
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Castellanos‑Rodríguez et al.
BMC Bioinformatics (2023) 24:403
https://doi.org/10.1186/s12859‑023‑05530‑7

BMC Bioinformatics

SeQual‑Stream: approaching stream
processing to quality control of NGS datasets
Óscar Castellanos‑Rodríguez1*, Roberto R. Expósito1 and Juan Touriño1

Abstract

Background: Quality control of DNA sequences is an important data preprocessing
step in many genomic analyses. However, all existing parallel tools for this purpose are
based on a batch processing model, needing to have the complete genetic dataset
before processing can even begin. This limitation clearly hinders quality control per‑
formance in those scenarios where the dataset must be downloaded from a remote
repository and/or copied to a distributed file system for its parallel processing.

Results: In this paper we present SeQual‑Stream, a streaming tool that allows per‑
forming multiple quality control operations on genomic datasets in a fast, distributed
and scalable way. To do so, our approach relies on the Apache Spark framework
and the Hadoop Distributed File System (HDFS) to fully exploit the stream paradigm
and accelerate the preprocessing of large datasets as they are being downloaded and/
or copied to HDFS. The experimental results have shown significant improvements
in the execution times of SeQual‑Stream when compared to a batch processing tool
with similar quality control features, providing a maximum speedup of 2.7× when pro‑
cessing a dataset with more than 250 million DNA sequences, while also demonstrat‑
ing good scalability features.

Conclusion: Our solution provides a more scalable and higher performance way
to carry out quality control of large genomic datasets by taking advantage of stream
processing features. The tool is distributed as free open‑source software released
under the GNU AGPLv3 license and is publicly available to download at https:// github.
com/ UDC‑ GAC/ SeQual‑ Stream.

Keywords: Quality control, Big data, Stream processing, Apache Spark, Next
generation sequencing (NGS)

Background
Obtaining DNA sequences from living beings is usually the first step in the studies devel-
oped by biologists and bioinformaticians. The continuous development of Next Genera-
tion Sequencing (NGS) technologies [1] during the last decade has led to a vertiginous
increase in the amount of available genomic data. Hundreds of millions of sequences
(the so-called reads) can now be generated in a single experiment at a drastically
reduced cost. However, the accuracy of current NGS platforms is not high in all cases.

*Correspondence:
oscar.castellanos@udc.es

1 Universidade da Coruña, CITIC,
Computer Architecture Group,
Campus de Elviña, 15071 A
Coruña, Spain

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05530-7&domain=pdf
https://github.com/UDC-GAC/SeQual-Stream
https://github.com/UDC-GAC/SeQual-Stream

Page 2 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

The quality of downstream analyses may be affected because of the artifacts introduced
in some DNA fragments during the sequencing process [2, 3], regardless of the NGS
platform. Therefore, quality control is an essential preprocessing step for raw NGS data
[4], removing or modifying those input reads that are not considered useful.

In this paper we introduce SeQual-Stream, a parallel tool implemented in Java that
allows performing multiple quality control operations (e.g., trimming, filtering) on large
genomic datasets in a distributed and scalable way. To do so, it takes full advantage of
the Apache Spark Big Data framework [5] together with the Hadoop Distributed File
System (HDFS) [6]. Up to our knowledge, all existing parallel quality control tools oper-
ate on a batch processing model, which means that they require the entire input dataset
before any data processing can begin. This poses a performance constraint, as down-
loading the data from a remote repository and copying them to a distributed file system
such as HDFS for parallel processing are costly operations that significantly delay the
start of the quality control. This problem is especially relevant in the NGS context as the
size of the genomic datasets is continuously increasing, which demands more efficient
processing modes. To overcome this issue, SeQual-Stream has been implemented upon
the Spark Structured Streaming API [7], in order to apply the quality control operations
to the input reads as the data are being downloaded from a remote location (e.g., a web
repository) and/or copied to HDFS. This stream-based processing mode significantly
reduces runtimes by enabling efficient overlapping of download and copy operations to
HDFS with the actual data processing performed by SeQual-Stream.

The main contributions of this paper over the state of the art are the following:

• Up to our knowledge, we introduce the first quality control tool that can exploit the
stream processing model to accelerate the preprocessing of raw NGS datasets.

• We conduct an extensive experimental evaluation on two cluster testbeds using pub-
licly available real-world datasets, both to demonstrate the performance benefits of
our approach compared to a batch processing quality control tool and to analyze its
scalability.

• SeQual-Stream is implemented in “pure” (100%) Java code in order to maximize
cross-platform portability, whereas supporting standard unaligned sequence formats
(FASTQ/FASTA). The tool is publicly available under a GNU AGPLv3 license.

Quality control

Current NGS technologies can generate a huge number of DNA segments massively and
in parallel, in less time and at a lower cost per base than previous platforms. However,
they also introduce errors in some sequences, making them not useful for downstream
analyses. So, quality control consists of removing those sequences or modifying them to
be useful in order to improve subsequent processing (e.g., sequence alignment). Multiple
operations can be performed within the context of quality control. For example, differ-
ent filtering criteria can be applied when removing sequences according to their length
(i.e., number of bases), the quality scores of the bases, the proportion of content of cer-
tain bases, or according to the occurrence of certain base patterns. When modifying
sequences, trimming techniques can be used so that they are trimmed, for instance, to

Page 3 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

a certain average quality or to a maximum length. Another example is formatting tech-
niques, such as the conversion from FASTQ to FASTA or between DNA and RNA, as
well as renaming the sequence identifiers, among others.

Big data

The great development of NGS has led to a significant increase in the amount of genomic
data to be processed, making the concept of Big Data a fundamental asset in current
biomedicine. Big Data often refers to a massive volume of both structured and unstruc-
tured data that is so large and difficult to process using traditional methods and systems.
The rise of Big Data is usually associated to novel technologies and algorithms such as
MapReduce [8], a parallel programming paradigm characterized by being divided into
two distinct phases: Map and Reduce. These sub-processes are executed in a distributed
manner relying on a cluster of nodes. MapReduce is also the name of the Google’s pro-
prietary implementation, who first proposed the model in 2004, given the need to opti-
mize user search results on the web. To support this type of processing, a distributed
data storage system, based on storing data on more than one node, is used. Google pro-
posed the Google File System (GFS) [9], a high-performance distributed file system that
follows a master/worker architecture. Following this model, other technologies imple-
menting it came to light. Of particular note is the open-source Apache Hadoop frame-
work [10]. Hadoop integrates HDFS [6] as storage layer to distribute files across the
cluster divided into data blocks, thus providing the prior division of the data needed by
the Hadoop MapReduce data processing engine, in addition to replicating those blocks
to provide fault tolerance. Both MapReduce and Hadoop are intended for batch process-
ing, since they require the input data to be stored completely in a distributed manner
before processing begins.

Apache Spark and stream processing

Apache Spark [5] is an open-source, general-purpose framework for distributed process-
ing designed to be simple and fast. Spark emerges as an evolution of Hadoop, which is
very limited in terms of processing modes and performance. Some of the improvements
that Spark brings over its predecessor are in-memory computing, support for stream
processing and the ease to interact with multiple persistent storage systems, such as
HDFS or Cassandra [11].

