use sequence information, such as k-mer frequency and 
sequence composition, to represent lncRNAs and proteins. Structure-based methods 
rely on the 3D structures of lncRNAs and proteins to infer their interactions. Network-
based methods leverage the topological properties of biological networks to predict 
lncRNA–protein interactions [20–22].

Feature selection techniques in lncRNA–protein interaction prediction

Feature selection plays a crucial role in improving prediction performance by reduc-
ing the dimensionality of the feature space and mitigating the risk of overfitting. In the 
prediction of lncRNA–protein interactions, several feature selection techniques have 
been employed, including filter methods, wrapper methods, and embedded methods. 
The RBFS (Relevance-Based Feature Selection) method is an innovative approach that 
combines the advantages of filter and wrapper methods. By iteratively adjusting the 
importance weights of features based on their contributions to prediction performance, 
this method selects the most relevant features while minimizing the risk of overfitting. 
Promising results have been demonstrated by applying this approach to various bioin-
formatics tasks such as gene expression data analysis and protein function prediction 
[23, 24].Applying the RBFS method to the prediction of lncRNA–protein interactions 
can significantly improve prediction performance and contribute to a deeper under-
standing of lncRNA–protein interactions in biological systems.

However, in feature selection, we also face another important challenge, which is 
how to avoid performance estimation bias due to information leakage. Particularly in 
lncRNA–protein interaction prediction, certain lncRNAs may interact with multiple 
proteins, which can lead to information leakage issues in cross-validation [25, 26]. To 
address this problem, we plan to construct a new dataset where each lncRNA–protein 
pair represents a unique interaction [27]. By ensuring that there is no overlap of interac-
tion pairs between the training and testing sets, we can avoid the issue of information 
leakage and more accurately evaluate the performance of feature selection techniques. 
By adopting this approach, we can obtain more reliable assessments of feature selec-
tion techniques’ performance in lncRNA–protein interaction prediction while reducing 
potential bias resulting from information leakage. Furthermore, this methodology has 
the potential to significantly enhance prediction performance and contribute to a deeper 
understanding of lncRNA–protein interactions in biological systems.

Methods
The Reweighing-Boost method is based on the feature ranking obtained from XGBoost and 
iteratively determines the optimal feature set. In this study, the Reweighing-Boost method 
is applied to predict long non-coding RNA–protein interactions. The experimental results 
demonstrate that our method outperforms other existing methods in terms of recall, pre-
cision, F1 score, and other metrics. Moreover, our method also achieves superior perfor-
mance in terms of the area under the receiver operating characteristic curve (AUROC) and 
the area under the precision-recall curve (AUPR) compared to other existing methods. Fur-
thermore, RBFS achieves a reduced and non-redundant feature set. Figure 2 illustrates the 
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workflow of our method. High-dimensional features can contain comprehensive informa-
tion, but they also require significant time for data training and model configuration. In 
order to reduce the dimensionality of the data, feature selection methods are employed in 
this study to extract effective features from protein and RNA sequence data, eliminating 
redundant features and reducing the impact of irrelevant features on classification perfor-
mance. Boosting algorithms are commonly used ensemble classification meta-algorithms 
that can be utilized to modify the feature search space in wrapper-style feature selection 
methods. This paper proposes a method called Reweighting Boosting Feature Selection 
(RBFS), which utilizes feature importance scores embedded in the ensemble tree model to 
select candidate features. The Boosting algorithm is then employed to update the feature 
importance scores after each iteration, thereby updating the search space.

Compared with the results of previous studies, this paper proposes the following meth-
ods: (1) a sample weighting strategy, which updates the weight value of the sample accord-
ing to the prediction results of the previous prediction model. In contrast, the previous 
method used the same weights for all classified samples. (2) A modular algorithm structure 
is adopted to decouple feature ranking and feature selection. This overcomes the inconsist-
ency in feature ranking and potentially increases the robustness of the selected subset. Ada-
Boost’s weighting strategy is to add the same weight value to all misclassified samples [30], 
which ignores the gap between the sample and its correct class. Therefore, the weighting 
strategy assumes that the weight of each sample is inversely proportional to its prediction 
probability. The specific formula is shown in Eq. 1:

(1)∂ i = −

ni

c=1

Yc log (Pc)

