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Abstract 

Background: Network graphs allow modelling the real world objects in terms 
of interactions. In a multilayer network, the interactions are distributed over layers (i.e., 
intralayer and interlayer edges). Network alignment (NA) is a methodology that allows 
mapping nodes between two or multiple given networks, by preserving topologi-
cally similar regions. For instance, NA can be applied to transfer knowledge from one 
biological species to another. In this paper, we present DANTEml, a software tool 
for the Pairwise Global NA (PGNA) of multilayer networks, based on topological assess-
ment. It builds its own similarity matrix by processing the node embeddings computed 
from two multilayer networks of interest, to evaluate their topological similarities. The 
proposed solution can be used via a user-friendly command line interface, also having 
a built-in guided mode (step-by-step) for defining input parameters.

Results: We investigated the performance of DANTEml based on (i) performance 
evaluation on synthetic multilayer networks, (ii) statistical assessment of the resulting 
alignments, and (iii) alignment of real multilayer networks. DANTEml over performed 
a method that does not consider the distribution of nodes and edges over multiple 
layers by 1193.62%, and a method for temporal NA by 25.88%; we also performed 
the statistical assessment, which corroborates the significance of its own node map-
pings. In addition, we tested the proposed solution by using a real multilayer network 
in presence of several levels of noise, in accordance with the same outcome pursued 
for the NA on our dataset of synthetic networks. In this case, the improvement is even 
more evident: +4008.75% and +111.72%, compared to a method that does not con-
sider the distribution of nodes and edges over multiple layers and a method for tem-
poral NA, respectively.

Conclusions: DANTEml is a software tool for the PGNA of multilayer networks based 
on topological assessment, that is able to provide effective alignments both on syn-
thetic and real multi layer networks, of which node mappings can be validated 
statistically. Our experimentation reported a high degree of reliability and effectiveness 
for the proposed solution.
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Background
Network graphs (or simply networks) allow modelling the real world objects in terms 
of their relationships, by visualizing how the objects (nodes) are interconnected 
(edges) with each other. To give an example, these allow investigating topological and 
biological hypotheses based on the interactions existing between biological objects, 
by applying techniques of representation learning, clustering, or data mining [1, 2].

A multilayer network is an effective choice when several types of entities need to 
coexist in the same model, and their own connections are modelled. It is modelled a 
set of nodes, edges, and layers, where the interpretation of the layers depends on the 
implementation of the model, that may be homogeneous or heterogeneous based on 
the types of entity represented by the nodes [3]. Furthermore, it supports both intra-
layer and interlayer edges. The former is fully similar to the concept of edge described 
for classic networks, the second one instead represents a connection between nodes 
included in different layers.

Within this context, the relationship between temporal networks and multilayer 
networks should be mentioned. A temporal network (or time-varying network, or by 
extension dynamic network) [4] allows modelling a structure composed of the same 
type of entities, whose topology evolve over time [5, 6]. It can be defined in terms of 
a multilayer network [7], that includes temporal information on the edges. Therefore, 
we may consider the temporal networks as a particular case of multilayer networks, 
where the distribution does not occur in time spans but on layers of interest. There-
fore, temporal networks (or time-varying networks) were included among the classes 
of multilayer networks [8], where each layer encodes the same type of interaction at 
different time points; briefly, each time point is a layer, representing objects in the 
same evolutionary time-window.

This assumption allowed us to extend our own existing solution for the alignment of 
dynamic networks (i.e., DANTE [9]), to support the alignment of multilayer networks.

Reflecting how described in the context of biological system, the multilayer net-
works allow properly modelling the interconnected units in a structure able to prop-
erly represent the evolutionary and heterogeneous nature of these, by interconnecting 
even more than one set of biological objects.

Network Alignment (NA) compares networks by finding a node mapping that 
conserves topologically similar regions from these. Therefore, the alignment of two 
given networks (i.e., source and target networks) produces a set of aligned node pairs, 
where a node of the first network is mapped to one of the second one [10]. In the 
Local NA (LNA), we will look to the matches between local regions, admitting many-
to-many ones. In the Global NA (GNA), we will look to the best overlapping between 
the whole topologies of interests, only admitting one-to-one matches [11].

NA is a technique used to transfer knowledge from a network to another having 
a more complex topology. To give a non-exhaustive example, some genes in rat or 
mouse share functions with the genes in humans. Therefore, NA may be used to 
transfer this information, to simplify the in-vivo genotyping, as well as in vitro stud-
ies, by assuming that the similarities between the interaction in the networks of two 
species correspond to similarities in biological processes.
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The scope of multilayer networks is still in an early stage, so that the literature does 
not report solutions specifically designed for the Pairwise GNA (PGNA) of multilayer 
networks. Nowadays, the only solution supporting the NA of multilayer networks has 
been proposed by Milano et al. [12] (i.e., MultiLoAl). However, it exploits a LNA heu-
ristic, based on a set of seed nodes and the homology of the given networks.