Spark provides a fundamental data abstraction for distributed processing: the Resilient
Distributed Dataset (RDD) [12]. An RDD is defined as a collection of elements parti-
tioned across the cluster nodes and capable of operating in parallel. Two alternatives to
RDDs are currently offered by Spark: DataFrames and Datasets [13]. DataFrames organ-
ize data in columns, similar to a table in a relational database. Unlike RDDs, they allow
better handling of structured data and are able to optimize the queries performed. Data-
sets are an extension of DataFrames and try to combine the advantages of RDDs and
DataFrames in the same API, i.e., the ease of use of RDDs and the performance optimi-
zation of DataFrames.

The key Spark feature for the development of SeQual-Stream is the support for
stream processing by providing the Structured Streaming API [7], as opposed to its
batch API. Structured Streaming was designed as an evolution of the legacy Spark

Page 4 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

Streaming API [14]. This legacy API represents the continuous data stream with a
high-level abstraction called discretized stream (DStream), which is represented
internally as a sequence of RDDs. Spark Streaming follows a micro-batch model, con-
sisting of polling the source and dividing the input data into small batches that are
processed using the batch API, thus generating batches of processed data. However,
Structured Streaming brings several improvements over its predecessor. This API is
built on top of the Spark SQL library, using higher-level DataFrames and Datasets as
data abstractions. It is also capable of correctly processing data that arrive late to the
processing engine. Legacy Spark Streaming only takes into account the timestamp of
data reception by Spark, so if an event “a” arrives later than a subsequent event “b”, we
would be losing accuracy in the information, which can be equal to data loss. How-
ever, Structured Streaming is able to process out-of-order data correctly if it includes
a timestamp, thus generating consistent results.

By default, Structured Streaming queries are also processed internally using
a micro-batch model, with the important difference that it treats the input data
stream as an unbounded table that is continuously being appended by new rows, as
shown graphically in Fig. 1. The API also allows to choose an alternative processing
mode called Continuous Processing, which can achieve lower end-to-end latencies,
although it is still in an experimental state. Its operation is based on constantly read-
ing the source and processing the data as soon as they are available, instead of polling
the source periodically. Another feature is allowing stream jobs to be expressed in
the same way as a batch job with static data. The Spark SQL engine takes care of exe-
cuting it incrementally and continuously, updating the final result as the data arrive.
Each time the result table is updated, it is written (persisted) to an external system,
which can be a file or a Kafka topic [15], among other options. Depending on the data
to be written to the output, three modes are differentiated:

Unbounded tableData stream

New data in the stream
=

New rows appended
to an unbounded table Data stream as an unbounded table

Fig. 1 Structured streaming model in Apache Spark

Page 5 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

• Complete mode: all table rows are written in each update.
• Append mode: only new rows are written. This makes it only applicable when exist-

ing rows are expected to remain unchanged. This is the default mode.
• Update mode: the rows that have changed since the last table update are written.

Related work
There is a wide variety of tools within the context of bioinformatics. Many of them fol-
low a batch processing model, such as CloudEC [16] for error correction or BigBWA
[17] for sequence alignment, both of them Big Data tools relying on the Apache Hadoop
framework.

Focusing on tools for performing quality control, all existing approaches are based
on batch processing. Examples of such tools are FASTX-Toolkit [18], PRINSEQ [19],
LongQC [20] and iSeqQC [21], which do not provide any support for parallel processing.
QC-Chain [22] and PRINSEQ++ [23] does provide such parallel support through mul-
tithreading, and so their scalability is limited to a single node, whereas FastQC [24] and
Falco [25], which is an emulation of the former, only support parallelism at the file level.
SOAPnuke [26] is able to distribute the data processing to a cluster of nodes through
Hadoop, whereas SeQual [27] is also capable of scaling out across a cluster by relying
on the more efficient Spark RDDs, greatly enhancing performance compared to previ-
ous solutions. Nevertheless, both SOAPnuke and SeQual are still limited by the batch
processing operation mode they are based on. In terms of functionality, we have taken
SeQual as reference for developing SeQual-Stream due to its wide range of supported
quality control operations (more than 30), one of the largest among the state of the art.

It is also interesting to mention other bioinformatics tools that follow a stream process-
ing model for other purposes. For instance, we can find in the literature several solutions
for estimating the number of k-mers in genomic datasets, such as KmerStream [28],
ntCard [29], KmerEstimate [30] and Khmer [31]. Other tools are focused on sequence
alignment (StreamAligner [32], StreamBWA [33]), metagenomics profiling (Flint [34])
and DNA analysis (SparkGA2 [35]). These latter examples are all implemented on top of
the legacy Spark Streaming API instead of using Spark Structured Streaming as in our
approach.

Finally, as our tool is based on Spark, we consider it important to highlight the useful-
ness of this Big Data framework in real biological studies. For example, SparkGATK [36],
a framework for DNA analysis, has been used to detect allele-specific expression genes
in plants [37]. SparkBWA [38], a DNA sequence alignment tool, has been used in [39] as
part of the analysis pipeline to construct a high-density genetic linkage map for the com-
mon bean and identify a gene resistant to the bruchid, as well as to analyze the growth
plasticity of bacteria in [40].

Implementation
SeQual-Stream is a parallel Java tool that provides a wide set of operations to apply qual-
ity control and data preprocessing on raw NGS data. These operations are grouped into
three different categories depending on the functionality they provide: (1) single fil-
ters, responsible for discarding input sequences that do not meet a certain criteria (e.g.,
sequence length), evaluating each sequence independently of the others; (2) trimmers,

Page 6 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

operations that trim certain sequence bases at the beginning or end; and (3) formatters,
operations to change the format of the input dataset (e.g., from DNA to RNA). The tool
can receive as input single- or paired-end datasets, supporting FASTQ and FASTA for-
mats. The input files can be stored either in HDFS or locally. It is important to note that
there is no real dependency on HDFS as such, but on the Hadoop API, which is fully
integrated into Spark. So our tool supports any other file system that is compatible with
such an API. In fact, the local file system is just one of the available implementations in
addition to HDFS or Amazon S3. For simplicity, we will keep using the term “HDFS”
from now on, as it is also the file system used in the experimental evaluation. The data-
sets may be complete or in the process of being downloaded from a remote server, since
SeQual-Stream can process data as new sequences continue to arrive. Note that in the
case of having the complete files stored locally, they are also processed in a streaming
way as they are being copied to HDFS. Furthermore, our tool features a graphical user
interface to provide greater convenience to bioinformaticians and biologists (see Addi-
tional file 1: Fig. S1).

Figure 2 shows an overview of the SeQual-Stream dataflow to perform two qual-
ity control operations: a trimmer and a filter. In this example, there are only four DNA
sequences stored in a remote server and we only show their bases for simplicity. At
a certain moment, two of them have already been downloaded in a local file, so that
SeQual-Stream can begin to process them by copying the available sequences to HDFS
(labeled as “[A]” in the figure). Next, a Spark Dataset containing those sequences is cre-
ated (“[B]”) to be operated by the trimmer and the filter (“[C]” and “[D]”, respectively).
In this example, the trimmer operation is TrimRight, which trims a certain number of
bases from each sequence starting from the right (three bases in this case). The filter
operation is BaseN, which filters sequences according to whether or not they contain a
maximum and/or minimum number of one or several base types (a maximum of three
“T” bases is allowed in this case), discarding the first sequence and leaving at the end a
single trimmed sequence in the Spark Dataset. Finally, the resulting sequences are writ-
ten back to HDFS (“[E]”). When more content is obtained from the server, the local input
file will be updated and the entire process is repeated with the new sequences. Note that
this process is executed in parallel with a previous or subsequent iteration.