Fig. 2  The workflow of the RBFS framework is as follows: (1) Initial feature acquisition. lncRNA and protein 
features [28] are obtained using Pyfeat [29] and concatenated to represent each lncRNA–protein pair. (2) 
Feature selection. The concatenated features are subjected to dimensionality reduction using Reweighting 
Boost. (3) LPI classification. XGBoost is designed to capture unobserved LPIs
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In Eq. 1, the one-hot encoding matrix represents the correct class of each sample and 
is obtained by a classifier, which contains an n*n matrix of probabilities for each sam-
ple. Equations 3 and 4 represent the weight values of sample j in the ith iteration. For a 
sample, when its correct probability is close to 1, the weight decreases, and correspond-
ingly, when its correct probability is close to 0, the weight term increases. Based on this 
principle, the model assigns higher weights to samples that are far from being classified 
correctly in this iteration.

In this study, the gradient boosting tree model XGBoost proposed by Chen [31] was 
used as the initial score getter for all samples. Although XGBoost has higher computa-
tional requirements compared to a single tree model, it is more accurate in the 6000+ 
dimensional sequence data used in this study, and its feature scoring reflects the com-
plex interactions between lncRNA and proteins better. Many scholars [32–34] have used 
XGBoost for model training. The model used in this study consists of two parts. Firstly, 
XGBoost is used to obtain the initial scores for all features, generate the ranking of all 
features based on the tree-based classifier, and evaluate the performance of the top q fea-
tures using the classifier. In k-fold cross-validation, the q features are sequentially added 
to the selected feature set, and the classification results of the model are evaluated. The 
best-performing feature is selected and added to the selected feature set. Then, for the 
features in the feature subset, the classifier is trained using all selected features, and the 
sample weights for subsequent iterations are updated using their predicted probabilities 
according to Eq. 1. After multiple iterations, a sample with p features is reduced to m 
features.

The algorithm sets a reset strategy for sample weights. Specifically, when the ith itera-
tion is performed, if a feature that is already in the set is selected or the selected feature 
does not improve the classifier’s classification performance in this round of iteration, the 
algorithm temporarily terminates and uses the current feature set as the final feature set, 
resetting the sample weights to 1/n. The iteration is repeated i times until the termina-
tion condition occurs again. That is, the termination condition of the algorithm is that 
a feature is selected twice or the selected feature in a certain iteration does not improve 
the classification accuracy of the classifier.

Experimental design
Datasets

Five data sets are used in this paper, each of which contains protein sequence information, 
lncRNA sequence information and LPI network. Datasets human 1- human 3 are obtained 
from Li [35], Zheng [36] and Zhang et al. [37], respectively, and the three obtained data sets 
are preprocessed. UniProt [38], NPInter [39], NONCODE [40] and SUPERFAMILY [41] 

(2)∂ ij = ∂ ij /∂
i−1
j ; ∀j = 1, . . . , n

(3)ωi+1
j ← ωi

j · ∂
i
j ; ∀j = 1, . . . , n

(4)ωi+1
j =

ωi+1
j

∑n
j=1 ω

i+1
j

; ∀j = 1, . . . , n
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interaction data with only one relevant lncRNA or protein interaction and no sequence or 
protein expression information were removed. Datasets of Arabidopsis and maize are also 
obtained from Bai as dataset Arabidopsis and dataset maize of this paper, and their pro-
tein sequences, lncRNA sequences and LPI data are obtained from PlncRNADB [42]. The 
details of the data sets are shown in Table 1. In this paper, each LPI is defined as a matrix Y, 
as shown in Eq. 5.

These three data sets are human data, in which data set human 1 downloads the known 
lncrna–protein interaction data set in November 2013 from NPInter2.0, and selects the 
biological restriction of lncrna as “Homo sapiens”, the type restriction as “NONCODE”. 
The lncrna–protein interaction data set was screened. Then, according to the human 
lncrna data set in the NONCODE4.0 database, the above lncrna data were screened to 
obtain the results, and the lncrna ID and protein ID were mapped to the NONCODE4.0 
ID and string ID. Datasets human 2 and human 3 were processed similarly to human 1, 
except that the data were downloaded from NPInter in different years, and new lncrna 
and protein interactions were discovered and updated to the database as the research 
progressed.