The existing methodologies for PGNA do not properly process the multilayer net-
works, having been developed for other network’s models. For completeness, we 
propose an overview of the well-known ones, by focusing on those involved in our 
experimentation.

MAGNA++ [13] is perhaps the most used tool for comparative purposes in 
the field of PGNA of static networks. It works by applying a genetic approach for 
maximizing node and edge conservation over successive permutations. Similarly, 
DynaMAGNA++ [14] performs the PGNA of dynamic networks, based on event 
duration-based representation. Briefly, it handles a dynamic network as a set of static 
networks, each of which represents a specific time point. The evolution over time 
is maintained by evaluating the changes between the topologies of successive time 
points, by applying an extension of Graphlet Degree Vector (GDV) [15] for dynamic 
networks. GDV is also used by DynaWAVE for node conservation, otherwise, it per-
forms the alignment via a greedy seed-and-extend strategy. According to the authors, 
this different approach is less accurate but faster than DynaMAGNA++.

In this paper, we present DANTEml (DANTE for MultiLayer networks), a novel 
software tool for the PGNA of multilayer networks, that uses topological assess-
ment to build its own similarity matrix. As discussed, it is based on DANTE (see 
“Section  DANTE: an algorithm for aligning dynamic networks” for detailed infor-
mation), our existing solution for the PGNA of dynamic networks. Just like its pro-
genitor, DANTEml builds the similarity matrix, on which the alignment function is 
performed, by analysing the embeddings computed for all nodes.

Our contribution is providing a ready-to-use tool, purely dedicated to the PGNA 
of multilayer networks, since the literature only reports methodologies applicable to 
individual sub-categories (e.g., temporal networks, and heterogeneous networks).

Finally, the main features of DANTEml are summarized as follows:

• computing the similarities between two multilayer networks of interest, based on 
node embeddings, in order to reflect their topological similarities;

• performing the GNA between pairs of multilayer networks;
• providing a user-friendly Command Line Interface, usable also by non-human 

operators for automating data processing, e.g., via scripting or pipelines.

Design and Implementation of DANTEml
In this section, we present the design and implementation of DANTEml, by also 
focusing on the methods applied for processing, as well as on its use. Before dealing 
in details, let we firstly introduce how its own progenitor (DANTE) works for align-
ing pairs of dynamic networks, and how a multilayer network graph may be formally 
modelled.
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DANTE: an algorithm for aligning dynamic networks

Let us denote the source dynamic network by G(V,  E1), with V = {v1, v2, . . . , vn} 
(n the number of nodes in G), and the target dynamic network by H(U,  E2), with 
U = {u1,u2, . . . ,um} (m the number of nodes in H); we assumed without loss of 
generality: |V | ≤ |U | . E1 and E2 are the events (i.e., temporal edges) of G and H, 
respectively.

DANTE performs the PGNA based on three main steps: (i) evaluating the node fea-
tures for each dynamic network (i.e., temporal embedding), (ii) constructing the simi-
larity matrix, and (iii) performing the one-to-one node mapping between the source 
and the target.

The temporal embedding is induced by applying the Skip-Gram (SG) model [16] 
over the time points, iteratively. In the similarity matrix, the values are obtained by 
computing the cosine similarity between the pairs of vector embeddings, belonging to 
a node of the source network and a node of the target one, respectively.

DANTE performs the one-to-one node mapping (f) between G and H, by maximiz-
ing the objective function ( φ ) between all pairs of nodes. Briefly, it aligns a node of 
G with a node of H, such that no node of G maps more than one node of H, and vice 
versa.

The alignment will provide a set of aligned nodes based on best match among all 
vectors, by handling the collisions via the global maximization of f.

The mapping f : V → U  was implemented by adopting an iterative process, so that 
it produces a set of aligned node pairs (v, f(v)), with v ∈ V .

Formally, f is computed as follows:

where the objective function φ is defined as:

The Graph Model of a Multilayer Network

Formally, a multilayer network graph model GM can be described as GM = (VM ,EM) 
[17], where VM and EM are a set of nodes and edges, respectively.

Referring to GM , let us denote a generic intralayer by Ga and a generic interlayer by 
Gb , consisting of its own set of edges Ea (i.e., intralayer edges) and Eb (i.e., interlayer 
edges), respectively. Elaborating, we may formally describe these as follows:

with α and β the arrays of elementary layers, and (u, v) a generic pair of nodes. Note that 
in the proposed model, edges are undirected.