Therefore, this dataflow can be divided into three main stages as follows:

1 Reading of the input dataset(s), which may be stored in HDFS or locally and may be
in the process of being downloaded.

2 Processing of the available sequences by applying the quality control operations con-
figured by the user.

3 Writing of the results to the output files using the path specified by the user.

Fig. 2 Overview of the SeQual‑Stream dataflow

Page 7 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

The next sections provide more specific details about the implementation of each
stage.

Reading of the input datasets

The objective of the first stage is the creation of a Spark Dataset that represents in a
relational table the sequences to be processed in the next stage. Basically, Structured
Streaming operates by indicating a directory in HDFS to be monitored and processing
the files as they are written to such directory. The main problem is that once the avail-
able data of a certain file has been processed, such file is not processed again even if it is
updated with new content. So, it cannot be used to process large files that are still in the
process of downloading. To overcome this issue, the proposed solution consists of creat-
ing a previous stage in charge of reading the input dataset (“[A]” in Fig. 2) and generating
new files formed by subsets of the input data (called “subfiles”) that Structured Stream-
ing is able to process. Note that this reading stage works iteratively. For example, if there
is a subset of sequences downloaded at a given time from a certain dataset, this stage
will perform a first iteration to store those sequences in a new subfile on HDFS so that
Structured Streaming can process it, and then it will wait for the remaining sequences
to be downloaded. After a few seconds, it will recheck the state of the input dataset and,
if new data is found, the procedure is repeated through a second iteration, generating a
new subfile with new sequences to be processed.

It is important to remark that only complete sequences are copied to subfiles. If no
more data is available at a given time and the last sequence is incomplete, only the
complete sequences before the last one (if any) are copied while waiting for new data
to arrive. Therefore, the copy operations cannot be done on a line-by-line basis, since
it is necessary to evaluate if sequences are complete as they are represented in multi-
ple lines (e.g., at least two for FASTA format). This process is even more complex for
paired-end datasets, where there are two input files to be downloaded. In addition to
copy only complete sequences, it must be done synchronously in both files because
one of them may have more available data than the other as download speeds may
differ. The solution to this issue is reading the sequences in pairs (i.e., only if both are
complete) and copy them together within the same subfile.

Parallel reading

In order to speed up the previously described process, the reading stage is divided
and performed in parallel in one of the cluster nodes through multithreading support.
The number of parallel threads used is adapted dynamically by the tool, depending
on the computational capacity of the node and the amount of data available at that
moment in order to avoid the overhead that would be generated by creating a lot of
threads that read few data. A limit is imposed on the amount of data to be copied in a
single iteration of the reading stage. This is done to improve the overlap of reading the
input dataset and processing it with Structured Streaming. Without this limit, if there
is a lot of data that have already been downloaded, the cluster nodes will be mostly
idle while waiting for the reading stage to copy them all to HDFS.

Page 8 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

Creation of the Spark dataset

Once new subfiles are copied to HDFS, Structured Streaming is able to automati-
cally detect them to allow SeQual-Stream creating a Spark Dataset of sequences (“[B]”
in Fig. 2). Although Spark supports several common file formats (e.g., JSON, CSV),
sequence formats cannot be read straightforwardly, and so the standard text-based file
format provided by Spark must be used. By default, this format separates the file on a
line-by-line basis. However, FASTQ/FASTA sequences are composed of multiple lines,
so it would be interesting to use a character that clearly separates each one. The problem
is that although FASTQ sequences begin with the “@” character, this character can also
appear in the quality scores. To overcome this issue, the reading stage is in charge of
adding a specific string before each sequence when copying it into a subfile in order to
be used as an unambiguous separator. Once the sequences can be correctly separated,
their different parts, such as their identifier and bases, can be obtained unambiguously,
and the corresponding Spark Dataset can be created. For paired-end datasets, the sepa-
rator string must be added to each pair written to the subfile. So, SeQual-Stream is able
to differentiate each sequence of the pair when creating the Spark Dataset.

Processing of the sequences

The next stage of the pipeline is the processing of the sequences contained on a Spark
Dataset by applying the quality control operations selected by the user (“[C]” and “[D]”
in Fig. 2). As previously mentioned, the functionality supported by our tool is inspired
on those operations provided by SeQual [27], but adapted to the stream processing
model. The first group of quality control operations consists of 12 single filters that were
implemented using the Spark’s filter method. Each operation implements the corre-
sponding boolean function to discard those sequences that do not meet a certain crite-
ria. For example, the Length filter evaluates whether the size of the sequence is smaller
and/or larger than an upper and/or lower limit configured by the user.

The second and third group of operations (10 trimmers and 3 formatters, respectively)
were implemented using the Spark’s map method, which allows to process the Dataset
by applying a specific function to each element (i.e., sequence). For example, TrimLeft
trims a given number of bases from each sequence (and their quality scores if applicable)
starting from the left using the Java substring method. Another example is DNAToRNA,
a formatter that changes the format of each sequence from DNA to RNA by replacing
the thymine bases (represented by a “T” character) with uracil (“U” character) using the
Java replace method.

Note that all the quality control operations are performed as new sequences get loaded
into the Spark Dataset, so that the processing stage efficiently overlaps with the reading
of the input dataset.

Writing of the results

After a certain set of quality control operations is performed over the sequences, they
must be written back to HDFS (“[E]” in Fig. 2). By default, the output sequences are writ-
ten throughout different output files. This fact is due to two reasons: (1) when processing
the sequences in a Spark Dataset, the processing tasks are executed on different cluster

Page 9 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

nodes so that each one writes to its corresponding output file (or “part” file); (2) when
using our stream processing approach, the sequences are written as soon as the subfiles,
which contain subsets of the input files, are processed by SeQual-Stream, and thus each
subfile generates multiple part files distributed over the cluster.

The main issue of having multiple output files is how to keep the output sequences in
the same order that the input. When persisting a Spark Dataset, the different parts are
named in alphabetical order so that the original order is maintained. For example, the
first part file (“part-0000”) may contain the sequences from 1 to 100, the second one
(“part-0001”) from 101 to 200, and so on. The problem arises when using Structured
Streaming, since Spark processes each subfile independently and does not preserve any
alphabetical naming order between parts generated from different subfiles. Figure 3
illustrates this issue, where two different subfiles are generated at different moments in
time from the input dataset being downloaded. In this example, the processing of every
subfile is distributed on two nodes, thus generating four part files in total. Parts labeled
as “[P1]” and “[P2]” are named in alphabetical order, and the same applies to parts “[P3]”
and “[P4]”, but the order is not respected between all of them. A naive solution to this
issue would be using the write timestamp of each part file, since the first sequences
should be processed and written before the following ones. However, this rule is not
consistent: when several subfiles are written to the directory that Structured Streaming
is monitoring, there is no guarantee that they will be processed in the same order they
were created.

