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Abstract 

Background:  The discovery of anticancer drug combinations is a crucial work of anti-
cancer treatment. In recent years, pre-screening drug combinations with synergistic 
effects in a large-scale search space adopting computational methods, especially deep 
learning methods, is increasingly popular with researchers. Although achievements 
have been made to predict anticancer synergistic drug combinations based on deep 
learning, the application of multi-task learning in this field is relatively rare. The success-
ful practice of multi-task learning in various fields shows that it can effectively learn 
multiple tasks jointly and improve the performance of all the tasks.

Methods:  In this paper, we propose MTLSynergy which is based on multi-task learn-
ing and deep neural networks to predict synergistic anticancer drug combinations. It 
simultaneously learns two crucial prediction tasks in anticancer treatment, which are 
synergy prediction of drug combinations and sensitivity prediction of monotherapy. 
And MTLSynergy integrates the classification and regression of prediction tasks 
into the same model. Moreover, autoencoders are employed to reduce the dimensions 
of input features.

Results:  Compared with the previous methods listed in this paper, MTLSynergy 
achieves the lowest mean square error of 216.47 and the highest Pearson correlation 
coefficient of 0.76 on the drug synergy prediction task. On the corresponding clas-
sification task, the area under the receiver operator characteristics curve and the area 
under the precision–recall curve are 0.90 and 0.62, respectively, which are equivalent 
to the comparison methods. Through the ablation study, we verify that multi-task 
learning and autoencoder both have a positive effect on prediction performance. 
In addition, the prediction results of MTLSynergy in many cases are also consistent 
with previous studies.

Conclusion:  Our study suggests that multi-task learning is significantly beneficial 
for both drug synergy prediction and monotherapy sensitivity prediction when com-
bining these two tasks into one model. The ability of MTLSynergy to discover new 
anticancer synergistic drug combinations noteworthily outperforms other state-of-
the-art methods. MTLSynergy promises to be a powerful tool to pre-screen anticancer 
synergistic drug combinations.
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Background
Anticancer treatment with personalization is a challenge in modern medicine [1]. It is 
particularly important to match the right therapy to specific cancer while considering 
the patient’s characteristics for the improvement of treatment efficacy [2]. In personal-
ized medicine, drug combination therapy has the significant advantages of less toxic-
ity, better efficacy, and lower possibility of drug resistance than monotherapy [3]. Drug 
interactions include synergy, antagonism, and additive effect, which means the effect of 
a drug combination is greater than, less than, and equal to the sum of each drug, respec-
tively [4, 5]. Therefore, a drug combination is not necessarily more beneficial, and it is a 
meaningful task to find drug combinations with synergistic effects.

Clinical trials are the primary way in which most synergistic drug combinations are 
discovered. However, it is cost-intensive and requires large amounts of time and labor, 
and may bring unnecessary or even harmful treatment to patients [6, 7]. In contrast, 
high-throughput screening (HTS) techniques do not require patient trials, but instead, 
use experimentally grown cancer cell lines to screen for drugs that may be used in ther-
apy. Although HTS is now an effective approach to discovering drug combinations, it is 
not feasible to completely test the huge drug combination space through HTS experi-
ments due to objective reasons such as economic cost and experimental difficulty [8]. 
The wide application and rapid development of computer technology provide research-
ers with another thinking.

Faced with the huge screening space, many computational methods for screening drug 
combinations have emerged in recent years. They are mainly divided into two catego-
ries: hypothesis-driven and data-driven [5]. The former includes systems biology meth-
ods [9], biomolecular network-based methods [10], etc. However, the datasets used in 
hypothesis-driven computational methods are small and these methods are restricted to 
certain pathways, targets, or cell lines [11]. Moreover, assumptions used to guide model 
construction can not be guaranteed correct, and the reliability is insufficient [3].

Data-driven models are developed based on features of known synergistic drug com-
binations [5], among which machine learning (ML) models including Random Forest 
[12], Gradient Tree Boosting [13], Extremely randomized tree [14], and Tensor factor-
ization [15] are competitive. With the continuous enrichment of experimental data in 
the field of anticancer drug research and the rapidly growing demand for learning large-
scale datasets and high-dimensional features like gene expression data, a special class 
of ML methods, deep learning (DL), is increasingly favored by researchers. DL meth-
ods can automatically learn suitable feature representations from data without manually 
constructing features, which has advantages in processing large-scale synergy datasets 
[3]. DeepSynergy [11], AuDNNsynergy [16], PRODeepSyn [17] and TranSynergy [18] 
employ deep neural networks (DNNs) for the synergy prediction of drug combinations. 
Furthermore, PRODeepSyn utilizes graph convolutional neural networks (GCNs) to 
extract the topological structure from omics data and protein–protein interaction net-
work data. Recently, some researchers have introduced multi-task learning [5, 19] in 
synergistic drug combinations prediction by exploring correlation and valuable informa-
tion of multiple tasks.

