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Abstract 

Background: Quality control of DNA sequences is an important data preprocessing 
step in many genomic analyses. However, all existing parallel tools for this purpose are 
based on a batch processing model, needing to have the complete genetic dataset 
before processing can even begin. This limitation clearly hinders quality control per‑
formance in those scenarios where the dataset must be downloaded from a remote 
repository and/or copied to a distributed file system for its parallel processing.

Results: In this paper we present SeQual‑Stream, a streaming tool that allows per‑
forming multiple quality control operations on genomic datasets in a fast, distributed 
and scalable way. To do so, our approach relies on the Apache Spark framework 
and the Hadoop Distributed File System (HDFS) to fully exploit the stream paradigm 
and accelerate the preprocessing of large datasets as they are being downloaded and/
or copied to HDFS. The experimental results have shown significant improvements 
in the execution times of SeQual‑Stream when compared to a batch processing tool 
with similar quality control features, providing a maximum speedup of 2.7× when pro‑
cessing a dataset with more than 250 million DNA sequences, while also demonstrat‑
ing good scalability features.

Conclusion: Our solution provides a more scalable and higher performance way 
to carry out quality control of large genomic datasets by taking advantage of stream 
processing features. The tool is distributed as free open‑source software released 
under the GNU AGPLv3 license and is publicly available to download at https:// github. 
com/ UDC‑ GAC/ SeQual‑ Stream.

Keywords: Quality control, Big data, Stream processing, Apache Spark, Next 
generation sequencing (NGS)

Background
Obtaining DNA sequences from living beings is usually the first step in the studies devel-
oped by biologists and bioinformaticians. The continuous development of Next Genera-
tion Sequencing (NGS) technologies [1] during the last decade has led to a vertiginous 
increase in the amount of available genomic data. Hundreds of millions of sequences 
(the so-called reads) can now be generated in a single experiment at a drastically 
reduced cost. However, the accuracy of current NGS platforms is not high in all cases. 
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The quality of downstream analyses may be affected because of the artifacts introduced 
in some DNA fragments during the sequencing process [2, 3], regardless of the NGS 
platform. Therefore, quality control is an essential preprocessing step for raw NGS data 
[4], removing or modifying those input reads that are not considered useful.

In this paper we introduce SeQual-Stream, a parallel tool implemented in Java that 
allows performing multiple quality control operations (e.g., trimming, filtering) on large 
genomic datasets in a distributed and scalable way. To do so, it takes full advantage of 
the Apache Spark Big Data framework [5] together with the Hadoop Distributed File 
System (HDFS) [6]. Up to our knowledge, all existing parallel quality control tools oper-
ate on a batch processing model, which means that they require the entire input dataset 
before any data processing can begin. This poses a performance constraint, as down-
loading the data from a remote repository and copying them to a distributed file system 
such as HDFS for parallel processing are costly operations that significantly delay the 
start of the quality control. This problem is especially relevant in the NGS context as the 
size of the genomic datasets is continuously increasing, which demands more efficient 
processing modes. To overcome this issue, SeQual-Stream has been implemented upon 
the Spark Structured Streaming API [7], in order to apply the quality control operations 
to the input reads as the data are being downloaded from a remote location (e.g., a web 
repository) and/or copied to HDFS. This stream-based processing mode significantly 
reduces runtimes by enabling efficient overlapping of download and copy operations to 
HDFS with the actual data processing performed by SeQual-Stream.

The main contributions of this paper over the state of the art are the following:

• Up to our knowledge, we introduce the first quality control tool that can exploit the 
stream processing model to accelerate the preprocessing of raw NGS datasets.

• We conduct an extensive experimental evaluation on two cluster testbeds using pub-
licly available real-world datasets, both to demonstrate the performance benefits of 
our approach compared to a batch processing quality control tool and to analyze its 
scalability.

• SeQual-Stream is implemented in “pure” (100%) Java code in order to maximize 
cross-platform portability, whereas supporting standard unaligned sequence formats 
(FASTQ/FASTA). The tool is publicly available under a GNU AGPLv3 license.

Quality control

Current NGS technologies can generate a huge number of DNA segments massively and 
in parallel, in less time and at a lower cost per base than previous platforms. However, 
they also introduce errors in some sequences, making them not useful for downstream 
analyses. So, quality control consists of removing those sequences or modifying them to 
be useful in order to improve subsequent processing (e.g., sequence alignment). Multiple 
operations can be performed within the context of quality control. For example, differ-
ent filtering criteria can be applied when removing sequences according to their length 
(i.e., number of bases), the quality scores of the bases, the proportion of content of cer-
tain bases, or according to the occurrence of certain base patterns. When modifying 
sequences, trimming techniques can be used so that they are trimmed, for instance, to 
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a certain average quality or to a maximum length. Another example is formatting tech-
niques, such as the conversion from FASTQ to FASTA or between DNA and RNA, as 
well as renaming the sequence identifiers, among others.

Big data

The great development of NGS has led to a significant increase in the amount of genomic 
data to be processed, making the concept of Big Data a fundamental asset in current 
biomedicine. Big Data often refers to a massive volume of both structured and unstruc-
tured data that is so large and difficult to process using traditional methods and systems. 
The rise of Big Data is usually associated to novel technologies and algorithms such as 
MapReduce [8], a parallel programming paradigm characterized by being divided into 
two distinct phases: Map and Reduce. These sub-processes are executed in a distributed 
manner relying on a cluster of nodes. MapReduce is also the name of the Google’s pro-
prietary implementation, who first proposed the model in 2004, given the need to opti-
mize user search results on the web. To support this type of processing, a distributed 
data storage system, based on storing data on more than one node, is used. Google pro-
posed the Google File System (GFS) [9], a high-performance distributed file system that 
follows a master/worker architecture. Following this model, other technologies imple-
menting it came to light. Of particular note is the open-source Apache Hadoop frame-
work [10]. Hadoop integrates HDFS [6] as storage layer to distribute files across the 
cluster divided into data blocks, thus providing the prior division of the data needed by 
the Hadoop MapReduce data processing engine, in addition to replicating those blocks 
to provide fault tolerance. Both MapReduce and Hadoop are intended for batch process-
ing, since they require the input data to be stored completely in a distributed manner 
before processing begins.