The solution proposed in SeQual-Stream consists of embedding a custom timestamp
within each sequence during the reading stage (“[A]” in Fig. 2) so that the order is set
from the very beginning. More specifically, SeQual-Stream must be able to differentiate
each generated subfile during such reading stage. So, we use a timestamp composed of
two integers to indicate, respectively, each iteration of the reading stage and the thread
number that generated the corresponding subfile. For example, thread #5 during itera-
tion #3 will embed the timestamp “3–5” in its sequences. Therefore, SeQual-Stream
actually processes a Spark Dataset containing sequences tagged with a custom times-
tamp. Right before writing the results to HDFS, this Spark Dataset is separated into
two columns through a flatmap operation: the sequences themselves and their times-
tamps. This approach allows writing the results partitioned by the timestamp column,

Server contents

Sequence 1

Sequence 2

Sequence 3

Sequence 4

Sequence 5

Sequence 6

Sequence 1

Sequence 2

Sequence 3

Local

Sequence 1

Sequence 2

Sequence 3

HDFS subfile 1
Node 1

Node 2

HDFS

Sequence 1

Sequence 2

Sequence 3

time = 0

time = 1

Sequence 1

Sequence 2

Sequence 3

Sequence 4

Sequence 5

Sequence 6

Local

Sequence 4

Sequence 5

Sequence 6

HDFS subfile 2
Node 1 Sequence 4

Node 2
Sequence 5

Sequence 6

part-0000-f87s8u1a

[P1]

[P2]

[P3]

part-0001-h2y5hbd9

part-0000-19og1v3f

part-0001-p4fz8m23

[P4]

HDFS

Fig. 3 Illustration of the naming order problem with several part files

Page 10 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

an operation that consists of gathering the part files containing sequences with the same
timestamp into the same output directory. Those parts are already sorted alphabeti-
cally, and thus the global order is ensured. For instance, the part files generated from the
sequences with timestamp “3–5” are stored in a directory named “timestamp=3–5”. If a
single output file containing all the resulting sequences is preferred by the user, our tool
allows to configure an option to merge them together in the appropriate order.

Regarding the writing operation itself, it is done through a Spark object called “Stream-
ingQuery” that remains in a loop as long as there is data to be written. This loop ends
when the reading stage sends a specific signal meaning that there is no more input data,
and when the StreamingQuery has no pending data to write. Finally, the output write
mode for Structured Streaming will be “append”, since we are only interested in writing
the new processed sequences in a new part file, whereas the already written sequences
must not change.

Results and discussion
The experimental evaluation of our proposal has been conducted on two different
testbeds. The first one is a 17-node commodity cluster consisting of one master and
16 worker nodes. The hardware characteristics of each node are shown in Table 1.
This cluster provides a total of 256 physical cores and 1 TiB of memory for the pro-
cessing tasks, and each node has one local hard disk for HDFS and temporary data
storage during the execution of the experiments. The second testbed is a more mod-
ern, high-performance 9-node cluster consisting of one master and 8 worker nodes.
Table 2 shows the characteristics of each node, providing a total of 256 physical cores
and 2 TiB of memory for the processing tasks, with each node having two local disks:
one large but slow hard disk and one small but fast solid state disk. Tables 1 and 2

Table 1 Hardware and software characteristics of the cluster nodes (testbed 1)

Hardware

CPU Model 2 × Intel Xeon E5‑2660 Sandy Bridge‑EP

CPU Speed/Turbo 2.20 GHz/3.0 GHz

#Cores per node 16

#Threads per node 32

Cache L1/L2/L3 32 KiB/256 KiB/20 MiB

Memory 64 GiB DDR3 1600 MHz

Disk 1 × HDD 1 TiB SATA3 7.2K rpm

Network Gigabit Ethernet

Software

OS Version CentOS Linux release 7.9.2009

Kernel 3.10.0‑1160.62.1

Java OpenJDK 1.8.0_322

Spark Version 3.1.1

Executors per node 1

Executor heap size 55 GiB

Executor cores 16

Hadoop Version 2.10.1

HDFS Block size 128 MiB

Replication factor 3

Page 11 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

also show the software configuration of each testbed, with both systems running Cen-
tOS Linux 7.9.2009. As can be observed, the Spark and Hadoop versions used in the
experiments were the same in both testbeds. Some specific configuration parameters
for Spark and HDFS are also shown in these tables, such as the block size for HDFS
and the number of cores for Spark executors, which is adapted to the features of the
cluster nodes.

Three publicly available FASTQ datasets have been evaluated, obtained from the
Sequence Read Archive (SRA) [41, 42], a public repository of genomic data belonging
to the National Center for Biotechnology Information (NCBI) [43, 44]. These datasets
present a paired-end layout, so they consist of two input files (single-end experiments
use one file). Their main characteristics are summarized in Table 3, where the number of
reads (third row) refers to the number of DNA sequences in each input file, and the read
length (fourth row) refers to the number of base pairs (bp) per each sequence.

Table 2 Hardware and software characteristics of the cluster nodes (testbed 2)

Hardware

CPU Model 2 × Intel Xeon Silver 4216 Cascade Lake‑SP

CPU Speed/Turbo 2.1 GHz/3.2 GHz

#Cores per node 32

#Threads per node 64

Cache L1/L2/L3 32 KiB/1 MiB/22 MiB

Memory 256 GiB DDR4 2933 MHhz

Disks 1 × HDD 2 TiB SATA3 7.2K rpm

1 × SSD 240 GiB SATA3

Network InfiniBand FDR

Software

OS Version CentOS Linux release 7.9.2009

Kernel 5.4.233‑1

Java OpenJDK 1.8.0_372

Spark Version 3.1.1

Executors per node 1

Executor heap size 225 GiB

Executor cores 32

Hadoop Version 2.10.1

HDFS Block size 128 MiB

Replication factor 3

Table 3 Characteristics of the public datasets used in the performance evaluation

Dataset SRR567455 SRR11442499 SRR5893671

Tag SRR56 SRR114 SRR589

Organism Homo sapiens Homo sapiens Triticum aestivum

#Reads 2 × 251.9 M 2 × 250.3 M 2 × 359.5 M

Read length 76 bp 99 bp 160 bp

Size 2 × 45 GiB 2 × 62 GiB 2 × 120 GiB

Page 12 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

The experimental evaluation has been carried out comparatively with SeQual,
the tool used as reference to implement our solution in terms of its functionality, as
mentioned before. Four representative quality control operations have been selected
for this performance comparison:

• QUALITY: a single filter that filters sequences based on an indicated maximum
and/or minimum mean quality threshold. The quality score from each base is
calculated following the Phred+33 quality score encoding [45]. A minimum
quality of 25 was used in the experiments.

• NONIUPAC: a single filter that removes sequences if they contain Non-IUPAC
bases (that is, any base other than A, T, G, C or N).

• TRIMRIGHTP: a trimmer that trims sequences according to an indicated per-
centage of the total number of bases starting from the right. A 10% trimming was
used in the experiments.

• DNATORNA: a formatter that transforms DNA sequences to RNA sequences.

In addition, two different scenarios have been tested depending on the state of the
input dataset:

• “Downloaded”, where the full dataset is already locally stored in the master node
(i.e., it was previously downloaded). In this scenario, SeQual first requires to
copy the dataset to HDFS for processing it, since batch data processing can only
begin once the complete dataset was copied. However, SeQual-Stream is able to
read it directly from the local file system of the master node and start its process-
ing while it is being copied to HDFS.

• “Downloading”, where the dataset is stored on a remote location outside the clus-
ter (e.g., an external repository or server), so it must be first downloaded locally
on the master node and then copied to HDFS for its processing. This second sce-
nario serves to exploit one of the main advantages of our approach, as SeQual-
Stream can start data processing as soon as the download operation is initiated,
instead of waiting for the download to finish and copy the full dataset to HDFS.
For simplicity, the datasets are stored on private servers instead of on a public
repository to prevent that highly variable Internet download speeds could affect
the results of these experiments. Each testbed has access to a separate private
server with different download speeds: the first testbed downloads the datasets
from a server providing speeds of 90–100 MiB/s, while the second one down-
loads them from a server with speeds of 600–700 MiB/s.