Multi-task learning (MTL) is a subfield of machine learning in which multiple learning 
tasks are solved at the same time. It aims to leverage useful information from multiple 
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related tasks to improve the performance and generalization ability of all the tasks [20]. 
MTL is widely used in natural language processing, speech recognition, and computer 
vision [21], but its application in predicting anticancer synergistic drug combinations has 
just started. Chen et al. [5] proposed a drug synergy prediction model DSML, which com-
bined drug target prediction and drug synergy prediction into a unified framework, and 
enriched model training information by reconstructing drug–target protein interactions, 
to accurately and effectively predict drug synergy. However, it is difficult to obtain excel-
lent computational performance when reconstructing drug–target interactions, since the 
set of protein–protein interactions is sparse and noisy. Kim et al. [19] developed a model 
using transfer learning technology in anticancer drug synergy prediction. The model was 
pre-trained on data-rich tissues using multi-task learning, aiming to learn information 
from these tissues. And then they applied knowledge transfer to predict drug synergy in 
understudied, experimentally-data-deficient, but critical tissues. Nevertheless, They only 
regard monotherapy sensitivity prediction as an auxiliary task of drug synergy prediction 
in the model, thus focusing on synergy results but the sensitivity results.

In this paper, we design an anticancer synergistic drug combinations prediction model 
MTLSynergy based on multi-task learning and deep neural networks. MTLSynergy tack-
les two crucial prediction tasks in cancer treatment: the synergy prediction of drug com-
binations and the sensitivity prediction of monotherapy. Both tasks are jointly addressed 
and optimized in the same model, with a focus on delivering high-quality results for both 
drug synergy and monotherapy sensitivity predictions. We utilize drug molecular finger-
prints and descriptors as drug features, and RNA-Seq TPM gene expression data as cell 
line features, which are extremely accessible and do not require excessively complex pro-
cessing. We leverage drug features and cell line features to pre-train a drug encoder and 
a cell line encoder separately, thereby reducing the dimension of features and obtaining 
encoded representations that are easier and more efficient to learn. Subsequently, these 
encoded representations serve as inputs to the DNNs of MTLSynergy enabling the pre-
diction of drug combination synergy scores and monotherapy sensitivity scores. Addi-
tionally, MTLSynergy combines two classification tasks instead of training classification 
models separately, thus mitigating computational overhead and time cost. MTLSynergy 
adopts the O’Neil dataset [22] for training and testing. Through a series of experiments, 
we demonstrate that MTLSynergy outperforms other state-of-the-art (SOTA) methods. 
We further conduct ablation experiments and hyperparameters sensitivity analysis to 
elucidate the impact of the multi-task learning and autoencoder on the performance of 
drug synergy prediction and monotherapy sensitivity prediction. In addition, we apply 
MTLSynergy to predict previous study cases, finding that prediction results are consist-
ent with these studies. Overall, MTLSynergy is proven to be a powerful method for pre-
screening anticancer synergistic drug combinations.

Materials and methods
Datasets

We utilize the large-scale synergy dataset published by O’Neil et  al. [22] in 2016 for 
training and evaluating our model. The dataset covers the results of experimental test-
ing of 583 different drug combinations against 39 human cancer cell lines. In experi-
ments, each sample was assayed four times adopting a 4 × 4 dosing regimen, and the 
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cell growth rate relative to the control group after 48 h was measured. Preuer et al. [11] 
calculated Loewe Additivity [23] values of 23,062 samples in O’Neil. We take the aver-
age of replicates, resulting in 22,737 data samples. In order to avoid data leaks, all sam-
ples are equally divided into five folds according to drug combinations, which means 
a certain drug combination only exists in the specified fold. Since drug combinations 
that show high synergy are more attractive in clinical anticancer treatment, they receive 
more attention in research and are more worthy of being tested in practice. Therefore, in 
the classification task of drug synergy prediction, we regard samples with synergy scores 
higher than 30 as strong synergistic combinations (positive class) while classifying the 
remaining as the negative class, referring to Preuer et al. [11].

Sensitivity scores of 38 different drugs on 39 cancer cell lines, 1482 items in total, are 
derived from DrugComb [24, 25]. DrugComb is a comprehensive portal that aggregates 
publicly available anticancer drug combination synergy data, integrating dozens of drug 
synergy experimental researches including O’Neil. Besides, it also provides sensitivity 
data of each drug in a drug combination on specific cell line. In DrugComb, the sensitiv-
ity of a single drug is characterized as a dose–response curve with IC50 and RI (Relative 
Inhibition) values [25]. For our purposes, we utilize RI values provided by DrugComb 
as monotherapy sensitivity scores. RI is the normalized area under the dose–response 
curve transformed by log10, which is more robust than other modalities in character-
izing drug sensitivity [26]. While IC50 and EC50 are usually relative indicators that often 
depend on the concentration range tested, RI shows the overall inhibitory effect of the 
drug relative to the control group, facilitating comparisons of drug response in different 
concentration ranges [25]. In the classification task of monotherapy sensitivity predic-
tion, we adhere to the practice of Kim et  al. [19] by establishing a threshold of 50 to 
demarcate positive and negative samples.