(1)f (v) := {u | argmax
u∈U

φ(v,u)}

(2)φ ← cosine_similarity(v,u) : {� ∃φ(v′, f (v′)) ≥ φ(v,u), v′ ∈ V }

(3)Ga =(VM ,Ea) : Ea = ((u,α), (v,β)) ∈ EM |α = β

(4)Gb =(VM ,Eb) : Eb = EM/Ea
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The multilayer networks are given in input to DANTEml in accordance with the 
described model. The latter has been implemented through a data structure based on 
an attributed edge list. Formally, we will have a set of tuples (u, v, l), such that u and 
v are the pair of nodes, and l is the attribute reporting the layer on which this edge 
insists; each intralayer is also defined by its own identifier.

This approach allows tracing it back to the whole topology by only considering the 
order of assignment of the identifiers (e.g., increasing integers), in order to recon-
struct the multilayer network without loss of information. To give a non-exhaustive 
example of a multilayer network consisting of three layers, we can assign the identi-
fiers 1, 2, and 3, for the first layer, the second one, and the interlayer, respectively.

In addition, a multilayer network can be defined by using an equivalent flat represen-
tation, that allows collapsing both intralayer and interlayer into a network graph model 
where edges and nodes were typed according to what they represented in the multilayer 
one; a non-exhaustive toy example consisting of two layers is shown in Fig. 1.

DANTEml

DANTEml performs the alignment by inheriting the definition of f and φ from 
DANTE; we are referring to Eqs. 1 and 2, respectively. What differentiates DANTEml 
from DANTE mainly concerns the construction of the similarity matrix, to which f is 
applied. Even in this case, it is constructed based on a set of node embeddings, how-
ever, it does not consider a temporal evolution of each node, but the interactions of 
the latter over independent layers.

In a temporal network, the interlayers represented the edges conserved between 
one time point and the next one, and could be incorporated into the identity of the 
node that owned them, as an evolution of its own interactions. Otherwise, in this 

Fig. 1 The figure shows a non-exhaustive toy example for a multilayer network consisting of two layers. 
The left side of the figure shows the classic representation of a multilayer networks, while the right side uses 
the (equivalent) flat representation. The intralayer edges belonging to the first layer are depicted in green 
and the ones for the second layer in red, while the interlayer edges in blue. The edges were tagged by using 
a dedicated identifier (id), as reported into the figure, in order to keep the whole topology intact, without 
losing information
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multilayer context, the interlayers link different entities, therefore, they can be treated 
as independent edges (i.e., no evolutionary) which has the only particularity of being 
outside the existence layer of the node that owns it.

In this novel context, a generic node is featured on the whole set of its own interac-
tions (i.e., edges), that may also link different layers. This means that the characterization 
of a node considers all layers, through the analysis of both the intralayer and interlayer 
edges, in order to evaluate the relationship of each node with the overall topology of the 
multilayer network. This issue has required a redesign of the way to evaluate the features 
of the nodes from a topological point of view, in order to build the similarity matrix that 
is functional for a given pair of multilayer networks.

We have used the SG model via node2vec [18], for the representational learning on the 
multilayer network graph models in flat representation, to compute the node embed-
dings. It consists of a simple neural network based on one hidden layer, firstly designed 
for word2vec [16] and subsequently extended by node2vec.

Let us denote the number of neurons of the hidden-layer by N, the node embedding is 
a matrix with a dimension of V × N  obtained by the dot product between the input and 
the hidden layer. The output layer consists of the dot product between each vector in the 
embedding matrix (V vectors) and its output vector (size equals to N), by producing a 
weighted matrix with size N × V  . For each iteration, the SG model selects a target node 
over a rolling window (w), of which the size represents the context location (c) at which 
the node is predicted. To give an example, the model will evaluate the nodes at c − 1 and 
c + 1 , for w = 1.

Briefly, node2vec learns the features of a given node by performing a fixed amount of 
random walks starting from this one, to explore its context and generate a random sam-
ple that can be embedded by using the SG model; the resulting output is a vector repre-
sentation of the topological properties of the node in the network (i.e., node embedding).

DANTEml computes node embeddings for source and target multilayer networks, 
independently. These two sets of vector embeddings were correlated by calculating the 
similarities between all possible pairs, made up of a vector from the first set and one 
from the second one, respectively. In detail, DANTEml calculates the cosine similarity 
between a simple mean of the projection weight vectors of the given node in the source 
network, and the vectors for each node in the target network. The resulting similarities 
constitute the similarity matrix (S). From a point of view of the data structures used for 
the implementation of our solution, it consists of nested vectors.