Evaluation metrics

In order to prove the learning performance of the RBFS method, a k-fold crossover experi-
ment is conducted for the experimental results, with K = 5. Precision, Recall, Precision, 
F1-score, AUC value and AUPR value are used to evaluate the performance of RBFS for the 
prediction results of LPI. Each metric is defined as follows:

(5)yij =

{

1, Interaction exists
0, No Interaction exists

(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN

(8)Accuracy =
TP + TN

TP + FP + TN + FN

Table 1  Dataset presentation

Dataset lncRNA Protein LPI pair Non-LPI pair

Human 1 935 59 3479 51686

Human 2 885 84 3265 65536

Human 3 990 27 4158 22572

Arabidopsis 109 35 948 948

Maize 1704 42 22133 22133
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In the above, TP, FP, TN and FN represent the predicted values of true LPIs, false LPIs, 
true non-LPIs and false non-LPIs respectively, and AUC and AUPR represent the aver-
age areas of ROC curve and precision-recall curve respectively. Considering that there 
is some noisy data in the high-throughput experimental data, this paper also proves the 
stability of the model through noise experiments. By adding noise data to five data sets, 
it proves that the proposed model has certain stability and robustness.

Feature selection result analysis

In this section, RBFS is compared to five popular algorithms: LPI-HyADBS, LPI-SKF, 
LPI-NRLMF, and LPI-ETSLP. LPI-HyADBS is a feature selection framework that com-
bines AdaBoost, deep neural network (DNN), XGBoost, and support vector machine 
(SVM) with penalty misclassification coefficient (C-SVM) [43]. LPI-SKF is a predic-
tion model that integrates multiple similarities of lncRNAs and proteins using the SKF 
method to obtain a comprehensive similarity matrix. The LapRLS framework is then 
applied to build the prediction model [44]. LPI-NRLMF is a matrix factorization com-
putational approach that utilizes a semi-supervised method without the need for nega-
tive samples. It integrates multiple similarities of lncRNAs and proteins and constructs 
a prediction model using neighborhood regularized logistic matrix factorization [45]. 
LPI-ETSLP is a semi-supervised link prediction method based on eigenvalue transfor-
mation, aiming to uncover the relationships between lncRNAs and proteins [46]. In this 
study, we employed a 5-fold cross-validation approach to evaluate the performance of 
the proposed model and to better demonstrate the experimental results. Specifically, we 
divided the random lncRNA–protein pairs in the LPI matrix Y into 5 subsets, with one 
subset serving as the test set while the remaining 4 subsets were used as the training set 
in a rotating fashion. Additionally, we reserved an independent validation set that was 
not used throughout the entire research process. This validation set was used for further 
validation of the selected model. By conducting multiple rounds of cross-validation and 
evaluating the model on the independent validation set, we aimed to mitigate the issue 
of similarity between the training and test sets and reduce the risk of overfitting.

Table  2 presents the Precision, Recall, F1-score, and Accuracy values of RBFS, LPI-
HyADBS, LPI-SKF, LPI-NRLMF, and LPI-ETSLP during cross-validation on the five 
datasets. Figures 3, 4, 5, 6 and 7 display the AUC and AUPR values of RBFS compared to 
the four comparative algorithms across the five datasets. These figures demonstrate that 
RBFS outperforms the four comparative algorithms in terms of AUC and AUPR values, 
particularly on the three human datasets (human 1, human 2, and human 3). Despite 
some limitations in handling large datasets, RBFS exhibits good generalization ability 
and robustness, indicating its superior performance in feature selection and lncRNA–
protein interaction prediction.

Model robustness validation

In order to further substantiate the advantages of the RBFS method in the field of feature 
selection, this study incorporated five sets of noise experiments conducted within each 

(9)F1−score =
2× Precision× Recall

Precision+ Recall
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dataset. The specific procedure involved adding random noise data to the last row and 
last column of each dataset. The experimental results were then compared against four 
alternative methods. The experimental outcomes are presented in Tables 3, 4, 5, 6 and 7. 
Table 3 showcases the results of the RBFS method through its execution of five sets of 
noise experiments across the five datasets. From the detailed experimental results pre-
sented in Table 3, it becomes evident that the inclusion of noise data leads to an overall 