We perform drug filtration on the DrugComb dataset, eliminating corrupted or illogical 
data that could adversely affect our experiments. This process ensures that every drug pos-
sesses a valid SMILES expression and is amenable to the extraction of drug fingerprints. 
Additionally, we systematically eliminate drugs lacking synergy data within the DrugComb 
dataset. These drugs lack corresponding combinations and samples, potentially impeding 
the prediction of synergistic drug combinations. We finally obtain 3118 drugs (including 
38 O’Neil drugs) and 175 cell lines (including 39 O’Neil cell lines) from DrugComb to pre-
train a drug autoencoder and a cell line autoencoder. Comprehensive information regard-
ing the autoencoders is provided in section “Autoencoder”. Further details of drugs and cell 
lines are shown in Additional file 1 and Additional file 2, respectively.

Drug features

Morgan fingerprints [27] and molecular descriptors [28] are adopted to capture the 
structure and physicochemical properties of drugs, which are calculated by RDkit toolkit 
[29] based on SMILES expressions. We generate Morgan fingerprints with a radius of 3 
and convert them into a 1024-dimensional binary vector. The molecular descriptors of 
3118 drugs with empty values or zero variance are filtered out, resulting in a 189-dimen-
sional vector for each drug. Afterward, we concatenate two types of aforementioned 
vectors and then carry out z-score normalization to generate a 1213-dimensional vector 
for each drug as drug features. The process is shown in Fig. 1A.
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Cell line features

We acquire RNA-Seq TPM gene expression data of 19,177 genes for 174 cell lines from 
CCLE [30], which include 38 O’Neil cell lines but lack the cell line OCUB-M. Therefore, 
we obtain RNA-Seq TPM data for OCUB-M from another database, Cell Model Passports 
[31], and perform log2(TPM+1) transformation consistent with CCLE. Since 113 genes 
from CCLE can not align with Cell Model Passports, averages of 174 cell lines for 113 
genes are utilized to fill in the missing gene data of OCUB-M. For a total of 175 cell lines, 
we screen out 5000 genes with the largest variance and perform z-score normalization to 
construct 5000-dimensional vectors as cell line features. The process is shown in Fig. 1B.

Fig. 1  Overview of MTLSynergy. A Preprocessing of drug features. B Preprocessing of cell line features. C 
Structure of autoencoder. D Structure of task-specific branch. E Structure of MTLSynergy
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MTLSynergy

We propose a multi-task learning-based method MTLSynergy which jointly learns two 
crucial prediction tasks of cancer treatment in the same framework. MTLSynergy han-
dles the synergy prediction of drug combinations and the sensitivity prediction of mono-
therapy, including both regression and classification tasks. The model is structured into 
two parts: the autoencoder part (Fig. 1C) and the predictor part (Fig. 1E). Autoencoders 
are initially pre-trained adopting the aforementioned drug features and cell line features, 
respectively. The trained encoders are then utilized to transform drug and cell line fea-
tures in a low-dimensional dense space. Subsequently, the predictor is trained by lev-
eraging these encoded representations to predict synergy scores, sensitivity scores and 
their respective classification results. Further details of MTLSynergy are introduced in 
the following sections.

Autoencoder

We build autoencoders to obtain encoded representations with dimensionality reduc-
tion, which are beneficial to discover notable information from drug or cell line features 
and improve learning efficiency as well as reduce computational overhead. The autoen-
coder consists of multi-layer feed-forward neural networks, as shown in Fig.  1C. The 
first two fully connected (FC) layers are an encoder with dropout, and the last two are 
a decoder. ReLU activation function is used between FC layers to introduce nonlinear 
properties. The objective function involves minimizing the error between the original 
input features x of the encoder and the reconstructed output features x̂ of the decoder, 
and the formula is defined as follows:

where n is the number of training samples.
We utilize 1213-dimensional drug features to pre-train a drug autoencoder and lev-

erage 5000-dimensional cell line features to pre-train a cell line autoencoder. The drug 
encoded representations from the trained drug encoder and the cell line encoded repre-
sentations from the trained cell line encoder are subsequently adopted as inputs to the 
predictor.

Predictor

The predictor part of the model shown in Fig.  1E consists of two main modules: 
the shared module and the task-specific module. The shared module has two FC lay-
ers equipped with batch normalization and a ReLU activation function. It accepts the 
concatenation of encoded representations of one drug and one cell line as input and 
generates a representation of shared knowledge applicable to both drug synergy pre-
diction and monotherapy sensitivity prediction tasks. In cases where a sample contains 
two drugs and a cell line, the shared module will produce two distinct representations 
labeled as I and II for each drug–cell line pair.