Apache Spark and stream processing

Apache Spark [5] is an open-source, general-purpose framework for distributed process-
ing designed to be simple and fast. Spark emerges as an evolution of Hadoop, which is 
very limited in terms of processing modes and performance. Some of the improvements 
that Spark brings over its predecessor are in-memory computing, support for stream 
processing and the ease to interact with multiple persistent storage systems, such as 
HDFS or Cassandra [11].

Spark provides a fundamental data abstraction for distributed processing: the Resilient 
Distributed Dataset (RDD) [12]. An RDD is defined as a collection of elements parti-
tioned across the cluster nodes and capable of operating in parallel. Two alternatives to 
RDDs are currently offered by Spark: DataFrames and Datasets [13]. DataFrames organ-
ize data in columns, similar to a table in a relational database. Unlike RDDs, they allow 
better handling of structured data and are able to optimize the queries performed. Data-
sets are an extension of DataFrames and try to combine the advantages of RDDs and 
DataFrames in the same API, i.e., the ease of use of RDDs and the performance optimi-
zation of DataFrames.

The key Spark feature for the development of SeQual-Stream is the support for 
stream processing by providing the Structured Streaming API [7], as opposed to its 
batch API. Structured Streaming was designed as an evolution of the legacy Spark 
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Streaming API [14]. This legacy API represents the continuous data stream with a 
high-level abstraction called discretized stream (DStream), which is represented 
internally as a sequence of RDDs. Spark Streaming follows a micro-batch model, con-
sisting of polling the source and dividing the input data into small batches that are 
processed using the batch API, thus generating batches of processed data. However, 
Structured Streaming brings several improvements over its predecessor. This API is 
built on top of the Spark SQL library, using higher-level DataFrames and Datasets as 
data abstractions. It is also capable of correctly processing data that arrive late to the 
processing engine. Legacy Spark Streaming only takes into account the timestamp of 
data reception by Spark, so if an event “a” arrives later than a subsequent event “b”, we 
would be losing accuracy in the information, which can be equal to data loss. How-
ever, Structured Streaming is able to process out-of-order data correctly if it includes 
a timestamp, thus generating consistent results.

By default, Structured Streaming queries are also processed internally using 
a micro-batch model, with the important difference that it treats the input data 
stream as an unbounded table that is continuously being appended by new rows, as 
shown graphically in Fig. 1. The API also allows to choose an alternative processing 
mode called Continuous Processing, which can achieve lower end-to-end latencies, 
although it is still in an experimental state. Its operation is based on constantly read-
ing the source and processing the data as soon as they are available, instead of polling 
the source periodically. Another feature is allowing stream jobs to be expressed in 
the same way as a batch job with static data. The Spark SQL engine takes care of exe-
cuting it incrementally and continuously, updating the final result as the data arrive. 
Each time the result table is updated, it is written (persisted) to an external system, 
which can be a file or a Kafka topic [15], among other options. Depending on the data 
to be written to the output, three modes are differentiated:

Unbounded tableData stream

New data in the stream
=

New rows appended
to an unbounded table Data stream as an unbounded table

Fig. 1 Structured streaming model in Apache Spark
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• Complete mode: all table rows are written in each update.
• Append mode: only new rows are written. This makes it only applicable when exist-

ing rows are expected to remain unchanged. This is the default mode.
• Update mode: the rows that have changed since the last table update are written.

Related work
There is a wide variety of tools within the context of bioinformatics. Many of them fol-
low a batch processing model, such as CloudEC [16] for error correction or BigBWA 
[17] for sequence alignment, both of them Big Data tools relying on the Apache Hadoop 
framework.

Focusing on tools for performing quality control, all existing approaches are based 
on batch processing. Examples of such tools are FASTX-Toolkit [18], PRINSEQ [19], 
LongQC [20] and iSeqQC [21], which do not provide any support for parallel processing. 
QC-Chain [22] and PRINSEQ++ [23] does provide such parallel support through mul-
tithreading, and so their scalability is limited to a single node, whereas FastQC [24] and 
Falco [25], which is an emulation of the former, only support parallelism at the file level. 
SOAPnuke [26] is able to distribute the data processing to a cluster of nodes through 
Hadoop, whereas SeQual [27] is also capable of scaling out across a cluster by relying 
on the more efficient Spark RDDs, greatly enhancing performance compared to previ-
ous solutions. Nevertheless, both SOAPnuke and SeQual are still limited by the batch 
processing operation mode they are based on. In terms of functionality, we have taken 
SeQual as reference for developing SeQual-Stream due to its wide range of supported 
quality control operations (more than 30), one of the largest among the state of the art.

It is also interesting to mention other bioinformatics tools that follow a stream process-
ing model for other purposes. For instance, we can find in the literature several solutions 
for estimating the number of k-mers in genomic datasets, such as KmerStream [28], 
ntCard [29], KmerEstimate [30] and Khmer [31]. Other tools are focused on sequence 
alignment (StreamAligner [32], StreamBWA [33]), metagenomics profiling (Flint [34]) 
and DNA analysis (SparkGA2 [35]). These latter examples are all implemented on top of 
the legacy Spark Streaming API instead of using Spark Structured Streaming as in our 
approach.

Finally, as our tool is based on Spark, we consider it important to highlight the useful-
ness of this Big Data framework in real biological studies. For example, SparkGATK [36], 
a framework for DNA analysis, has been used to detect allele-specific expression genes 
in plants [37]. SparkBWA [38], a DNA sequence alignment tool, has been used in [39] as 
part of the analysis pipeline to construct a high-density genetic linkage map for the com-
mon bean and identify a gene resistant to the bruchid, as well as to analyze the growth 
plasticity of bacteria in [40].