Once the similarity matrix has been calculated, DANTEml applies f to S, for comput-
ing a preliminary (pre) one-to-one node mapping (or pre-mapping). Based on the lat-
ter, an iterative approach based on successive permutations was applied to maximize the 
Node Correctness (NC).

It is important to underline that the similarity matrix can also be acquired from 
external sources. The latter case is particularly advantageous for further improving the 
alignment score, on the basis of similarities between biological objects corroborated by 
the literature. To give an example, if the similarity between two genes exists, it can be 
used in the alignment step regardless of the topological location of the two genes in the 
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respective networks or layers. Briefly, in this case, the embeddings are performed on the 
basis of the given similarity matrix, bypassing the in-depth evaluation of the networks 
through random walks.

Each permutation evolves the pre-mapping by searching alternative pairs within the 
similarity matrix that, even if with a lower similarity between the embeddings related 
to the nodes of interest, however these have a greater similarity in terms of global 
overlapping into its own layer with other candidate nodes.

Let us denote (u1, v1) as a generic pre-mapping between the node u1 and v1 , belong-
ing to the source multilayer network and the target one, respectively. In our approach, 
the optimization of u1, v1 means searching a node v2 , such that the ratio between the 
similarity of the embeddings and the overlapping of nodes is globally the highest. For 
evaluating an overlapping, we opted for a simple and well-known metric in the field of 
node similarity: the Jaccard coefficient (Jc) [19]. We formally describe Jc in Eq. 5.

with u and v the two nodes of interest, and Ŵ(u) the set of neighbours of u.
This approach is performed by iteratively applying f to the similarity matrix, for 

each pair of nodes that do not also have a Jc equal to 1 (i.e., the mappings that are not 
already overlapped); this allows subsequent refinements. If the similarity between the 
embeddings already reflects the maximum achievable, the pair does not need to be 
optimized further and is considered as final. Note that the iterative processing is per-
formed until all pairs of node mapping are maximized, or to a permutation amount 
defined by the user (default: 50% of the size of the pre-mapping; in our experimenta-
tion, this threshold has never been reached, and it seemed reasonable to us to contain 
the running time in the worst case).

Summarizing, the PGNA between two generic networks produces a resulting one-
to-one node mapping (see “Section Background”). For multilayer networks, the PGNA 
he must also evaluate the layered arrangement of the nodes, as well as the existence 

(5)Jc =
|Ŵ(u) ∩ Ŵ(v)|

|Ŵ(u) ∪ Ŵ(v)|

Fig. 2 The figure shows a non-exhaustive toy PGNA between two multilayer networks having two layers, 
each one. The green and blue lines are the one-to-one node mappings between the nodes of the respective 
layer; in the figure, it was also reported as table
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of the interlayer edges. Figure 2 shows a non-exhaustive toy alignment between two 
multilayer networks having two layers, each one. DANTEml produces an output in 
accordance with what has just been specified.

Finally, we also report below the main implementation details.
DANTEml was implemented in Python3, and it consists of three main functions 

related to (i) node embeddings, (ii) similarity matrix construction, and (iii) alignment, 
respectively.

The first allows for representational learning of a multilayer network graph model, 
based on the training of vector embeddings via random walks. It allows mapping a 
node to an embedding space based on its own topological features. The representa-
tional learning was processed by using a well-known Python package, i.e., Gensim 
[20], while the creation and manipulation of the network graph models was imple-
mented through NetworkX [21]. Scientific computing (e.g., cosine similarity) and sta-
tistics were performed by using Scipy [22].

We have also implemented a user-friendly Command Line Interface (CLI) for 
human and non-human (e.g., script or pipeline), also having a built-in guided mode 
(step-by-step) for defining input parameters. DANTEml’s screenshot is shown in 
Fig. 3. Listing 1 briefly reports the cornerstones of using DANTEml through the help 
of the supported options and parameters.

Fig. 3 DANTEml’s screenshot: two synthetic multilayer networks were aligned. The figure shows the CLI, that 
allows you to set all parameters in guided mode; alternatively, these can be passed into the shell command



Page 9 of 19Cinaglia et al. BMC Bioinformatics          (2023) 24:416  

Results
In this section, we report the results from our experimentation. However, first we will 
report the details of the datasets, and how these were obtained. Our experimentation 
focused on non-trivial case-studies consisting of heterogeneous entities.