Branch structures are present within the task-specific module following the shared 
module, as shown in Fig. 1D. MTLSynergy is trained on two tasks: drug synergy predic-
tion and monotherapy sensitivity prediction. For the drug synergy prediction task, the 

(1)LossAE(x, x̂) =
n
i=1 (xi − x̂i)

2

n
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representations I and II are initially concatenated and subsequently fed into the drug 
combination synergy specific branch, which encompasses multiple FC layers utiliz-
ing ReLU activation function and dropout. This branch includes two output layers: one 
responsible for generating the synergy score of a drug combination, and the other for 
producing the probability distribution pertaining to the synergy classification, utilizing 
the softmax activation function.

For the monotherapy sensitivity prediction task, only the representation I is utilized 
as input for the monotherapy sensitivity specific branch. This branch shares a structural 
resemblance with the drug combination synergy specific branch. The final outputs con-
sist of the sensitivity score of a single drug and the probability distribution for the sensi-
tivity classification.

Since drug combinations presented in order drugrow − drugcol or drugcol − drugrow 
should not be differentiated, each sample is included in training in both presentation 
orders. The predicted synergy score for a drug combination on a given cell line is com-
puted as the average of the predicted results obtained in both orders. This training 
approach ensures that drugs at the drugrow position in drug combinations remain con-
sistent with drugs at the drugcol position. Consequently, only the sensitivity scores of the 
drugrow on a cell line need to be predicted in the monotherapy sensitivity prediction task.

We adopt mean square error (MSE) and binary cross entropy (BCE) as loss functions 
for two regression tasks and two classification tasks respectively. Let the total number of 
training samples be represented as n. The BCE function, applied to the real label y and 
the predicted probability distribution ŷ, is defined as follows:

The total loss of the prediction model is computed as the sum of the four loss functions, 
as follows:

the marks syn and sen represent the drug synergy prediction task and the monotherapy 
sensitivity prediction task, respectively.

Experimental setup
Method comparison

We conduct a comparative analysis between MTLSynergy and other SOTA methods, for 
the prediction of synergistic drug combinations. Our evaluation is based on the large-
scale synergy dataset published by O’Neil et al. [22], adopting a rigorous 5-fold cross-
validation approach. The O’Neil samples are partitioned into five distinct folds, each 
characterized by unique drug combinations. Consequently, drug combinations present 
in one fold do not overlap with those in the other four folds. Furthermore, all meth-
ods employ identical data splits for the delineation of training, validation, and test sets. 
MTLSynergy is compared with four DL models including DeepSynergy [11], PRODeep-
Syn [17], TranSynergy [18], and AuDnnSynergy [16], as well as two widely adopted ML 
models including Random Forest [12] and Gradient Tree Boosting [13]. The evalua-
tion outcomes for the four DL models are sourced directly from their original research 

(2)Lossbce(y, ŷ) = −

∑n
i=1 yilogŷi + (1− yi)log(1− ŷi)

n

(3)Losstol = Loss
syn
mse + Losssenmse + Loss

syn
bce + Losssenbce
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papers. Additionally, we have made available source code links for these methods in our 
repository. It should be noted that TranSynergy excludes some cell lines, resulting in 
its evaluation being conducted on the incomplete O’Neil dataset. For two ML models, 
we employ the Random Forest method and the Gradient Tree Boosting method encap-
sulated in the Sklearn 1.0.2 python package. These models are trained independently, 
utilizing feature data that aligns with MTLSynergy. Detailed hyperparameter settings 
for the two ML methods can be found in Additional file 3. We present only evaluation 
results of synergy prediction in section “Method comparison”, as all compared methods 
are single-task in nature. Evaluation results for sensitivity prediction are showcased in 
sections “Ablation study” and “Hyperparameters sensitivity analysis”. In section “Ablation 
study”, we introduce ablation experiments conducted on several MTLSynergy variants. 
These experiments are designed to demonstrate the effectiveness of multi-task learn-
ing and autoencoders in the context of two prediction tasks. In section “Hyperparam-
eters sensitivity analysis”, we elucidate how alterations in the dimensionality of encoders 
impact the performance of MTLSynergy.

Performance metrics

For regression tasks, we adopt mean squared error (MSE) as the main evaluation metric, 
and we also compute the root mean squared error (RMSE) and Pearson correlation coef-
ficient (PCC) between the predicted scores and the actual values. For classification tasks, 
we employ evaluation metrics including the area under the receiver operating character-
istic curve (ROC-AUC), the area under the precision–recall curve (PR-AUC), and accu-
racy (ACC).

Model settings

For autoencoders, we establish the output dimension of the drug encoder as cdrug = 128 
and the cell line encoder as ccell = 256 . During predictor training, we mainly adjust 
hyperparameters including hidden layer size and learning rate. The optimal combination 
is determined by grid search. The available choices for the size of the initial FC layer in 
the shared module consist of {2048, 4096, 8192}, while the options for the learning rate 
are {0.0005, 0.0001, 0.00005}. To mitigate overfitting during training, we implement an 
early stopping mechanism. Training will be halted if, within 100 iterations, the total loss 
on the validation set ceases to decrease or if the number of iterations exceeds 500. In 
such cases, we preserve the model with the lowest loss.