Implementation
SeQual-Stream is a parallel Java tool that provides a wide set of operations to apply qual-
ity control and data preprocessing on raw NGS data. These operations are grouped into 
three different categories depending on the functionality they provide: (1) single fil-
ters, responsible for discarding input sequences that do not meet a certain criteria (e.g., 
sequence length), evaluating each sequence independently of the others; (2) trimmers, 
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operations that trim certain sequence bases at the beginning or end; and (3) formatters, 
operations to change the format of the input dataset (e.g., from DNA to RNA). The tool 
can receive as input single- or paired-end datasets, supporting FASTQ and FASTA for-
mats. The input files can be stored either in HDFS or locally. It is important to note that 
there is no real dependency on HDFS as such, but on the Hadoop API, which is fully 
integrated into Spark. So our tool supports any other file system that is compatible with 
such an API. In fact, the local file system is just one of the available implementations in 
addition to HDFS or Amazon S3. For simplicity, we will keep using the term “HDFS” 
from now on, as it is also the file system used in the experimental evaluation. The data-
sets may be complete or in the process of being downloaded from a remote server, since 
SeQual-Stream can process data as new sequences continue to arrive. Note that in the 
case of having the complete files stored locally, they are also processed in a streaming 
way as they are being copied to HDFS. Furthermore, our tool features a graphical user 
interface to provide greater convenience to bioinformaticians and biologists (see Addi-
tional file 1: Fig. S1 ).

Figure  2 shows an overview of the SeQual-Stream dataflow to perform two qual-
ity control operations: a trimmer and a filter. In this example, there are only four DNA 
sequences stored in a remote server and we only show their bases for simplicity. At 
a certain moment, two of them have already been downloaded in a local file, so that 
SeQual-Stream can begin to process them by copying the available sequences to HDFS 
(labeled as “[A]” in the figure). Next, a Spark Dataset containing those sequences is cre-
ated (“[B]”) to be operated by the trimmer and the filter (“[C]” and “[D]”, respectively). 
In this example, the trimmer operation is TrimRight, which trims a certain number of 
bases from each sequence starting from the right (three bases in this case). The filter 
operation is BaseN, which filters sequences according to whether or not they contain a 
maximum and/or minimum number of one or several base types (a maximum of three 
“T” bases is allowed in this case), discarding the first sequence and leaving at the end a 
single trimmed sequence in the Spark Dataset. Finally, the resulting sequences are writ-
ten back to HDFS (“[E]”). When more content is obtained from the server, the local input 
file will be updated and the entire process is repeated with the new sequences. Note that 
this process is executed in parallel with a previous or subsequent iteration.

Therefore, this dataflow can be divided into three main stages as follows: 

1 Reading of the input dataset(s), which may be stored in HDFS or locally and may be 
in the process of being downloaded.

2 Processing of the available sequences by applying the quality control operations con-
figured by the user.

3 Writing of the results to the output files using the path specified by the user.

Fig. 2 Overview of the SeQual‑Stream dataflow
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The next sections provide more specific details about the implementation of each 
stage.

Reading of the input datasets

The objective of the first stage is the creation of a Spark Dataset that represents in a 
relational table the sequences to be processed in the next stage. Basically, Structured 
Streaming operates by indicating a directory in HDFS to be monitored and processing 
the files as they are written to such directory. The main problem is that once the avail-
able data of a certain file has been processed, such file is not processed again even if it is 
updated with new content. So, it cannot be used to process large files that are still in the 
process of downloading. To overcome this issue, the proposed solution consists of creat-
ing a previous stage in charge of reading the input dataset (“[A]” in Fig. 2) and generating 
new files formed by subsets of the input data (called “subfiles”) that Structured Stream-
ing is able to process. Note that this reading stage works iteratively. For example, if there 
is a subset of sequences downloaded at a given time from a certain dataset, this stage 
will perform a first iteration to store those sequences in a new subfile on HDFS so that 
Structured Streaming can process it, and then it will wait for the remaining sequences 
to be downloaded. After a few seconds, it will recheck the state of the input dataset and, 
if new data is found, the procedure is repeated through a second iteration, generating a 
new subfile with new sequences to be processed.

It is important to remark that only complete sequences are copied to subfiles. If no 
more data is available at a given time and the last sequence is incomplete, only the 
complete sequences before the last one (if any) are copied while waiting for new data 
to arrive. Therefore, the copy operations cannot be done on a line-by-line basis, since 
it is necessary to evaluate if sequences are complete as they are represented in multi-
ple lines (e.g., at least two for FASTA format). This process is even more complex for 
paired-end datasets, where there are two input files to be downloaded. In addition to 
copy only complete sequences, it must be done synchronously in both files because 
one of them may have more available data than the other as download speeds may 
differ. The solution to this issue is reading the sequences in pairs (i.e., only if both are 
complete) and copy them together within the same subfile.

Parallel reading

In order to speed up the previously described process, the reading stage is divided 
and performed in parallel in one of the cluster nodes through multithreading support. 
The number of parallel threads used is adapted dynamically by the tool, depending 
on the computational capacity of the node and the amount of data available at that 
moment in order to avoid the overhead that would be generated by creating a lot of 
threads that read few data. A limit is imposed on the amount of data to be copied in a 
single iteration of the reading stage. This is done to improve the overlap of reading the 
input dataset and processing it with Structured Streaming. Without this limit, if there 
is a lot of data that have already been downloaded, the cluster nodes will be mostly 
idle while waiting for the reading stage to copy them all to HDFS.
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Creation of the Spark dataset

Once new subfiles are copied to HDFS, Structured Streaming is able to automati-
cally detect them to allow SeQual-Stream creating a Spark Dataset of sequences (“[B]” 
in Fig.  2). Although Spark supports several common file formats (e.g., JSON, CSV), 
sequence formats cannot be read straightforwardly, and so the standard text-based file 
format provided by Spark must be used. By default, this format separates the file on a 
line-by-line basis. However, FASTQ/FASTA sequences are composed of multiple lines, 
so it would be interesting to use a character that clearly separates each one. The problem 
is that although FASTQ sequences begin with the “@” character, this character can also 
appear in the quality scores. To overcome this issue, the reading stage is in charge of 
adding a specific string before each sequence when copying it into a subfile in order to 
be used as an unambiguous separator. Once the sequences can be correctly separated, 
their different parts, such as their identifier and bases, can be obtained unambiguously, 
and the corresponding Spark Dataset can be created. For paired-end datasets, the sepa-
rator string must be added to each pair written to the subfile. So, SeQual-Stream is able 
to differentiate each sequence of the pair when creating the Spark Dataset.