Finally, all the experiments were run a minimum of 5 times using the cluster nodes
in a dedicated manner (i.e., the hardware was never shared by other users’ jobs run-
ning on the same cluster). Due to this fact, the observed standard deviations were
not significant, and so the median value will be used as the performance metric in
this work. Consequently, all the results shown in the next sections represent the
median value of 5 measurements for each experiment.

Page 13 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

Experiments on testbed 1

This first group of experiments is performed on the first testbed (see Table 1). The
“downloaded” scenario is evaluated using the first two datasets (SRR56 and SRR114, see
Table 3) in both single- and paired-end mode, while the second scenario (“download-
ing”) is only tested with the second dataset for brevity of results, in single- and paired-
end modes as well. The largest dataset (SRR589) is excluded from these experiments as
it is so large and computationally expensive to process for this hardware that runtimes
exceeded the time limits imposed on this testbed.

“Downloaded” scenario

Tables 4 and 5 show the execution times of both tools for the first scenario. It is impor-
tant to note that the results for SeQual take into account the time required to copy the
input dataset before starting its processing. The results shown in the tables are organ-
ized according to the quality control operation being performed, the dataset and its cor-
responding single- or paired-end layout, and the number of worker nodes used in the
experiment (from 1 to 16). The last column shows the speedup obtained by our solution
over its batch counterpart.

On the one hand, it can be observed that the maximum speedup achieved by our tool
is 2.70× , which is obtained for the QUALITY filter when processing the SRR56 dataset in
paired-end mode. On the other hand, the average speedup for all operations and datasets
under evaluation in this first scenario is around 1.43× . In general, the speedups are usu-
ally higher when using a small number of worker nodes (1–4), whereas it tends to con-
verge to 1 when using 16 nodes. The main reason for this behavior is that there comes
a point where there is so much computational power and disks on which to spread the
write operations that the processing and writing of the results are fast enough, whereas
the speed of copying the input files, which is similar for both tools, becomes the major
performance limiting factor due to the slow HDD disks available on this testbed.

There are also some differences to be pointed out between the results obtained for the
different operations. The QUALITY filter and the TRIMRIGHTP trimmer tend to gen-
erate smaller runtimes for both tools and obtain greater speedups than the NONIUPAC
filter and the DNATORNA formatter. This is due to the different amount of data writ-
ten to HDFS as output for each operation. Whereas QUALITY removes sequences from
the input dataset and TRIMRIGHTP makes them smaller, NONIUPAC does not filter
any (because all bases are in IUPAC nomenclature in these datasets) and DNATORNA
simply changes their format (thus maintaining all the sequences and their length). Con-
sequently, these last two operations write more output data and impose a greater over-
head on the disks, a more limiting factor in SeQual-Stream because the copy of the input
dataset(s) is being made in parallel with the processing and writing of the results.

Overall, the speedups obtained tend to increase noticeably for paired-end experi-
ments compared to single-end ones. In fact, all speedups greater than 2 × are achieved
in paired-end mode. It is important to remark that this mode involves copying and
processing twice as much data as in single-end mode. As the amount of input data
increases significantly, the time required to copy them to HDFS, process them with

Page 14 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

Spark and write their parts to HDFS also increases proportionally. Therefore, parallel-
izing all this process through a stream model is very beneficial and is precisely what
was sought after with the development of this tool.

Table 4 Runtimes (in seconds) and corresponding speedups of SeQual‑Stream over SeQual for
different single‑ and paired‑end datasets using the QUALITY and NONIUPAC filters (“Downloaded”
scenario, testbed 1)

Operation Dataset Mode Nodes SeQual SeQual-Stream Speedup

QUALITY SRR56 Single 1 1386 927 1.49

2 993 708 1.40

4 780 595 1.31

8 566 507 1.12

16 522 513 1.02

Paired 1 5312 1967 2.70

2 3639 1470 2.47

4 2043 1102 1.85

8 1119 949 1.18

16 1024 940 1.09

SRR114 Single 1 2239 1918 1.17

2 1569 1070 1.47

4 1242 941 1.32

8 865 702 1.23

16 723 689 1.05

Paired 1 6983 4082 1.71

2 5367 2278 2.36

4 3126 1688 1.85

8 2085 1368 1.52

16 1452 1306 1.11

NONIUPAC SRR56 Single 1 1430 1226 1.17

2 1127 1081 1.04

4 1013 703 1.44

8 586 513 1.14

16 539 518 1.04

Paired 1 5919 2748 2.15

2 4086 1958 2.09

4 2328 1413 1.65

8 1240 990 1.25

16 1056 960 1.10

SRR114 Single 1 2140 1896 1.13

2 1600 1454 1.10

4 1047 995 1.05

8 815 682 1.19

16 730 686 1.06

Paired 1 6858 4549 1.51

2 6044 3000 2.01

4 3098 2079 1.49

8 1646 1370 1.20

16 1439 1328 1.08

Page 15 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

“Downloading” scenario

Table 6 shows the execution times of both tools for the second scenario, where the
dataset is downloaded from an external server with a bandwidth of up to 100 MiB/s,
as mentioned earlier. Note that the results for SeQual take into account the time

Table 5 Runtimes (in seconds) and corresponding speedups of SeQual‑Stream over SeQual for
different single‑ and paired‑end datasets using the TRIMRIGHTP trimmer and DNATORNA formatter
(“Downloaded” scenario, testbed 1)

Operation Dataset Mode Nodes SeQual SeQual-Stream Speedup

TRIMRIGHTP SRR56 Single 1 1682 1062 1.58

2 934 872 1.07

4 765 680 1.13

8 583 523 1.11

16 521 523 1.00

Paired 1 5850 2259 2.59

2 3400 1906 1.78

4 2280 1463 1.56

8 1354 961 1.41

16 1051 961 1.09

SRR114 Single 1 2855 1723 1.66

2 1381 1281 1.08

4 1050 909 1.16

8 849 723 1.17

16 729 688 1.06

Paired 1 5960 4119 1.45

2 5514 2391 2.31

4 3329 1969 1.69

8 1859 1390 1.34

16 1420 1325 1.07

DNATORNA SRR56 Single 1 1840 1588 1.16

2 1194 1121 1.06

4 918 673 1.36

8 650 521 1.25

16 543 509 1.07

Paired 1 5072 3535 1.43

2 4069 1942 2.09

4 2556 1541 1.66

8 1449 1062 1.36

16 1057 950 1.11

SRR114 Single 1 3149 1999 1.57

2 2012 1116 1.80

4 1146 1013 1.13

8 859 683 1.26

16 722 671 1.08

Paired 1 6322 4923 1.28

2 5547 2760 2.01

4 3650 1954 1.87

8 2288 1333 1.72

16 1456 1286 1.13

Page 16 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

required to download and copy the full dataset before starting its processing. The
results shown in the table follow the same format as in the previous scenario.

In this case, the speedups of our tool range from a minimum of 1.26× up to a maxi-
mum of 2.45× , obtained for the QUALITY filter in single-end mode using 16 nodes and
the DNATORNA formatter in paired-end mode using 4 nodes, respectively. The aver-
age speedup is around 1.71× , which is a 20% higher than in the “Downloaded” scenario.