For the drug synergy prediction task, we partition 22,737 samples into five folds based 
on distinct drug combinations, following the approach outlined by Preuer et  al. [11]. 
While this strategy guarantees that each drug combination resides in only one desig-
nated fold, it results in each fold encompassing all drugs in the dataset. Consequently, 
we once more categorize the samples into five folds, this time based on different drugs, 
for the monotherapy sensitivity prediction task. This strategy aligns with the example 
samples depicted in Fig. 1E. In the training phase, we feed the data into the model in 
mini-batches, adhering to the first division strategy, and compute the losses pertaining 
to the drug synergy prediction task. To prevent data leakage in the monotherapy sen-
sitivity prediction task, we subsequently exclude the test data associated with this task 
from the mini-batch. We do this based on the marks of the second division strategy, and 
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we feed this filtered data back into the predictor and calculate the losses. In the final 
step, we compute the total loss and execute a gradient update. This process remains con-
sistent during testing. Initially, we make predictions for the synergy results on the test 
set, and subsequently, we compute sensitivity results. Importantly, we remove the train-
ing data associated with this task from the test set prior to sensitivity calculation to pre-
vent data contamination.

Results
Method comparison

Table 1 presents the regression results from the comparative analysis conducted for the 
drug synergy prediction task. Among the enumerated drug synergy prediction models, 
MTLSynergy stands out with the lowest MSE value, measuring 216.47. This marks a 
5.67% reduction compared to PRODeepSyn, a 15.27% reduction compared to DeepSyn-
ergy, and a notable  21.25% reduction compared to Gradient Tree Boosting. Addition-
ally, MTLSynergy achieves the highest PCC value of 0.76 among the compared methods.  
Figure  2 provides a visual representation that clearly illustrates the substantial advan-
tages of MTLSynergy in terms of both MSE and PCC. Figure 3 reveals the correlation 
between the predicted synergy scores generated by MTLSynergy and the ground truth 
values. We conduct a linear regression analysis utilizing the least squares method, result-
ing in a straight line characterized by a slope of 0.97 and an intercept of −0.11. This line 
closely aligns with the reference line y = x , demonstrating that the predicted values of 
MTLSynergy on the drug synergy prediction task exhibit a robust linear correlation with 
the actual values. These results prove that MTLSynergy significantly outperforms other 
SOTA methods.

We also report the classification results in Table  2, considering that many studies 
approach the drug synergy prediction task from a classification perspective. We derive 
the evaluation results of MTLSynergy based on the synergy probability it generates. 
We find that MTLSynergy exhibits proximity to the best results in terms of ROC AUC 
and PR AUC and achieves the highest ACC of 0.94. The distinctions among the top four 
methods on the classification task is inconspicuous. One potential explanation for this 
observation is that treating the task of identifying synergistic drug combinations as a 
binary classification problem is an oversimplification that may make the results less real-
istic [32]. Overall, MTLSynergy performs remarkably on the regression task and shows 
competitiveness on the classification task.

Table 1  Results of the Method Comparison on the Regression Task

Boldface indicates the best value of each column in a particular metric

*TranSynergy excludes certain cell lines from O’Neil dataset

Method MSE RMSE PCC

MTLSynergy 216.47±37.32 14.66±1.26 0.76±0.02
PRODeepSyn 229.49±42.81 15.09±1.37 0.75±0.02

TranSynergy* 231 ± 21 – 0.75±0.02

AuDnnSynergy 241.12±43.52 15.46±1.44 0.74±0.03

DeepSynergy 255.49 15.91±1.56 0.73±0.04

Gradient Tree Boosting 274.88±44.97 16.53±1.33 0.69±0.02

Random Forest 360.15±51.32 18.93±1.34 0.57±0.02
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Table 2  Results of the Method Comparison on the Classification Task

Boldface indicates the best value of each column in a particular metric

*TranSynergy excludes certain cell lines from O’Neil dataset

Method ROC-AUC​ PR-AUC​ ACC​

MTLSynergy 0.90±0.02 0.62±0.05 0.94±0.01
PRODeepSyn 0.90±0.03 0.63±0.05 0.93±0.01

TranSynergy* 0.91±0.01 0.63±0.01 –

AuDnnSynergy 0.91±0.02 0.63±0.06 0.93±0.01

DeepSynergy 0.90±0.03 0.59±0.06 0.92±0.03

Gradient Tree Boosting 0.90±0.01 0.56±0.05 0.93±0.01

Random Forest 0.87±0.02 0.52±0.05 0.91±0.01

Fig. 3  Scatter plot of the predicted synergy scores and the ground truth

Fig. 2  Comparison of different methods on MSE and PCC
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Additionally, we conduct evaluations of MTLSynergy, DeepSynergy, Gradient Tree 
Boosting, and Random Forest using identical feature data in the Leave Drugs Out sce-
nario (samples are split to make that drugs present in the test set are absent from the 
training set) and in the Leave Cell Lines Out scenario (samples are split to make that cell 
lines seen in the test set are not included in the training set), respectively. In the Leave 
Drugs Out scenario, MSEs for all methods fall within the range of 430 to 461, while in 
the Leave Cell Lines Out scenario, MSEs span from 379 to 510. The detailed results are 
presented in Additional file 3. The predictive performance of all methods in these two 
scenarios is massively worse compared to their performance in the Leave Drug Com-
binations Out scenario (our main experiments). This phenomenon can be attributed to 
the limited amount of training examples in terms of only 38 distinct drug types and 39 
cell line types involved. The evaluation results of the two machine learning methods are 
better than those of the two deep learning methods. This discrepancy can be attributed 
to the capacity of traditional machine learning methods to learn effectively from lim-
ited available data, whereas deep learning algorithms typically demand a more extensive 
dataset for proficient training.