Processing of the sequences

The next stage of the pipeline is the processing of the sequences contained on a Spark 
Dataset by applying the quality control operations selected by the user (“[C]” and “[D]” 
in Fig. 2). As previously mentioned, the functionality supported by our tool is inspired 
on those operations provided by SeQual [27], but adapted to the stream processing 
model. The first group of quality control operations consists of 12 single filters that were 
implemented using the Spark’s filter method. Each operation implements the corre-
sponding boolean function to discard those sequences that do not meet a certain crite-
ria. For example, the Length filter evaluates whether the size of the sequence is smaller 
and/or larger than an upper and/or lower limit configured by the user.

The second and third group of operations (10 trimmers and 3 formatters, respectively) 
were implemented using the Spark’s map method, which allows to process the Dataset 
by applying a specific function to each element (i.e., sequence). For example, TrimLeft 
trims a given number of bases from each sequence (and their quality scores if applicable) 
starting from the left using the Java substring method. Another example is DNAToRNA, 
a formatter that changes the format of each sequence from DNA to RNA by replacing 
the thymine bases (represented by a “T” character) with uracil (“U” character) using the 
Java replace method.

Note that all the quality control operations are performed as new sequences get loaded 
into the Spark Dataset, so that the processing stage efficiently overlaps with the reading 
of the input dataset.

Writing of the results

After a certain set of quality control operations is performed over the sequences, they 
must be written back to HDFS (“[E]” in Fig. 2). By default, the output sequences are writ-
ten throughout different output files. This fact is due to two reasons: (1) when processing 
the sequences in a Spark Dataset, the processing tasks are executed on different cluster 
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nodes so that each one writes to its corresponding output file (or “part” file); (2) when 
using our stream processing approach, the sequences are written as soon as the subfiles, 
which contain subsets of the input files, are processed by SeQual-Stream, and thus each 
subfile generates multiple part files distributed over the cluster.

The main issue of having multiple output files is how to keep the output sequences in 
the same order that the input. When persisting a Spark Dataset, the different parts are 
named in alphabetical order so that the original order is maintained. For example, the 
first part file (“part-0000”) may contain the sequences from 1 to 100, the second one 
(“part-0001”) from 101 to 200, and so on. The problem arises when using Structured 
Streaming, since Spark processes each subfile independently and does not preserve any 
alphabetical naming order between parts generated from different subfiles. Figure  3 
illustrates this issue, where two different subfiles are generated at different moments in 
time from the input dataset being downloaded. In this example, the processing of every 
subfile is distributed on two nodes, thus generating four part files in total. Parts labeled 
as “[P1]” and “[P2]” are named in alphabetical order, and the same applies to parts “[P3]” 
and “[P4]”, but the order is not respected between all of them. A naive solution to this 
issue would be using the write timestamp of each part file, since the first sequences 
should be processed and written before the following ones. However, this rule is not 
consistent: when several subfiles are written to the directory that Structured Streaming 
is monitoring, there is no guarantee that they will be processed in the same order they 
were created.

The solution proposed in SeQual-Stream consists of embedding a custom timestamp 
within each sequence during the reading stage (“[A]” in Fig. 2) so that the order is set 
from the very beginning. More specifically, SeQual-Stream must be able to differentiate 
each generated subfile during such reading stage. So, we use a timestamp composed of 
two integers to indicate, respectively, each iteration of the reading stage and the thread 
number that generated the corresponding subfile. For example, thread #5 during itera-
tion #3 will embed the timestamp “3–5” in its sequences. Therefore, SeQual-Stream 
actually processes a Spark Dataset containing sequences tagged with a custom times-
tamp. Right before writing the results to HDFS, this Spark Dataset is separated into 
two columns through a flatmap operation: the sequences themselves and their times-
tamps. This approach allows writing the results partitioned by the timestamp column, 
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Fig. 3 Illustration of the naming order problem with several part files
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an operation that consists of gathering the part files containing sequences with the same 
timestamp into the same output directory. Those parts are already sorted alphabeti-
cally, and thus the global order is ensured. For instance, the part files generated from the 
sequences with timestamp “3–5” are stored in a directory named “timestamp=3–5”. If a 
single output file containing all the resulting sequences is preferred by the user, our tool 
allows to configure an option to merge them together in the appropriate order.

Regarding the writing operation itself, it is done through a Spark object called “Stream-
ingQuery” that remains in a loop as long as there is data to be written. This loop ends 
when the reading stage sends a specific signal meaning that there is no more input data, 
and when the StreamingQuery has no pending data to write. Finally, the output write 
mode for Structured Streaming will be “append”, since we are only interested in writing 
the new processed sequences in a new part file, whereas the already written sequences 
must not change.