Table 6 Runtimes (in seconds) and corresponding speedups of SeQual‑Stream over SeQual for the
SRR114 dataset and different quality control operations (“Downloading” scenario, testbed 1)

Operation Dataset Mode Nodes SeQual SeQual-Stream Speedup

QUALITY SRR114 Single 1 2599 1373 1.89

2 1929 1134 1.70

4 1602 1024 1.56

8 1225 864 1.42

16 1083 858 1.26

Paired 1 7703 3490 2.21

2 6087 2869 2.12

4 3846 1920 2.00

8 2805 1548 1.81

16 2172 1518 1.43

NONIUPAC SRR114 Single 1 2500 1818 1.37

2 1960 1273 1.54

4 1407 918 1.53

8 1175 843 1.39

16 1090 829 1.31

Paired 1 7578 3611 2.10

2 6764 2959 2.29

4 3818 1891 2.02

8 2366 1561 1.52

16 2159 1559 1.38

TRIMRIGHTP SRR114 Single 1 3215 1529 2.10

2 1741 1174 1.48

4 1410 1019 1.38

8 1209 838 1.44

16 1089 829 1.31

Paired 1 6680 3363 1.99

2 5874 2659 2.21

4 4049 1828 2.21

8 2579 1522 1.69

16 2140 1501 1.43

DNATORNA SRR114 Single 1 3509 1953 1.80

2 2372 1678 1.41

4 1506 1079 1.40

8 1219 863 1.41

16 1082 813 1.33

Paired 1 7042 4290 1.64

2 6267 2668 2.35

4 4370 1780 2.45

8 3008 1559 1.93

16 2176 1488 1.46

Page 17 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

Overall, the speedups are much better even when using 16 worker nodes, especially for
the paired-end experiments. For instance, SeQual-Stream reduces SeQual execution
times by 24% and 30% when applying TRIMRIGHTP over the SRR114 dataset using 16
nodes in single- and paired-end mode, respectively.

It is also worth noting how the speedup difference between single- and paired-end
mode is slightly attenuated in this second scenario compared to the previous one. For
instance, even though almost all speedups greater than 2 × are also achieved in paired-
end mode as before, there is at least one experiment where a 2.10× speedup is obtained
in single-end (TRIMRIGHTP), and yet, the maximum speedup (2.45×) is lower than in
the first scenario (2.70×). The main reason is that reading two input files requires copying
both files simultaneously to join each sequence with its corresponding pair. When both
files are being downloaded, it is very likely that one file is downloaded faster than the
other, and so the additional data available from the faster file cannot be used by SeQual-
Stream, as it is required to wait for the paired sequences to arrive from the slower file.

Experiments on testbed 2

This set of experiments is performed on the second testbed (see Table 2). The “down-
loaded” and “downloading” scenarios are both evaluated using the same four quality
control operations and processing the largest dataset (SRR589, see Table 3), in this case
only in paired-end mode for brevity of results. These experiments require the use of the
HDD disks available on the cluster nodes, as the SSD disks do not have enough space to
store both the input and output data for this huge dataset.

On the one hand, Table 7 shows the execution times of both tools for the “down-
loaded” scenario using up to 8 worker nodes. Overall, it can be seen that the speed-
ups are very similar to those obtained for the analogous scenario on the first testbed
(see paired-end results in Tables 4 and 5). Although the maximum speedup is slightly

Table 7 Runtimes (in seconds) and corresponding speedups of SeQual‑Stream over SeQual for the
SRR589 paired‑end dataset (“Downloaded” scenario, testbed 2)

Operation Dataset Mode Nodes SeQual SeQual-Stream Speedup

QUALITY SRR589 Paired 1 9369 5137 1.82

2 7666 4629 1.66

4 5152 3059 1.68

8 3418 2728 1.25

NONIUPAC SRR589 Paired 1 13253 5558 2.38

2 7703 4498 1.71

4 4887 3307 1.48

8 3172 2818 1.13

TRIMRIGHTP SRR589 Paired 1 13343 5875 2.27

2 7532 4172 1.81

4 4813 3018 1.59

8 3085 2718 1.14

DNATORNA SRR589 Paired 1 10256 5668 1.81

2 7346 5468 1.34

4 5179 3098 1.67

8 3196 2758 1.16

Page 18 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

lower (up to 2.38×), the average values remain practically the same (from 1.63× to
1.62×). In these experiments, the speedups tend to be slightly lower due to the signifi-
cantly higher computational power of the hardware. Consequently, the speed of copy-
ing the input files to the slow HDD disks becomes the main performance bottleneck
using just 8 nodes instead of 16 as in the first testbed.

On the other hand, Table 8 shows the execution times for the “downloading” sce-
nario. Note that the runtimes for SeQual remain the same as in the previous “down-
loaded” scenario. This is due to the higher download speed of the external server from
which the datasets are downloaded, which is now fast enough so that the limiting fac-
tor in the download/copy pipeline to HDFS is the copy phase. SeQual-Stream runt-
imes are also very similar, although they tend to be slightly higher, suggesting that the
streaming approach was able to take slightly more advantage of the fact that the input
data was already complete. Compared to the analogous scenario evaluated on the first
testbed (see paired-end results in Table 6), the speedup results tend to be lower, with
an average of 1.60× . Due to the faster download speed, there are fewer opportunities
for overlapping and therefore fewer advantages for stream processing, although the
maximum speedup achieved in these experiments (2.66×) is still higher than before
(2.45×).

Overall, these experiments on the second testbed demonstrate that our tool can
still achieve lower runtimes than its batch counterpart when using newer and faster
hardware. However, SeQual-Stream can take even more advantage of slow/commod-
ity hardware, as the chance for overlapping the download and/or copy of the datasets
to HDFS with their processing is critical in this case. This proves that cutting-edge
hardware is not necessary to use our tool, as good results can be obtained using com-
modity hardware such as in the first testbed.

Table 8 Runtimes (in seconds) and corresponding speedups of SeQual‑Stream over SeQual for the
SRR589 paired‑end dataset (“Downloading” scenario, testbed 2)

Operation Dataset Mode Nodes SeQual SeQual-Stream Speedup

QUALITY SRR589 Paired 1 9369 4924 1.90

2 7666 4023 1.91

4 5152 3601 1.43

8 3418 2797 1.22

NONIUPAC SRR589 Paired 1 13253 5894 2.25

2 7703 5281 1.46

4 4887 3478 1.41

8 3172 2870 1.11

TRIMRIGHTP SRR589 Paired 1 13343 5022 2.66

2 7532 4285 1.76

4 4813 3483 1.38

8 3085 2891 1.07

DNATORNA SRR589 Paired 1 10256 5632 1.82

2 7346 5133 1.43

4 5179 3070 1.69

8 3196 2864 1.12

Page 19 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

Analysis of the scalability

This section presents a final set of experiments aimed at improving and analyzing the
scalability of our streaming tool. In order to demonstrate its scaling capabilities, these
experiments are focused on overcoming the main bottlenecks that limited perfor-
mance so far.