Table 2  Contrast to existing methods across datasets

Data set Method Precision Recall Accuracy F1

Human 1 LPI-HyADBS 0.699 0.344 0.619 0.475

LPI-SKF 0.600 0.400 0.567 0.480

LPI-NRLMF 0.459 0.369 0.467 0.409

LPI-ETSLP 0.452 0.513 0.445 0.481

RBFS 0.712 0.804 0.8 0.747

Human 2 LPI-HyADBS 0.754 0.704 0.77 0.754

LPI-SKF 0.512 0.500 0.511 0.5057

LPI-NRLMF 0.534 0.561 0.536 0.547

LPI-ETSLP 0.4524 0.5135 0.4459 0.481

RBFS 0.812 0.898 0.87 0.818

Human 3 LPI-HyADBS 0.553 0.609 0.559 0.58

LPI-SKF 0.555 0.531 0.553 0.543

LPI-NRLMF 0.533 0.307 0.519 0.390

LPI-ETSLP 0.571 0.363 0.545 0.444

RBFS 0.66 0.795 0.754 0.72

Arabidopsis LPI-HyADBS 0.532 0.6 0.536 0.564

LPI-SKF 0.611 0.282 0.551 0.386

LPI-NRLMF 0.450 0.225 0.475 0.300

LPI-ETSLP 0.517 0.428 0.514 0.468

RBFS 0.714 0.687 0.763 0.699

Maize LPI-HyADBS 0.703 0.77 0.729 0.74

LPI-SKF 0.5714 0.3636 0.545 0.444

LPI-NRLMF 0.500 0.378 0.500 0.430

LPI-ETSLP 0.533 0.307 0.519 0.390

RBFS 0.712 0.71 0.758 0.747

Fig. 3  Indicator contrasts on dataset human 1
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improvement in the experimental indicators compared to the original dataset. This find-
ing signifies the robust stability of the RBFS model when confronted with noisy data. 
The datasets used in this study are derived from three different species, categorized into 
two distinct groups: animals and plants. Notably, the experimental indicators obtained 
through the RBFS method exhibit a high degree of consistency across the three species. 

Fig. 4  Indicator contrasts on dataset human 2

Fig. 5  Indicator contrasts on dataset human 3

Fig. 6  Indicator contrasts on dataset Arabidopsis
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Additionally, the analysis of the AUC and AUPR indicators on individual datasets reveals 
a relatively concentrated range of improvements resulting from the incorporation of 
noise data. The observed enhancement falls within a range of 0.1 for both indicators.