Results and discussion
The experimental evaluation of our proposal has been conducted on two different 
testbeds. The first one is a 17-node commodity cluster consisting of one master and 
16 worker nodes. The hardware characteristics of each node are shown in Table  1. 
This cluster provides a total of 256 physical cores and 1 TiB of memory for the pro-
cessing tasks, and each node has one local hard disk for HDFS and temporary data 
storage during the execution of the experiments. The second testbed is a more mod-
ern, high-performance 9-node cluster consisting of one master and 8 worker nodes. 
Table 2 shows the characteristics of each node, providing a total of 256 physical cores 
and 2 TiB of memory for the processing tasks, with each node having two local disks: 
one large but slow hard disk and one small but fast solid state disk. Tables  1 and  2 

Table 1 Hardware and software characteristics of the cluster nodes (testbed 1)

Hardware

CPU Model 2 × Intel Xeon E5‑2660 Sandy Bridge‑EP

CPU Speed/Turbo 2.20 GHz/3.0 GHz

#Cores per node 16

#Threads per node 32

Cache L1/L2/L3 32 KiB/256 KiB/20 MiB

Memory 64 GiB DDR3 1600 MHz

Disk 1 × HDD 1 TiB SATA3 7.2K rpm

Network Gigabit Ethernet

Software

OS Version CentOS Linux release 7.9.2009

Kernel 3.10.0‑1160.62.1

Java OpenJDK 1.8.0_322

Spark Version 3.1.1

Executors per node 1

Executor heap size 55 GiB

Executor cores 16

Hadoop Version 2.10.1

HDFS Block size 128 MiB

Replication factor 3
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also show the software configuration of each testbed, with both systems running Cen-
tOS Linux 7.9.2009. As can be observed, the Spark and Hadoop versions used in the 
experiments were the same in both testbeds. Some specific configuration parameters 
for Spark and HDFS are also shown in these tables, such as the block size for HDFS 
and the number of cores for Spark executors, which is adapted to the features of the 
cluster nodes.

Three publicly available FASTQ datasets have been evaluated, obtained from the 
Sequence Read Archive (SRA) [41, 42], a public repository of genomic data belonging 
to the National Center for Biotechnology Information (NCBI) [43, 44]. These datasets 
present a paired-end layout, so they consist of two input files (single-end experiments 
use one file). Their main characteristics are summarized in Table 3, where the number of 
reads (third row) refers to the number of DNA sequences in each input file, and the read 
length (fourth row) refers to the number of base pairs (bp) per each sequence.

Table 2 Hardware and software characteristics of the cluster nodes (testbed 2)

Hardware

CPU Model 2 × Intel Xeon Silver 4216 Cascade Lake‑SP

CPU Speed/Turbo 2.1 GHz/3.2 GHz

#Cores per node 32

#Threads per node 64

Cache L1/L2/L3 32 KiB/1 MiB/22 MiB

Memory 256 GiB DDR4 2933 MHhz

Disks 1 × HDD 2 TiB SATA3 7.2K rpm

1 × SSD 240 GiB SATA3

Network InfiniBand FDR

Software

OS Version CentOS Linux release 7.9.2009

Kernel 5.4.233‑1

Java OpenJDK 1.8.0_372

Spark Version 3.1.1

Executors per node 1

Executor heap size 225 GiB

Executor cores 32

Hadoop Version 2.10.1

HDFS Block size 128 MiB

Replication factor 3

Table 3 Characteristics of the public datasets used in the performance evaluation

Dataset SRR567455 SRR11442499 SRR5893671

Tag SRR56 SRR114 SRR589

Organism Homo sapiens Homo sapiens Triticum aestivum

#Reads 2 × 251.9 M 2 × 250.3 M 2 × 359.5 M

Read length 76 bp 99 bp 160 bp

Size 2 × 45 GiB 2 × 62 GiB 2 × 120 GiB
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The experimental evaluation has been carried out comparatively with SeQual, 
the tool used as reference to implement our solution in terms of its functionality, as 
mentioned before. Four representative quality control operations have been selected 
for this performance comparison:

• QUALITY: a single filter that filters sequences based on an indicated maximum 
and/or minimum mean quality threshold. The quality score from each base is 
calculated following the Phred+33 quality score encoding [45]. A minimum 
quality of 25 was used in the experiments.

• NONIUPAC: a single filter that removes sequences if they contain Non-IUPAC 
bases (that is, any base other than A, T, G, C or N).

• TRIMRIGHTP: a trimmer that trims sequences according to an indicated per-
centage of the total number of bases starting from the right. A 10% trimming was 
used in the experiments.

• DNATORNA: a formatter that transforms DNA sequences to RNA sequences.

In addition, two different scenarios have been tested depending on the state of the 
input dataset:

• “Downloaded”, where the full dataset is already locally stored in the master node 
(i.e., it was previously downloaded). In this scenario, SeQual first requires to 
copy the dataset to HDFS for processing it, since batch data processing can only 
begin once the complete dataset was copied. However, SeQual-Stream is able to 
read it directly from the local file system of the master node and start its process-
ing while it is being copied to HDFS.

• “Downloading”, where the dataset is stored on a remote location outside the clus-
ter (e.g., an external repository or server), so it must be first downloaded locally 
on the master node and then copied to HDFS for its processing. This second sce-
nario serves to exploit one of the main advantages of our approach, as SeQual-
Stream can start data processing as soon as the download operation is initiated, 
instead of waiting for the download to finish and copy the full dataset to HDFS. 
For simplicity, the datasets are stored on private servers instead of on a public 
repository to prevent that highly variable Internet download speeds could affect 
the results of these experiments. Each testbed has access to a separate private 
server with different download speeds: the first testbed downloads the datasets 
from a server providing speeds of 90–100 MiB/s, while the second one down-
loads them from a server with speeds of 600–700 MiB/s.

Finally, all the experiments were run a minimum of 5 times using the cluster nodes 
in a dedicated manner (i.e., the hardware was never shared by other users’ jobs run-
ning on the same cluster). Due to this fact, the observed standard deviations were 
not significant, and so the median value will be used as the performance metric in 
this work. Consequently, all the results shown in the next sections represent the 
median value of 5 measurements for each experiment.
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Experiments on testbed 1

This first group of experiments is performed on the first testbed (see Table  1). The 
“downloaded” scenario is evaluated using the first two datasets (SRR56 and SRR114, see 
Table  3) in both single- and paired-end mode, while the second scenario (“download-
ing”) is only tested with the second dataset for brevity of results, in single- and paired-
end modes as well. The largest dataset (SRR589) is excluded from these experiments as 
it is so large and computationally expensive to process for this hardware that runtimes 
exceeded the time limits imposed on this testbed.