For this purpose, the “downloaded” scenario has been evaluated using the second
testbed (see Table 2), which provides SSD disks, to speed up the writing of both the
input datasets and the results to HDFS. In addition, the input files have been previ-
ously copied to the SSD disk of the master node for faster read times. In these experi-
ments, the same four operations have been executed using the largest dataset that can
be processed in this testbed (i.e., SRR114, as SRR589 is too large to be stored on the
SSD disks). Experiments with only one worker node must also use the HDD disk of
the worker, as the full input dataset and the generated output do not fit entirely on its
SSD. For the sake of simplicity, results are shown for paired-end mode only.

Table 9 shows the results obtained. Overall, the speedups are significantly higher,
reaching a maximum value of 9.89x when using 8 nodes. It is interesting to note the
significant differences between the operations. The NONIUPAC filter and the TRIM-
RIGHTP trimmer achieve the greatest speedups, followed by the DNATORNA for-
matter with a maximum of 6.26× . The QUALITY filter gives the worst results, with a
maximum of 4.72× . As an attempt was made to remove all potential sources of bottle-
necks in these experiments, most of the runtime corresponds to pure processing time
and not to copying and/or writing the results. Therefore, the differences in runtimes
and speedups are mainly due to the differences in performance and computational
efficiency of each quality control operation.

Table 9 Runtimes (in seconds) and corresponding speedups of SeQual‑Stream for the SRR114
paired‑end dataset (“Downloaded” scenario, testbed 2 with SSD disks)

Operation Dataset Mode Nodes SeQual-Stream Speedup
over 1 node

QUALITY SRR114 Paired 1 1440 1.00

2 625 2.30

4 590 2.44

8 305 4.72

NONIUPAC SRR114 Paired 1 1661 1.00

2 818 2.03

4 412 4.03

8 186 8.93

TRIMRIGHTP SRR114 Paired 1 1681 1.00

2 1073 1.57

4 553 3.04

8 170 9.89

DNATORNA SRR114 Paired 1 1541 1.00

2 683 2.26

4 535 2.88

8 246 6.26

Page 20 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

Conclusion
The large amount of genomic data generated by modern NGS technologies reinforces
the need for bioinformatics tools capable of reducing the time required for processing
them as much as possible. In this paper we have presented SeQual-Stream, a Big Data
tool for quality control of raw NGS datasets which seeks to reduce data processing times
through exploiting Apache Spark and its Structured Streaming API. This combination
allows our tool to take full advantage of distributed-memory systems such as clusters
and to further accelerate quality control by overlapping data processing with download-
ing and/or HDFS copy operations.

The performance evaluation, conducted on two cluster testbeds using three publicly
available datasets, has experimentally demonstrated that our stream approach can be up
to nearly three times faster than the counterpart tool based on batch processing. This
makes SeQual-Stream a useful tool in those cases where multiple large experiments
need to be carried out, since such a speedup on each experiment would result in a signif-
icant overall improvement. This is especially significant when using small-scale clusters,
which is a common computing facility that most biologists and bioinformaticians have
access to. In fact, our results have also shown that a maximum speedup of around 10x
can be achieved when using eight nodes compared to just using a single node.

As future work, we would be interested in adapting to the stream paradigm other
quality control operations that perform their processing considering the whole set of
sequences, which makes them much more complex to implement in streaming mode.
The possibility of exploring the use of other stream processing frameworks such as
Apache Flink is also of great interest.

Availability and requirements
Project name: SeQual-Stream
Project home page: https:// github. com/ UDC- GAC/ SeQual- Stream
Operating system(s): Platform independent
Programming language: Java
Other requirements: JRE 1.8 or higher, Apache Spark 3.0 or higher, Apache Hadoop 2.10
or higher (needed for HDFS)
License: GNU GPLv3
Any restrictions to use by non-academics: None

Abbreviations
NGS Next generation sequencing
HDFS Hadoop distributed file system
RDD Resilient distributed dataset
SRA Sequence read archive
NCBI National Center for Biotechnology Information

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859‑ 023‑ 05530‑7.

Additional file 1: PDF document containing a detailed user’s guide for SeQual‑Stream.

https://github.com/UDC-GAC/SeQual-Stream
https://doi.org/10.1186/s12859-023-05530-7

Page 21 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

Acknowledgements
Not applicable.

Author Contributions
OC and RRE conceived the software and designed the distributed implementation. OC is responsible for implementing
the software. OC conducted the experiments and performed the data analysis. RRE and JT proposed and supervised
the project. OC drafted the manuscript with contributions from all authors. All authors read and approved the final
manuscript.

Funding
Grants PID2019‑104184RB‑I00 and PID2022‑136435NB‑I00, funded by MCIN/AEI/10.13039/501100011033, PID2022 also
funded by “ERDF A way of making Europe”, EU. Grant ED431C 2021/30, funded by Xunta de Galicia under the Consolida‑
tion Program of Competitive Reference Groups. Predoctoral grant of Óscar Castellanos‑Rodríguez ref. ED481A 2022/067,
also funded by Xunta de Galicia. The funding agencies did not participate in the design of the study and collection,
analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The software, documentation and source code of SeQual‑Stream are publicly available at the GitHub repository: https://
github. com/ UDC‑ GAC/ SeQual‑ Stream. The real datasets analyzed during this study are also publicly available at the
NCBI SRA repository (https:// www. ncbi. nlm. nih. gov/ sra) using the accession numbers: SRR567455, SRR11442499 and
SRR5893671.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 30 December 2022 Accepted: 12 October 2023

References
 1. Phillips KA. Assessing the value of next‑generation sequencing technologies: an introduction. Value Health.

2018;21(9):1031–2.
 2. Minoche A, Dohm J, Himmelbauer H. Evaluation of genomic high‑throughput sequencing data generated on

Illumina HiSeq and genome analyzer systems. Genome Biol. 2011;12(R112):1–15.
 3. Edgar RC, Flyvbjerg H. Error filtering, pair assembly and error correction for next‑generation sequencing reads.

Bioinformatics. 2015;31(21):3476–82.
 4. He B, et al. Assessing the impact of data preprocessing on analyzing Next Generation Sequencing data. Front

Bioeng Biotechnol. 2020;8(817):1–12.
 5. Zaharia M, et al. Apache Spark: a unified engine for big data processing. Commun ACM. 2016;59(11):56–65.
 6. Shvachko K, Kuang H, Radia S, Chansler R. The Hadoop distributed file system. In: Proceedings of the IEEE 26th

symposium on mass storage systems and technologies (MSST 2010), Incline Village, NV, USA, (2010); 1–10.
 7. The Apache Software Foundation: structured streaming programming guide. https:// spark. apache. org/ docs/3. 1.1/

struc tured‑ strea ming‑ progr amming‑ guide. html.
 8. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.
 9. Ghemawat S, Gobioff H, Leung S‑T. The Google file system. In: Proceedings of the 19th ACM symposium on operat‑

ing systems principles (SOSP’03), Bolton Landing, NY, USA, 2003, pp 29–43
 10. The Apache Software Foundation: Apache Hadoop. https:// hadoop. apache. org.
 11. Lakshman A, Malik P. Cassandra: a decentralized structured storage system. ACM SIGOPS Oper Syst Rev.

2010;44(2):35–40.
 12. Zaharia M, et al. Resilient Distributed Datasets: A fault‑tolerant abstraction for in‑memory cluster computing. In:

Proceedings of the 9th USENIX symposium on networked systems design and implementation (NSDI’12), San Jose,
CA, USA, 2012, pp 15–28

 13. The Apache Software Foundation: Spark SQL, DataFrames and Datasets Guide. https:// spark. apache. org/ docs/ latest/
sql‑ progr amming‑ guide. html.