Datasets

Synthetic Multilayer Networks

Let us denote with n the number of nodes for a layer of interest, and with m the num-
ber of edges with which a new node attaches to existing nodes. Furthermore, let p be 
the probability to add a link to randomly chosen existing nodes between the m new 
edges defined for the layer of interest, and q be the probability that an edge insisting 
of a pair of nodes having at least another edge is removed (no node must be isolated) 
on the same layer. Note that when p = q = 0 this model behaves just like the Barabási-
Albert model [23], a well-known random scale-free network model. The probabilities 
p and q can be used to simulate the duplication and divergence mechanisms that are 
detectable in a real biological network. For our experimentation, we generated 10 mul-
tilayer networks, by using the following two sets of arbitrarily parameters for each layer: 
(i) [n = 100,m = 2, p = 0.5, q = 0.4] and (ii) [n = 100,m = 2, p = 0.3, q = 0.7].

Furthermore, we based the model on 2 layers, with an amount of interlayer edges 
equal to 20% of the total interactions.

We also generated a set of four noisy versions, for each initial multilayer network, by 
removing 5% , 10% , 15% , 20% , and 25% of randomly selected interactions from the whole 
set of intralayer and interlayer edges.

Briefly, the network pairs to be aligned consisted of the original multilayer network 
and all its own noisy versions.

Real Multilayer Network

We start by saying that datasets of real biological networks, downloadable and ready-to-
use, are not available. Therefore, we modelled (ad-hoc) our own real multilayer network, 
by joining the following well-known datasets freely provided by Stanford Biomedical 
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Network Dataset Collection (BioSNAP) [24]: Drug-Drug Interaction (DDI) network, 
Disease-Disease (DD) network, and Disease-Drug Association (DDA) network.

DDI and DD were used for modelling the two layers of our real network, while DDA 
for linking these through a set of interlayer edges. In post-processing, we improved the 
quality of the network by cleaning it from zero degree nodes, duplicate edges, and non-
intersecting objects. The resulting network consisted of 8392 nodes and 128,200 edges, 
of which 72,809 were interlayer edges.

Similarly to the approach adopted for synthetic networks, we generated the noisy ver-
sions of this network. However, the noise was directly applied to the similarity matrix, by 
noising 5% , 10% , 15% , 20% , and 25% of the similarities, both for diseases and drugs.

Experimentation

We report the results from our experimentation. Specifically, we tested DANTEml based 
on (i) performance evaluation on synthetic multilayer networks, (ii) statistical assess-
ment of the resulting alignments, and (iii) alignment of real multilayer networks. The 
information about the datasets is reported in “Section Datasets”.

For the synthetic networks, the similarity matrices were evaluated by DANTEml, while 
for the real network was used a similarity matrix, produced by simulating the real bio-
logical similarities between the entities that represent its nodes. In the latter case, we 
expect a better alignment score, despite the much larger size of the multilayer network.

Performance evaluation on synthetic dataset

 We aligned a set of synthetic networks with DANTEml, its own progenitor (DANTE), 
and a well-known method for the NA of static networks (i.e., MAGNA++), in order 
to compare its performance with a method optimized for dynamic/temporal net-
works and one that does not take into account the distribution of nodes and edges over 

Fig. 4 Comparison of the alignment scores, from a total of 50 alignments obtained by processing 10 
synthetic multilayer networks and each of the noisy versions generated at 5% , 10% , 15% , 20% , and 25%
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multiple layers, respectively. The dataset was partially adapted both for its own pro-
genitor (DANTE) and MAGNA++, in order to make parsable the networks (not being 
supported, officially): the former considered the layers as time points and the interlayer 
edges as temporal edges, the latter ignored the distribution of nodes and edges over 
multiple layers.

We addressed this outcome by performing 50 alignments with each of the men-
tioned software tools. It concerned the alignment between 10 synthetic multilayer 

Table 1 The table reports the average of the alignment scores, computed for all pairs from our 
dataset by DANTEml, DANTE, and MAGNA++, on the different level of noise; the overall mean across 
all groups is also reported

Noise Mean

0% 5% 10% 15% 20% 25%

DANTEml 1 0.741 0.602 0.481 0.506 0.318 0.608

DANTE 0.98 0.564 0.501 0.363 0.313 0.178 0.483

MAGNA++ 0.05 0.048 0.058 0.036 0.047 0.041 0.047

Fig. 5 The figure shows the ROC curves related to the performance in terms of NC DANTEml, DANTE, and 
MAGNA++ 

Table 2 The table reports the AUC, F1-Score, and Matthews Correlation Coefficient (MCC), for 
DANTEml, DANTE, and MAGNA++ 

In details, F1-Score is shown through its average, maximum and normalized value: F1-Scoreavg , F1-Scoremax , and 
F1-Scorenorm , respectively. The normalization is calculated on the noise level