“Downloaded” scenario

Tables 4 and 5 show the execution times of both tools for the first scenario. It is impor-
tant to note that the results for SeQual take into account the time required to copy the 
input dataset before starting its processing. The results shown in the tables are organ-
ized according to the quality control operation being performed, the dataset and its cor-
responding single- or paired-end layout, and the number of worker nodes used in the 
experiment (from 1 to 16). The last column shows the speedup obtained by our solution 
over its batch counterpart.

On the one hand, it can be observed that the maximum speedup achieved by our tool 
is 2.70× , which is obtained for the QUALITY filter when processing the SRR56 dataset in 
paired-end mode. On the other hand, the average speedup for all operations and datasets 
under evaluation in this first scenario is around 1.43× . In general, the speedups are usu-
ally higher when using a small number of worker nodes (1–4), whereas it tends to con-
verge to 1 when using 16 nodes. The main reason for this behavior is that there comes 
a point where there is so much computational power and disks on which to spread the 
write operations that the processing and writing of the results are fast enough, whereas 
the speed of copying the input files, which is similar for both tools, becomes the major 
performance limiting factor due to the slow HDD disks available on this testbed.

There are also some differences to be pointed out between the results obtained for the 
different operations. The QUALITY filter and the TRIMRIGHTP trimmer tend to gen-
erate smaller runtimes for both tools and obtain greater speedups than the NONIUPAC 
filter and the DNATORNA formatter. This is due to the different amount of data writ-
ten to HDFS as output for each operation. Whereas QUALITY removes sequences from 
the input dataset and TRIMRIGHTP makes them smaller, NONIUPAC does not filter 
any (because all bases are in IUPAC nomenclature in these datasets) and DNATORNA 
simply changes their format (thus maintaining all the sequences and their length). Con-
sequently, these last two operations write more output data and impose a greater over-
head on the disks, a more limiting factor in SeQual-Stream because the copy of the input 
dataset(s) is being made in parallel with the processing and writing of the results.

Overall, the speedups obtained tend to increase noticeably for paired-end experi-
ments compared to single-end ones. In fact, all speedups greater than 2 × are achieved 
in paired-end mode. It is important to remark that this mode involves copying and 
processing twice as much data as in single-end mode. As the amount of input data 
increases significantly, the time required to copy them to HDFS, process them with 
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Spark and write their parts to HDFS also increases proportionally. Therefore, parallel-
izing all this process through a stream model is very beneficial and is precisely what 
was sought after with the development of this tool.

Table 4 Runtimes (in seconds) and corresponding speedups of SeQual‑Stream over SeQual for 
different single‑ and paired‑end datasets using the QUALITY and NONIUPAC filters (“Downloaded” 
scenario, testbed 1)

Operation Dataset Mode Nodes SeQual SeQual-Stream Speedup

QUALITY SRR56 Single 1 1386 927 1.49

2 993 708 1.40

4 780 595 1.31

8 566 507 1.12

16 522 513 1.02

Paired 1 5312 1967 2.70

2 3639 1470 2.47

4 2043 1102 1.85

8 1119 949 1.18

16 1024 940 1.09

SRR114 Single 1 2239 1918 1.17

2 1569 1070 1.47

4 1242 941 1.32

8 865 702 1.23

16 723 689 1.05

Paired 1 6983 4082 1.71

2 5367 2278 2.36

4 3126 1688 1.85

8 2085 1368 1.52

16 1452 1306 1.11

NONIUPAC SRR56 Single 1 1430 1226 1.17

2 1127 1081 1.04

4 1013 703 1.44

8 586 513 1.14

16 539 518 1.04

Paired 1 5919 2748 2.15

2 4086 1958 2.09

4 2328 1413 1.65

8 1240 990 1.25

16 1056 960 1.10

SRR114 Single 1 2140 1896 1.13

2 1600 1454 1.10

4 1047 995 1.05

8 815 682 1.19

16 730 686 1.06

Paired 1 6858 4549 1.51

2 6044 3000 2.01

4 3098 2079 1.49

8 1646 1370 1.20

16 1439 1328 1.08
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“Downloading” scenario

Table 6 shows the execution times of both tools for the second scenario, where the 
dataset is downloaded from an external server with a bandwidth of up to 100 MiB/s, 
as mentioned earlier. Note that the results for SeQual take into account the time 

Table 5 Runtimes (in seconds) and corresponding speedups of SeQual‑Stream over SeQual for 
different single‑ and paired‑end datasets using the TRIMRIGHTP trimmer and DNATORNA formatter 
(“Downloaded” scenario, testbed 1)

Operation Dataset Mode Nodes SeQual SeQual-Stream Speedup

TRIMRIGHTP SRR56 Single 1 1682 1062 1.58

2 934 872 1.07

4 765 680 1.13

8 583 523 1.11

16 521 523 1.00

Paired 1 5850 2259 2.59

2 3400 1906 1.78

4 2280 1463 1.56

8 1354 961 1.41

16 1051 961 1.09

SRR114 Single 1 2855 1723 1.66

2 1381 1281 1.08

4 1050 909 1.16

8 849 723 1.17

16 729 688 1.06

Paired 1 5960 4119 1.45

2 5514 2391 2.31

4 3329 1969 1.69

8 1859 1390 1.34

16 1420 1325 1.07

DNATORNA SRR56 Single 1 1840 1588 1.16

2 1194 1121 1.06

4 918 673 1.36

8 650 521 1.25

16 543 509 1.07

Paired 1 5072 3535 1.43

2 4069 1942 2.09

4 2556 1541 1.66

8 1449 1062 1.36

16 1057 950 1.11

SRR114 Single 1 3149 1999 1.57

2 2012 1116 1.80

4 1146 1013 1.13

8 859 683 1.26

16 722 671 1.08

Paired 1 6322 4923 1.28

2 5547 2760 2.01

4 3650 1954 1.87

8 2288 1333 1.72

16 1456 1286 1.13
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required to download and copy the full dataset before starting its processing. The 
results shown in the table follow the same format as in the previous scenario.