Performance across different tissues

Moreover, we visualize the performance of MTLSynergy across various cell lines and tis-
sues based on PCC values. Figure 4A displays the PCC between the predicted synergy 
scores and the ground truth on each cell line, and the colors of the bars indicate the tis-
sue types. The PCC of MTLSynergy across cell lines ranges from 0.62 (COLO320DM) to 
0.85 (OVCAR3). Among the 39 cell lines, only 4 cell lines present a PCC lower than 0.65, 
whereas 23 cell lines (58.97%) exhibit a PCC higher than 0.75. We can see that cell lines 
from the same tissue exhibit a notable diversity in their PCC values. For example, the 
large intestine cell line COLO320DM diaplays the lowest PCC, but the large intestine 
cell line LOVO exhibits a PCC of 0.847, closely approaching the highest observed PCC.

As depicted in Fig.  4B, we further generate a boxplot illustrating the distribution of 
PCC values categorized by the tissue types of cell lines. Notably, cell lines associated with 

Fig. 4  Performance across different tissues. A PCC values of each cell line. The tissue types of cell lines are 
represented by different colors. B The boxplot of the PCC values of each tissue. The orange horizontal line in 
each box indicates the median
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ovary tissue exhibit the highest median PCC value, while all tissues, with the exception 
of pleura, achieve median PCC values surpassing 0.70. Overall, synergy scores predicted 
by MTLSynergy show a strong correlation with the ground truth across various tissues, 
and no discernible association between PCC and tissue types is observed. Additionally, 
we also visualize the performance of MTLSynergy on each drug in Additional file 3.

Ablation study

To elucidate the influence of multi-task learning and autoencoder on both the drug 
synergy prediction task and monotherapy sensitivity prediction task, we compare the 
prediction performance of MTLSynergy with several variants, including OnlySynergy, 
OnlySensitivity, and MTLSynergy-NoAE. Additionally, we introduce MTLSynergy-
Regression that focuses solely on regression tasks to explore the effect of simultaneously 
performing regression and classification in a multi-task framework.

•	 OnlySynergy: This variant only performs the drug synergy prediction task. It com-
bines the structure of the shared module and the drug combination synergy specific 
branch in MTLSynergy. And it employs the same output dimensions of the drug 
encoder and the cell line encoder as MTLSynergy.

•	 OnlySensitivity: This variant only performs the monotherapy sensitivity prediction 
task. It combines the shared module and the monotherapy sensitivity specific branch 
in MTLSynergy, and the output dimensions of the drug encoder and cell line encoder 
employed are consistent with MTLSynergy.

•	 MTLSynergy-NoAE: Compared with MTLSynergy, this variant removes the drug 
encoder and the cell line encoder. It directly inputs the drug features and cell line 
features into the predictor.

•	 MTLSynergy-Regression: It only performs the regression tasks of the drug synergy 
prediction and the monotherapy sensitivity prediction, with the same drug encoder 
and cell line encoder as MTLSynergy.

Tables 3 and 4 present the results of the ablation study for drug synergy prediction task 
and monotherapy sensitivity prediction task. Compared with OnlySynergy and MTL-
Synergy-NoAE, MTLSynergy achieves the smallest MSE on the drug synergy prediction 
task. This observation implies that the inclusion of the monotherapy sensitivity predic-
tion task has a positive influence on learning the response regularity of drug combina-
tions on cell lines. In the multi-task joint learning process, the synergy prediction task 
effectively exploits the valuable insights from the sensitivity prediction task, resulting 
in the improvement of prediction performance. Figure  5A shows that MTLSynergy is 

Table 3  Results of Drug Synergy Prediction in the Ablation Study

Boldface indicates the best value of each column in a particular metric

Method MSE RMSE PCC

MTLSynergy 216.47±37.32 14.66±1.26 0.76±0.02
OnlySynergy 235.24±39.20 15.29±1.25 0.74±0.02

MTLSynergy-NoAE 218.83±36.21 14.74±1.21 0.76±0.02

MTLSynergy-Regression 218.91±35.77 14.75±1.20 0.76±0.03
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outstandingly superior to OnlySynergy in terms of both MSE and PCC. Although the 
enhancement over MTLSynergy-NoAE may appear marginal, the integration of autoen-
coders to reduce the dimensionality of high-dimensional features holds significance. It 
captures essential feature information while substantially reducing training complexity.