Fig. 7  Indicator contrasts on dataset maize

Table 3  Reweighting-boost noise experiment

 Group 1  Group 2  Group 3  Group 4  Group 5

Dataset  AUC​  AUPR  AUC​  AUPR  AUC​  AUPR  AUC​  AUPR  AUC​  AUPR

Human 1 0.864 0.853 0.832 0.827 0.824 0.816 0.837 0.821 0.845 0.849

Human 2 0.841 0.814 0.825 0.824 0.838 0.831 0.831 0.819 0.852 0.817

Human 3 0.731 0.726 0.716 0.715 0.729 0.720 0.735 0.727 0.731 0.718

Arabidopsis 0.774 0.763 0.764 0.746 0.771 0.762 0.768 0.775 0.752 0.763

Maize 0.777 0.764 0.773 0.754 0.784 0.769 0.766 0.778 0.743 0.768

Table 4  LPI-HyADBS noise experiment

 Group 1  Group 2  Group 3  Group 4  Group 5

 Dataset  AUC​  AUPR  AUC​  AUPR  AUC​  AUPR  AUC​  AUPR  AUC​  AUPR

Human 1 0.769 0.738 0.574 0.728 0.658 0.719 0.769 0.734 0.658 0.739

Human 2 0.817 0.786 0.749 0.762 0.639 0.768 0.856 0.657 0.648 0.693

Human 3 0.514 0.500 0.498 0.499 0.507 0.527 0.566 0.449 0.502 0.476

Arabidopsis 0.890 0.878 0.777 0.867 0.758 0.839 0.807 0.644 0.839 0.633

Maize 0.873 0.856 0.836 0.863 0.794 0.777 0.804 0.880 0.819 0.861

Table 5  LPI-NRLMF noise experiment

 Group 1  Group 2  Group 3  Group 4  Group 5

Dataset  AUC​  AUPR  AUC​  AUPR  AUC​  AUPR  AUC​  AUPR  AUC​  AUPR

Human 1 0.696 0.654 0.602 0.688 0.643 0.701 0.698 0.632 0.598 0.564

Human 2 0.695 0.634 0.653 0.642 0.528 0.674 0.746 0.543 0.544 0.620

Human 3 0.493 0.486 0.488 0.412 0.453 0.465 0.501 0.421 0.499 0.465

Arabidopsis 0.688 0.668 0.564 0.659 0.549 0.627 0.601 0.439 0.640 0.432

Maize 0.646 0.646 0.626 0.673 0.694 0.547 0.614 0.610 0.619 0.681
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Consequently, the RBFS method effectively demonstrates its prowess in feature selec-
tion across datasets originating from different species, thereby reinforcing its stability 
amidst noisy data. Tables  4, 5, 6 and 7 respectively present the outcomes of the four 
alternative methods in the context of five sets of noise experiments conducted across 
the five datasets. Overall, these methods exhibit substantial fluctuations in their experi-
mental outcomes across the three species. Importantly, the experimental effects of these 
alternative methods diminish when compared to the original dataset subsequent to the 
inclusion of noise data. This trend highlights the limitations of these models in effec-
tively dealing with noisy datasets. Moreover, analysis of the noise experimental out-
comes on individual datasets reveals fluctuations within a range of approximately 0.2. 
In summary, the RBFS method model outperforms the aforementioned four alternative 
models in terms of its generalization ability and stability.

Conclusion
In this paper, a five-fold cross-validation experiment was conducted on five datasets 
from three species, and the data sets after feature selection were applied to the predic-
tion of lncRNA–protein interaction, which was evaluated with the existing methods 
on the evaluation index. The method proposed in this paper has a significant improve-
ment in Precision, Recall, Accuracy and F1 score. In order to better illustrate the experi-
mental effect of the RBFS method model on the imbalanced data set, the experimental 
results are compared with the existing lncrna–protein interaction prediction model LPI-
HyADBS on the ROC curve and PR curve, and the results show that the proposed model 
has a better effect. Therefore, the RBFS method can effectively remove redundant infor-
mation in the data set and predict lncrna–protein interactions by selecting an effective 
feature set.In addition, in order to illustrate the stability of the RBFS method on the data 
set and its generalization ability on lncrna–protein interactions of different species, this 

Table 6  LPI-ETSLP noise experiment

 Group 1  Group 2  Group 3  Group 4  Group 5

Dataset  AUC​  AUPR  AUC​  AUPR  AUC​  AUPR  AUC​  AUPR  AUC​  AUPR

Human 1 0.589 0.538 0.374 0.458 0.458 0.619 0.569 0.574 0.518 0.569

Human 2 0.687 0.676 0.648 0.668 0.521 0.554 0.645 0.472 0.487 0.503

Human 3 0.345 0.356 0.320 0.345 0.422 0.415 0.482 0.488 0.355 0.465

Arabidopsis 0.743 0.715 0.684 0.701 0.681 0.723 0.689 0.531 0.721 0.423

Maize 0.656 0.645 0.623 0.684 0.589 0.572 0.591 0.576 0.657 0.663

Table 7  LPI-SKF noise experiment

 Group 1  Group 2  Group 3  Group 4  Group 5

Dataset  AUC​  AUPR  AUC​  AUPR  AUC​  AUPR  AUC​  AUPR  AUC​  AUPR

Human 1 0.754 0.723 0.572 0.756 0.678 0.754 0.776 0.754 0.687 0.762

Human 2 0.803 0.753 0.738 0.772 0.654 0.784 0.869 0.652 0.654 0.686

Human 3 0.525 0.513 0.500 0.504 0.511 0.528 0.567 0.460 0.509 0.465

Arabidopsis 0.856 0.868 0.772 0.843 0.755 0.842 0.809 0.654 0.840 0.634

Maize 0.869 0.852 0.843 0.878 0.805 0.784 0.801 0.879 0.834 0.841
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paper also sets up a noise experiment to explain the results of feature selection. To sum 
up, it can be concluded that the RBFS method model has better effects, better generali-
zation ability and stability.

In future research, our attention will be directed towards several key areas. Firstly, we 
intend to validate the proposed model using larger lncRNA–protein datasets obtained 
from diverse data sources. This will further establish its effectiveness in real-world sce-
narios. Secondly, we aim to investigate alternative network structures to enhance the 
model’s performance even further. Additionally, we plan to refine the model architecture 
to effectively capture variable interactions. Lastly, we recognize the significance of apply-
ing lncRNA–protein analysis results in practical settings, particularly in patient progno-
sis management. This application has the potential to yield substantial practical benefits.
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