In this case, the speedups of our tool range from a minimum of 1.26× up to a maxi-
mum of 2.45× , obtained for the QUALITY filter in single-end mode using 16 nodes and 
the DNATORNA formatter in paired-end mode using 4 nodes, respectively. The aver-
age speedup is around 1.71× , which is a 20% higher than in the “Downloaded” scenario. 

Table 6 Runtimes (in seconds) and corresponding speedups of SeQual‑Stream over SeQual for the 
SRR114 dataset and different quality control operations (“Downloading” scenario, testbed 1)

Operation Dataset Mode Nodes SeQual SeQual-Stream Speedup

QUALITY SRR114 Single 1 2599 1373 1.89

2 1929 1134 1.70

4 1602 1024 1.56

8 1225 864 1.42

16 1083 858 1.26

Paired 1 7703 3490 2.21

2 6087 2869 2.12

4 3846 1920 2.00

8 2805 1548 1.81

16 2172 1518 1.43

NONIUPAC SRR114 Single 1 2500 1818 1.37

2 1960 1273 1.54

4 1407 918 1.53

8 1175 843 1.39

16 1090 829 1.31

Paired 1 7578 3611 2.10

2 6764 2959 2.29

4 3818 1891 2.02

8 2366 1561 1.52

16 2159 1559 1.38

TRIMRIGHTP SRR114 Single 1 3215 1529 2.10

2 1741 1174 1.48

4 1410 1019 1.38

8 1209 838 1.44

16 1089 829 1.31

Paired 1 6680 3363 1.99

2 5874 2659 2.21

4 4049 1828 2.21

8 2579 1522 1.69

16 2140 1501 1.43

DNATORNA SRR114 Single 1 3509 1953 1.80

2 2372 1678 1.41

4 1506 1079 1.40

8 1219 863 1.41

16 1082 813 1.33

Paired 1 7042 4290 1.64

2 6267 2668 2.35

4 4370 1780 2.45

8 3008 1559 1.93

16 2176 1488 1.46
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Overall, the speedups are much better even when using 16 worker nodes, especially for 
the paired-end experiments. For instance, SeQual-Stream reduces SeQual execution 
times by 24% and 30% when applying TRIMRIGHTP over the SRR114 dataset using 16 
nodes in single- and paired-end mode, respectively.

It is also worth noting how the speedup difference between single- and paired-end 
mode is slightly attenuated in this second scenario compared to the previous one. For 
instance, even though almost all speedups greater than 2 × are also achieved in paired-
end mode as before, there is at least one experiment where a 2.10× speedup is obtained 
in single-end (TRIMRIGHTP), and yet, the maximum speedup (2.45× ) is lower than in 
the first scenario (2.70× ). The main reason is that reading two input files requires copying 
both files simultaneously to join each sequence with its corresponding pair. When both 
files are being downloaded, it is very likely that one file is downloaded faster than the 
other, and so the additional data available from the faster file cannot be used by SeQual-
Stream, as it is required to wait for the paired sequences to arrive from the slower file.

Experiments on testbed 2

This set of experiments is performed on the second testbed (see Table 2). The “down-
loaded” and “downloading” scenarios are both evaluated using the same four quality 
control operations and processing the largest dataset (SRR589, see Table 3), in this case 
only in paired-end mode for brevity of results. These experiments require the use of the 
HDD disks available on the cluster nodes, as the SSD disks do not have enough space to 
store both the input and output data for this huge dataset.

On the one hand, Table 7 shows the execution times of both tools for the “down-
loaded” scenario using up to 8 worker nodes. Overall, it can be seen that the speed-
ups are very similar to those obtained for the analogous scenario on the first testbed 
(see paired-end results in Tables 4 and 5). Although the maximum speedup is slightly 

Table 7 Runtimes (in seconds) and corresponding speedups of SeQual‑Stream over SeQual for the 
SRR589 paired‑end dataset (“Downloaded” scenario, testbed 2)

Operation Dataset Mode Nodes SeQual SeQual-Stream Speedup

QUALITY SRR589 Paired 1 9369 5137 1.82

2 7666 4629 1.66

4 5152 3059 1.68

8 3418 2728 1.25

NONIUPAC SRR589 Paired 1 13253 5558 2.38

2 7703 4498 1.71

4 4887 3307 1.48

8 3172 2818 1.13

TRIMRIGHTP SRR589 Paired 1 13343 5875 2.27

2 7532 4172 1.81

4 4813 3018 1.59

8 3085 2718 1.14

DNATORNA SRR589 Paired 1 10256 5668 1.81

2 7346 5468 1.34

4 5179 3098 1.67

8 3196 2758 1.16
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lower (up to 2.38× ), the average values remain practically the same (from 1.63× to 
1.62× ). In these experiments, the speedups tend to be slightly lower due to the signifi-
cantly higher computational power of the hardware. Consequently, the speed of copy-
ing the input files to the slow HDD disks becomes the main performance bottleneck 
using just 8 nodes instead of 16 as in the first testbed.

On the other hand, Table 8 shows the execution times for the “downloading” sce-
nario. Note that the runtimes for SeQual remain the same as in the previous “down-
loaded” scenario. This is due to the higher download speed of the external server from 
which the datasets are downloaded, which is now fast enough so that the limiting fac-
tor in the download/copy pipeline to HDFS is the copy phase. SeQual-Stream runt-
imes are also very similar, although they tend to be slightly higher, suggesting that the 
streaming approach was able to take slightly more advantage of the fact that the input 
data was already complete. Compared to the analogous scenario evaluated on the first 
testbed (see paired-end results in Table 6), the speedup results tend to be lower, with 
an average of 1.60× . Due to the faster download speed, there are fewer opportunities 
for overlapping and therefore fewer advantages for stream processing, although the 
maximum speedup achieved in these experiments (2.66× ) is still higher than before 
(2.45×).