AUC F1-Scoreavg F1-Scoremax F1-Scorenorm MCC

DANTEml 0.760 0.571 0.872 0.65 0.541

DANTE 0.730 0.481 0.728 0.54 0.128

MAGNA++ 0.621 0.070 0.103 0.080 -0.318



Page 12 of 19Cinaglia et al. BMC Bioinformatics          (2023) 24:416 

networks and each of its noisy versions generated at 5% , 10% , 15% , 20% , and 25% . 
Figure 4 shows the related comparative representation of the alignments produced 
by each software tool of interest, in terms of alignment score. Furthermore, Table 1 
reports the average of these, computed for all pairs from our dataset by DANTEml, 
DANTE, and MAGNA++, on the different level of noise; the overall mean across all 
groups is also reported.

We also evaluated the alignments in terms of True Positive Rate (TPR) and False 
Positive Rate (FPR), for plotting the ROC curves (see Fig. 5), as well as to calculate 
the related AUC (see Table 2). TPR is the sensitivity, while FPR is 1− specificity.

Table 3 Descriptive analysis related to alignment score, from the results produced by MAGNA++

Groups were defined on the basis of noise

Group N Mean SD SE Coefficient 
of Variation

10 10 0.05804 0.04241 0.01341 0.73064

15 10 0.03564 0.03300 0.01043 0.92582

20 10 0.04705 0.02963 0.00937 0.62980

25 10 0.04134 0.03068 0.00970 0.74203

5 10 0.04847 0.04152 0.01313 0.85647

Table 4 One-Way ANOVA test, for the results produced by MAGNA++ 

Groups were defined on the basis of noise. The F-ratio value is 0.54665, and the p value is 0.70235: the result is not 
significant at p < 0.05

Cases Sum of Squares df Mean Square F p

Group 0.00281 4 0.00070 0.54665 0.70235

Residuals 0.05787 45 0.00129

Table 5 Descriptive analysis related to the alignment score, from the results produced by DANTEml 

Groups were defined on the basis of noise

Group N Mean SD SE Coefficient 
of Variation

10 10 0.60244 0.17505 0.05536 0.29057

15 10 0.48106 0.13728 0.04341 0.28537

20 10 0.50591 0.16227 0.05132 0.32076

25 10 0.31792 0.12020 0.03801 0.37809

5 10 0.74094 0.20141 0.06369 0.27183

Table 6 One-Way ANOVA test, for the results produced by DANTEml 

Groups were defined on the basis of noise. The F-ratio (F) value is 9.33376, and the p value is 0.00001: the result is significant 
at p < 0.05

Cases Sum of Squares df Mean Square F p

Group 0.97694 4 0.24424 9.33376 0.00001

Residuals 1.17751 45 0.02617
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Statistical assessment

 Foremost, we have proved the impossibility for a classical NA method (i.e., 
MAGNA++) to be able to produce statistically significant node mappings, between 
networks that are distributed over multiple layers (i.e., multilayer networks), in order 
to give more prominence to the fact that this issue is instead well processed by our 
solution. Tables  3 and 4 report the descriptive analysis and the One-Way ANOVA 
test [25], respectively, for MAGNA++. ANOVA is a well-known statistical approach 
for comparing several independent groups, by analysing the variances between and 
within these, in order to rank features as well as to classify the performance between 
groups [26]. Therefore, we considered the alignments at different noisy level, to con-
stitute independent groups among which we could assume to exist a relationship due 
to degradation of the initial topology due to noise; alternatively, the node mappings 
may be considered as random output, and these should not be considered as valid 
alignments.

Similarly, the same approach was applied to DANTEml. We corroborated the non-
randomness of the node mappings computed by the latter. Tables 5 and 6 report the 
descriptive analysis and the One-Way ANOVA test, respectively, for DANTEml.

In addition, the statistical evaluation related to our solution was further explored by 
also performing a McNemar’s test on all pairwise alignments of our synthetic dataset, 
in accordance with Mohammadi et al. [27]. Generally, this approach is also indicated 
for predictive models. We have built a 2x2 contingency table from the average results 
produced by DANTEml (Case) in aligning all networks of our dataset (noisy ones 
included), and the best case (manually generated) that perfectly aligns all nodes (Con-
trol); data was normalized between 0 and 100. The contingency table (see Table  7) 
consisted of the following items (row–column indexes):

• 0–0 no. of pairs aligned correctly by both Case and Control: 61.
• 0–1 no. of pairs misaligned by Case, but not by Control: 8.
• 1–0 no. of pairs aligned correctly by Control, but not by Case: 31.
• 1–1 no. of pairs misaligned by both Case and Control: 0.