On the monotherapy sensitivity prediction task, MTLSynergy exhibits a substantially 
smaller MSE compared to OnlySensitivity. It indicates the reciprocal influence of the 
sensitivity prediction and the synergy prediction on each other during training, under-
scored by the positive effect of multi-task learning on both tasks. Furthermore, when 
compared to MTLSynergy-NoAE, which lacks autoencoders, MTLSynergy achieves a 
reduced MSE and the same PCC. It signifies that the encoded representations generated 
through encoders are also beneficial for the sensitivity prediction task to some degree. 

Table 4  Results of Monotherapy Sensitivity Prediction in the Ablation Study

Boldface indicates the best value of each column in a particular metric

Method MSE RMSE PCC

MTLSynergy 265.73±86.80 16.08±2.66 0.66±0.08

OnlySensitivity 445.51±169.64 20.73±3.95 0.29±0.16

MTLSynergy-NoAE 272.31±80.34 16.32±2.45 0.66±0.06
MTLSynergy-Regression 280.19±72.81 16.60±2.18 0.63±0.06

Fig. 5  A Comparison of MTLSynergy and variants on the drug synergy prediction task. B Comparison of 
MTLSynergy and variants on the monotherapy sensitivity prediction task
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Figure  5B visually reveals the advantages of MTLSynergy over other variants on the 
monotherapy sensitivity prediction task.

In terms of MSE and PCC, MTLSynergy-Regression exhibits a slight performance 
decline compared to MTLSynergy on the drug synergy prediction task and performs less 
favorably than MTLSynergy on the monotherapy sensitivity prediction task. However, 
the classification results obtained by applying a threshold to the predicted synergy scores 
from MTLSynergy-Regression, with a ROC AUC of 0.91 and PR AUC of 0.65, surpassing 
the classification results obtained directly from MTLSynergy. It’s noteworthy that many 
prior studies (like DeepSynergy, AuDnnSynergy, PRODeepSyn, etc.) employed thresh-
olding based on regression scores to derive classification results. In these cases, the clas-
sification performance is strongly contingent on the quality of regression, thus placing 
a greater emphasis on enhancing regression performance. In our study, we attempt to 
incorporate the classification task into the multi-task network, aiming to achieve supe-
rior regression outcomes while concurrently delivering comparable and competitive 
classification results. Detailed results of variants on each fold are provided in Additional 
file 3.

Hyperparameters sensitivity analysis

To explore the effect of output dimensions of the drug encoder and the cell line encoder 
on the prediction performance of MTLSynergy, we conduct a hyperparameters sensi-
tivity analysis experiment. In this analysis, we select the output dimension of the drug 
encoder cdrug from {32, 64, 128, 256, 512}, and the output dimension of the cell line 
encoder ccell from {128, 256, 512, 1024, 2048}. We only modify one of cdrug or ccell in each 
experiment, keep the other unchanged, and finally draw figures of MSE and PCC on the 
drug synergy prediction task and the monotherapy sensitivity prediction task concern-
ing changes of cdrug and ccell (Fig. 6).

We find that both prediction tasks in MTLSynergy are influenced by the output 
dimensions of the drug encoder and the cell line encoder, with the monotherapy sensi-
tivity prediction task being notably sensitive to dimensionality changes. The first figure 
in the first row of Fig. 6 shows that MTLSynergy achieves the best MSE and PCC on the 
drug synergy prediction task when the output dimension of the drug encoder is set to 
128. The second figure shows the fluctuations of MSE and PCC concerning the dimen-
sionality changes of the cell line encoder. Notably, the prediction performance remains 
relatively stable when the dimension exceeds 128. For the monotherapy sensitivity pre-
diction task, the first figure in the second row of Fig. 6 demonstrates substantial fluctua-
tions on MSE and PCC when the dimension of the drug encoder changes. The optimal 
performance is achieved with a 128-dimensional drug encoder. The second figure indi-
cates that MTLSynergy achieves the best result when the output dimension of the cell 
line encoder is set to 512, closely followed by the result with a 256-dimensional cell line 
encoder. We comprehensively consider the performance on two prediction tasks and the 
computational resources required for model training, and finally select a drug encoder 
and a cell line encoder with output dimensions of 128 and 256, respectively. Detailed 
results are provided in Additional file 3.
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Case study