Overall, these experiments on the second testbed demonstrate that our tool can 
still achieve lower runtimes than its batch counterpart when using newer and faster 
hardware. However, SeQual-Stream can take even more advantage of slow/commod-
ity hardware, as the chance for overlapping the download and/or copy of the datasets 
to HDFS with their processing is critical in this case. This proves that cutting-edge 
hardware is not necessary to use our tool, as good results can be obtained using com-
modity hardware such as in the first testbed.

Table 8 Runtimes (in seconds) and corresponding speedups of SeQual‑Stream over SeQual for the 
SRR589 paired‑end dataset (“Downloading” scenario, testbed 2)

Operation Dataset Mode Nodes SeQual SeQual-Stream Speedup

QUALITY SRR589 Paired 1 9369 4924 1.90

2 7666 4023 1.91

4 5152 3601 1.43

8 3418 2797 1.22

NONIUPAC SRR589 Paired 1 13253 5894 2.25

2 7703 5281 1.46

4 4887 3478 1.41

8 3172 2870 1.11

TRIMRIGHTP SRR589 Paired 1 13343 5022 2.66

2 7532 4285 1.76

4 4813 3483 1.38

8 3085 2891 1.07

DNATORNA SRR589 Paired 1 10256 5632 1.82

2 7346 5133 1.43

4 5179 3070 1.69

8 3196 2864 1.12
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Analysis of the scalability

This section presents a final set of experiments aimed at improving and analyzing the 
scalability of our streaming tool. In order to demonstrate its scaling capabilities, these 
experiments are focused on overcoming the main bottlenecks that limited perfor-
mance so far.

For this purpose, the “downloaded” scenario has been evaluated using the second 
testbed (see Table 2), which provides SSD disks, to speed up the writing of both the 
input datasets and the results to HDFS. In addition, the input files have been previ-
ously copied to the SSD disk of the master node for faster read times. In these experi-
ments, the same four operations have been executed using the largest dataset that can 
be processed in this testbed (i.e., SRR114, as SRR589 is too large to be stored on the 
SSD disks). Experiments with only one worker node must also use the HDD disk of 
the worker, as the full input dataset and the generated output do not fit entirely on its 
SSD. For the sake of simplicity, results are shown for paired-end mode only.

Table  9 shows the results obtained. Overall, the speedups are significantly higher, 
reaching a maximum value of 9.89x when using 8 nodes. It is interesting to note the 
significant differences between the operations. The NONIUPAC filter and the TRIM-
RIGHTP trimmer achieve the greatest speedups, followed by the DNATORNA for-
matter with a maximum of 6.26× . The QUALITY filter gives the worst results, with a 
maximum of 4.72× . As an attempt was made to remove all potential sources of bottle-
necks in these experiments, most of the runtime corresponds to pure processing time 
and not to copying and/or writing the results. Therefore, the differences in runtimes 
and speedups are mainly due to the differences in performance and computational 
efficiency of each quality control operation.

Table 9 Runtimes (in seconds) and corresponding speedups of SeQual‑Stream for the SRR114 
paired‑end dataset (“Downloaded” scenario, testbed 2 with SSD disks)

Operation Dataset Mode Nodes SeQual-Stream Speedup 
over 1 node

QUALITY SRR114 Paired 1 1440 1.00

2 625 2.30

4 590 2.44

8 305 4.72

NONIUPAC SRR114 Paired 1 1661 1.00

2 818 2.03

4 412 4.03

8 186 8.93

TRIMRIGHTP SRR114 Paired 1 1681 1.00

2 1073 1.57

4 553 3.04

8 170 9.89

DNATORNA SRR114 Paired 1 1541 1.00

2 683 2.26

4 535 2.88

8 246 6.26
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Conclusion
The large amount of genomic data generated by modern NGS technologies reinforces 
the need for bioinformatics tools capable of reducing the time required for processing 
them as much as possible. In this paper we have presented SeQual-Stream, a Big Data 
tool for quality control of raw NGS datasets which seeks to reduce data processing times 
through exploiting Apache Spark and its Structured Streaming API. This combination 
allows our tool to take full advantage of distributed-memory systems such as clusters 
and to further accelerate quality control by overlapping data processing with download-
ing and/or HDFS copy operations.

The performance evaluation, conducted on two cluster testbeds using three publicly 
available datasets, has experimentally demonstrated that our stream approach can be up 
to nearly three times faster than the counterpart tool based on batch processing. This 
makes SeQual-Stream a useful tool in those cases where multiple large experiments 
need to be carried out, since such a speedup on each experiment would result in a signif-
icant overall improvement. This is especially significant when using small-scale clusters, 
which is a common computing facility that most biologists and bioinformaticians have 
access to. In fact, our results have also shown that a maximum speedup of around 10x 
can be achieved when using eight nodes compared to just using a single node.

As future work, we would be interested in adapting to the stream paradigm other 
quality control operations that perform their processing considering the whole set of 
sequences, which makes them much more complex to implement in streaming mode. 
The possibility of exploring the use of other stream processing frameworks such as 
Apache Flink is also of great interest.

Availability and requirements
Project name: SeQual-Stream
Project home page: https:// github. com/ UDC- GAC/ SeQual- Stream
Operating system(s): Platform independent
Programming language: Java
Other requirements: JRE 1.8 or higher, Apache Spark 3.0 or higher, Apache Hadoop 2.10 
or higher (needed for HDFS)
License: GNU GPLv3
Any restrictions to use by non-academics: None
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RDD  Resilient distributed dataset
SRA  Sequence read archive
NCBI  National Center for Biotechnology Information
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