The two-tailed p value was 0.0004, calculated with McNemar’s test with the conti-
nuity correction.

The p value answered this issue: if there is no association between the node map-
ping processed by DANTE and the correctly aligned nodes, what is the probability of 
observing such a large discrepancy (or larger) between the number of the two kinds of 
discordant pairs? A small p value is evidence that there is an association between the 

Table 7 McNemar’s test—Contingency table (Yes: aligned correctly, No: misaligned)

Control

Case Yes No Total

Yes 61 8 69

No 31 0 31

Total 92 8 100
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node mapping processed by DANTE and the correctly aligned nodes; by conventional 
criteria, it can be considered to be statistically significant for a value less than 0.05 
( p < 0.05).

Alignment of real multilayer networks

 We evaluated the performance of DANTEml on a case-study based on real multilayer 
networks.

We computed the alignments by pairing the network with itself, and by directly nois-
ing the given similarity matrix by 5% , 10% , 15% , 20% , and 25% , that DANTEml used for 
node mapping. This approach allowed us to be able to estimate what the expected align-
ment score could be: since the noise is directly applied to a network based on real entities 
(i.e., diseases and drugs), the true node mapping will have to refer to the applied noise, 
any higher scores are possible as the proposed solution evaluates the network topolo-
gies, and it could recover noisy structures. Figure  6 shows the results. The latter also 
shows the alignments produced by DANTE and MAGNA++ on the same dataset. We 
calculated an average value of 0.88, 0.42, 0.02 for DANTEml, DANTE, and MAGNA++, 
respectively; the expected result was 0.88, on average.

Discussion
We evaluated the alignments produced by DANTEml, DANTE, and MAGNA++, via 
well-known KPI and statistical methods.

We had also initially chosen DynaWAVE and DynaMAGNA++, in that these 
are (with MAGNA++) well-known methods, generally used for comparison. 

Fig. 6 This figure shows the scores computed by aligning a real multilayer networks with itself, and noising 
the given similarity matrix by 5% , 10% , 15% , 20% , and 25% , that DANTEml used for node mapping. A result 
greater than the expected one is better. In addition, we included the alignments produced by DANTE and 
MAGNA++ on the same dataset
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Unfortunately, we were forced to exclude them. Both ones are based on DGDV, whose 
analysis algorithm has been implemented by using the node identifiers to link suc-
cessive time points. Our dataset consists of multilayer networks that are made up of 
different nodes for the various layers, we hypothesized that it was this that caused 
infinite loops during the experimentation, making it impossible to use these methods, 
and leading us to exclude them.

According to Chen et al. [28], no accepted criteria are generally accepted in litera-
ture for evaluating alignment performance or comparing two methods. It is ambigu-
ous to indicate a criterion as the best or gold-standard, however, the assessment of 
alignment performance through well-known Key Performance Indicators (KPIs) is 
globally accepted [29]. Therefore, we have evaluated the performance of DANTEml 
based on the following well-known KPIs: NC, Precision, Recall, F1-Score, the Area 
Under the Receiver Operating Characteristic (ROC) Curve (AUC, or AUROC) [30]. 
Furthermore, we calculated the Matthews Correlation Coefficient (MCC). It is equiv-
alent to chi-square statistics for a 2x2 contingency table [31]. MCC is a value between 
− 1 and 1 to be interpreted as follows:

• perfect alignment (or true node mapping): +1;
• no valid information (or random mapping): 0;
• inconsistency between alignment and true node mapping: − 1.

NC evaluates the Precision of the alignment, by showing the ratio of aligned node 
pairs to the true node mapping. However, it is only defined for GNA, and no metric 
was specially designed for comparing GNA and LNA methods [32], therefore, there-
fore, we did not consider it appropriate, to compare DANTEml (global NA) and Mul-
tiLoAl (local NA), since the former produces a one-to-one node mapping, while the 
latter a many-to-many node mapping.

In our experimentation, we reported NC by using its own unity-based normalisation 
via feature scaling, as alignment score, while Precision and Recall have been combined 
in F1-Score, based on their harmonic mean. Please note that the only mentioned solu-
tion specially designed for the alignment of multilayer networks (i.e., MultiLoAl, see 
“Section Background”) applies a heuristic for the local alignment, that needs of a set of 
seed nodes to evaluate a similarity based on their homology, not on direct topological 
analysis. Therefore, MultiLoAl needs the whole set of node pairs that can be considered 
as perfect matches between the two networks; this approach simulates the biological 
similarities, e.g., between genes, or the relationships between genes and proteins.