We collect samples outside of the O’Neil dataset in DrugComb and find that the results 
of many cases predicted by MTLSynergy are consistent with previous in vivo and in 
vitro studies. For example, Amirouchene-Angelozzi et  al. [33] reported that the drug 
combination of BEZ235 and RAD001 demonstrated the highest mean synergy score on 
melanoma cell lines in their combination screen experiments. MTLSynergy predicts a 
synergy score of 75.90 for this drug combination on the melanoma cell line A2058, sig-
nifying a high degree of synergy, consistent with their observation. In another study by 
Friedman et al. [34], it was noted that Vincristine and Erlotinib exhibited substantial syn-
ergy on multiple melanoma cell lines. The synergy scores computed by MTLSynergy for 
this combination on melanoma cell lines, including A2058, G-361, MEWO, SKMEL30, 
and SKMEL2, are 74.44, 47.62, 46.61, 38.36, and 36.57, respectively, all indicating strong 
synergy. These results align with their findings. Experiments conducted by Ma et al. [35] 
showed that the combination of Fulvestrant and MK2206 significantly increased apop-
tosis in the breast cancer cell line MCF7, while resistance developed when each drug 
was used in isolation. MTLSynergy computes a synergy score of 35.49, indicating the 
effectiveness of this combination for MCF7, which corresponds with their experimental 
results. Furthermore, Feliu et al. [36] conducted a clinical trial involving docetaxel com-
bined with mitomycin C in patients with advanced non-small cell lung cancer (NSCLC). 
Their findings showed that the regimen had acceptable toxicity but did not achieve the 
intended improvement in efficacy. MTLSynergy assigns synergy scores of 0.07 and −
2.45 for this drug combination on NSCLC cell lines NCI-H460 and EKVX, respectively, 
indicating additive and antagonistic effects, which corroborate the conclusions of their 
research. These illustrative cases underscore the practical utility of MTLSynergy in pre-
dicting novel synergistic drug combinations.

Fig. 6  Results of hyperparameters sensitivity analysis
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Discussion and conclusion
In this paper, we propose a multi-task learning model named MTLSynergy, designed 
to simultaneously predict drug combination synergy and monotherapy sensitivity. We 
combine both regression and classification tasks for synergy and sensitivity predictions, 
thus obtaining regression scores and classification results within a single model. We also 
leverage autoencoders to perform feature dimensionality reduction, extracting essential 
information and enhancing learning efficiency. Our method begins with the pre-train-
ing of corresponding autoencoders utilizing drug and cell line features. Subsequently, 
we feed the encoded representations of drugs and cell lines obtained from the trained 
encoders into the predictor. This predictor comprises two key components: the shared 
module and the task-specific module. The shared module independently generates two 
representations for each drug–cell line pair. For the drug synergy prediction task, these 
two representations are concatenated and then forwarded to the drug combination syn-
ergy specific branch of the task-specific module. This branch ultimately produces the 
synergy score and the synergy probability distribution for a given drug combination. On 
the other hand, for the monotherapy sensitivity prediction task, only the first represen-
tation is utilized, feeding it into the monotherapy sensitivity specific branch of the task-
specific module. The final outputs from this branch include the sensitivity score and the 
sensitivity probability distribution for a single drug.

Our experiments conducted on the large public dataset clearly demonstrate that 
MTLSynergy outperforms other SOTA methods in predicting drug synergy. Specifically, 
MTLSynergy exhibits significant advantages on the regression task while maintaining 
performance levels equivalent to those of the compared methods on the classification 
task. In addition, our ablation study provides compelling evidence that multi-task learn-
ing plays a pivotal role in enhancing both drug synergy prediction and monotherapy 
sensitivity prediction. When compared to single-task learning, multi-task learning 
proves to be highly effective in leveraging potentially valuable information from multi-
ple related tasks, leading to superior learning outcomes. Furthermore, the inclusion of 
autoencoders in our method yields positive effects on prediction performance for both 
tasks compared with removing them. However, we need to carefully consider when 
determining the output dimensions of encoders. Our experiments exploring hyperpa-
rameters sensitivity reveal that MTLSynergy is sensitive to the dimensionality changes 
of encoders, thereby offering valuable guidance for model optimization. In our case 
study, we find that MTLSynergy’s predictions align with the outcomes of previous stud-
ies in many instances, which reflects the practical value of MTLSynergy. Overall, MTL-
Synergy represents a significant advancement in predicting anticancer synergistic drug 
combinations.

However, there exist some limitations of MTLSynergy. Firstly, our current method 
computes the total loss by directly summing the losses of multiple tasks. This may 
not represent the optimal solution for calculating the total loss in a multi-task model. 
How to find optimal weight parameters for each loss function, and how to combine 
multiple loss functions to achieve the best overall effect, are issues worth explor-
ing when building a multi-task model. Secondly, we acknowledge that the perfor-
mance of the monotherapy sensitivity prediction task in MTLSynergy has not been 
directly compared with previous studies. This lack of direct comparison arises from 
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differences in datasets, measurements of sensitivity scores, and evaluation metrics 
adopted across studies. We expect to address these differences in future research to 
facilitate more meaningful comparisons in the sensitivity prediction task.

In summary, our study suggests that multi-task learning is beneficial for drug syn-
ergy prediction as well as monotherapy sensitivity prediction when integrating these 
two tasks into a single model. Compared with SOTA methods, the ability of MTLSyn-
ergy to discover new anticancer synergistic drug combinations is notably improved 
by incorporating other relative tasks, which shows a certain reference value for the 
follow-up research. MTLSynergy is expected to be a useful tool to pre-screen anti-
cancer synergistic drug combinations.
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