 14. The Apache Software Foundation: Spark Streaming Programming Guide. https:// spark. apache. org/ docs/ latest/ strea
ming‑ progr amming‑ guide. html.

 15. Thein KMM. Apache Kafka: next generation distributed messaging system. Int J Sci Eng Technol Res.
2014;3(47):9478–83.

 16. Chung W‑C, Ho J‑M, Lin C‑Y, Lee D‑T. CloudEC: A MapReduce‑based algorithm for correcting errors in next‑genera‑
tion sequencing big data. In: Proceedings of the 2017 IEEE international conference on big data (IEEE BigData 2017),
Boston, MA, USA, (2017);2836–2842.

https://github.com/UDC-GAC/SeQual-Stream
https://github.com/UDC-GAC/SeQual-Stream
https://www.ncbi.nlm.nih.gov/sra
https://spark.apache.org/docs/3.1.1/structured-streaming-programming-guide.html
https://spark.apache.org/docs/3.1.1/structured-streaming-programming-guide.html
https://hadoop.apache.org
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html

Page 22 of 22Castellanos‑Rodríguez et al. BMC Bioinformatics (2023) 24:403

 17. Abuín JM, Pichel JC, Pena TF, Amigo J. BigBWA: approaching the Burrows‑Wheeler aligner to big data technologies.
Bioinformatics. 2015;31(24):4003–5.

 18. Gordon A, Hannon GJ. FASTX‑Toolkit: FASTQ/A Short‑reads Pre‑processing Tools. http:// hanno nlab. cshl. edu/ fastx_
toolk it.

 19. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics.
2011;27(6):863–4.

 20. Fukasawa Y, Ermini L, Wang H, Carty K, Cheung M‑S. LongQC: a quality control tool for third generation sequencing
long read data. G3 Genes Genom Genet. 2020;10(4):1193–6.

 21. Kumar G, Ertel A, Feldman G, Kupper J, Fortina P. iSeqQC: a tool for expression‑based quality control in RNA
sequencing. BMC Bioinform. 2020;21(1):1–10.

 22. Zhou Q, Su X, Wang A, Xu J, Ning K. QC‑Chain: fast and holistic quality control method for next‑generation sequenc‑
ing data. PLOS ONE. 2013;8(4):1–10.

 23. Cantu VA, Sadural J, Edwards R. PRINSEQ++, a multi‑threaded tool for fast and efficient quality control and preproc‑
essing of sequencing datasets. PeerJ Preprints. 2019;7:1–3.

 24. Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. https:// www. bioin forma tics. babra
ham. ac. uk/ proje cts/ fastqc/.

 25. de Sena Brandine G, Smith AD. Falco: high‑speed FastQC emulation for quality control of sequencing data. F1000Re‑
search. 2019;8:1874.

 26. Chen Y, et al. SOAPnuke: a MapReduce acceleration‑supported software for integrated quality control and preproc‑
essing of high‑throughput sequencing data. GigaScience. 2017;7(1):gix120.

 27. Expósito RR, Galego‑Torreiro R, González‑Domínguez J. SeQual: big data tool to perform quality control and data
preprocessing of large NGS datasets. IEEE Access. 2020;8:146075–84.

 28. Melsted P, Halldórsson BV. KmerStream: streaming algorithms for k‑mer abundance estimation. Bioinformatics.
2014;30(24):3541–7.

 29. Mohamadi H, Khan H, Birol I. ntCard: a streaming algorithm for cardinality estimation in genomics data. Bioinformat‑
ics. 2017;33(9):1324–30.

 30. Behera S, Gayen S, Deogun JS, Vinodchandran NV. KmerEstimate: a streaming algorithm for estimating k‑mer counts
with optimal space usage. In: Proceedings of the 9th ACM international conference on bioinformatics, computa‑
tional biology, and health informatics (ACM‑BCB 2018), Washington, DC, USA, (2018);438–447.

 31. Irber LC, Brown CT. Efficient cardinality estimation for k‑mers in large DNA sequencing data sets. bioRxiv, (2016);1–5.
 32. Rathee S, Kashyap A. StreamAligner: a streaming based sequence aligner on Apache Spark. J Big Data.

2018;5(8):1–18.
 33. Mushtaq H, Ahmed N, Al‑Ars Z. Streaming distributed DNA sequence alignment using Apache Spark. In: Proceed‑

ings of the 2017 IEEE 17th International conference on bioinformatics and bioengineering (BIBE 2017), Washington,
DC, USA, (2017);188–193.

 34. Valdes C, Stebliankin V, Narasimhan G. Large scale microbiome profiling in the cloud. Bioinformatics.
2019;35(14):13–22.

 35. Mushtaq H, Ahmed N, Al‑Ars Z. SparkGA2: production‑quality memory‑efficient Apache Spark based genome
analysis framework. PLOS ONE. 2019;14(12):1–14.

 36. Mushtaq H, Al‑Ars Z. Cluster‑based Apache Spark implementation of the GATK DNA analysis pipeline. In: Proceed‑
ings of the 2015 IEEE International conference on bioinformatics and biomedicine (BIBM’15), Washington, DC, USA,
(2015);1471–1477.

 37. Tian Y, et al. Transposon insertions regulate genome‑wide allele‑specific expression and underpin flower colour
variations in apple (Malus spp.). Plant Biotechnol J. 2022;20(7):1285–97.

 38. Abuín JM, Pichel JC, Pena TF, Amigo J. SparkBWA: speeding up the alignment of high‑throughput DNA sequencing
data. PLOS ONE. 2016;11(5):1–21.

 39. Li X, Tang Y, Wang L, Chang Y, Wu J, Wang S. QTL mapping and identification of genes associated with the resistance
to Acanthoscelides obtectus in cultivated common bean using a high‑density genetic linkage map. BMC Plant Biol.
2022;22:1–15.

 40. Zheng X, Bai J, Meixia Y, Liu Y, Jin Y, He X. Bivariate genome‑wide association study of the growth plasticity of staphy‑
lococcus aureus in coculture with escherichia coli. Appl Microbiol Biotechnol. 2020;104:5437–47.

 41. National Center for Biotechnology Information: The Sequence Read Archive (SRA). https:// www. ncbi. nlm. nih. gov/
sra.

 42. Kodama Y, Shumway M, Leinonen R. The sequence read archive: explosive growth of sequencing data. Nucleic Acids
Res. 2011;40(D1):54–6.

 43. National Center for Biotechnology Information: NCBI. https:// www. ncbi. nlm. nih. gov/.
 44. Wheeler DL, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res.

2007;36(Supp 1):13–21.
 45. Shi H, Li W, Xu X. Learning the comparing and converting method of sequence Phred quality score. In: Proceed‑

ings of the 2016 6th International conference on management, education, information and control (MEICI 2016),
Shenyang, China, (2016);260–263.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/

	SeQual-Stream: approaching stream processing to quality control of NGS datasets
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Quality control
	Big data
	Apache Spark and stream processing

	Related work
	Implementation
	Reading of the input datasets
	Parallel reading
	Creation of the Spark dataset

	Processing of the sequences
	Writing of the results

	Results and discussion
	Experiments on testbed 1
	“Downloaded” scenario
	“Downloading” scenario

	Experiments on testbed 2
	Analysis of the scalability

	Conclusion
	Availability and requirements
	Anchor 25
	Acknowledgements
	References