Briefly, we have constructed the pairs to be aligned by defining a set of initial mul-
tilayer networks that was aligned with its own noisy counterparts to increasing noise 
levels. Therefore, we expected nodes to be coupled with their counterparts (i.e., TP), 
and that as noise increases, the accuracy of the alignment degrades while FP increase. 
The latter is a physiological result of the fact that as the noise increases, the noisy 
counterpart varies its topology in a non-negligible way and some node may become 
unrecognizable. In fact, it doesn’t represent a real error, so much so that we used this 
test to measure to what degree of noise the matches can still be considered optimal 
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for our solution. Based on the above considerations, a True Negative (TN) and False 
Negative (FN) are a truly non-existent match and a missing match, respectively.

We investigated the performance of DANTEml based on (i) performance evaluation 
on synthetic multilayer networks, (ii) statistical assessment of the resulting alignments, 
and (iii) alignment of real multilayer networks.

The first test demonstrates the efficiency of DANTEml compared to a method that 
does not consider the distribution of nodes and edges over multiple layers, as well as 
the improvements apported in comparison with a method only optimized for a specific 
category of multilayer networks (i.e., temporal networks). Results shows DANTEml over 
performed the former by 1193.62% and the latter by 25.88% , in terms of alignment score 
evaluated on all dataset (see Mean of Table 1).

According to Nahm et al. [30], the interpretation of AUC shows a good performance 
for DANTEml and DANTE, while it shows a poor one for MAGNA++ (see Table  2). 
F1-Scores are in accordance with the AUC values, by confirming the goodness. The poor 
results produced by MAGNA++ were expected, in that it does not (rightly) take into 
account the distribution of nodes and edges between multiple layers. Likewise, we had 
also already supposed that DANTE would produce valid results, being in any case capa-
ble of managing dynamic networks. However, what we must take into consideration is 
how DANTEml manages to make a significant contribution, both with respect to cases 
that are not perfectly specific, and to the traditional ones for simple static networks.

DANTEml showed a strong positive relationship between the computed alignment 
and the true node mapping, while DANTE a negligible relationship. According to 
our statistical assessment, MAGNA++ showed an inconsistent result that should be 
discarded.

The statistical assessment was performed via One-Way ANOVA test, and McNemar’s 
test, as explained in “Section Results”.

We demonstrated the impossibility for a classical NA method to produce statistically 
significant alignments; already highlighted by the MCC related to MAGNA++.

In addition, we demonstrated the statistical significance of the alignments produced 
by DANTEml. In addition, we evidenced that there was an association between the node 
mapping processed by DANTE and the correctly aligned nodes, by also corroborat-
ing the non-randomness of the node mappings computed by the proposed solution via 
McNemar’s test.

The results validated the hypothesis above; see Tables 4 and 6 for One-Way ANOVA 
test, while for McNemar’s test the p value is 0.0001. By conventional criteria, the p values 
are statistically significant ( p < 0.05).

Finally, our method produced effective alignments, whose quality is statistically corre-
lated to the topological similarity existing between the pairs of given networks.

In the third test (see Fig. 6), we pursued the same outcome of NA of synthetic net-
works, by aligning a real multilayer network with itself, based on the noised similarity 
matrix ( 5% , 10% , 15% , 20% , and 25% noise).

We computed the expected alignment score from the true node mapping, to simulate 
a real case in which an optimal solution exists for the NA of multilayer networks. Note 
that higher scores are possible, as the proposed solution evaluates the network topolo-
gies, and it could recover noisy structures. The use of software tools for other network 
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models (i.e., DANTE, and MAGNA++) are reported for illustrative purposes only. 
According to results (see Fig.  6), DANTEml shows an improvement of +111.72% and 
+4008.75% compared to DANTE and MAGNA++, respectively, while it is perfectly in 
line with the expected result. We hypothesize that this more marked difference, to the 
advantage of DANTEml, depended on the size of the network; much larger than syn-
thetic ones, and consequently more distributed between the layers. The clear gap in the 
results demonstrates the clear advantage between a method that supports a model in 
which heterogeneous objects are distributed across multiple layers, and one that does 
not recognize this feature.

The resulting scores showed how the proposed solution is able to maintain a high 
degree of reliability and effectiveness also for the alignment between large networks built 
on the basis of real data. As discussed, an initial similarity matrix was used to simulate 
the real biological similarities between the entities that represent the nodes. The align-
ment scores were slightly better than the expected result, probably due to the successive 
permutations that are applied by DANTEml to its own pre-mapping to further maxi-
mize the node similarities, globally.

Conclusions
In this paper, we present DANTEml, a software tool for the PGNA of multilayer net-
works based on topological assessment. It builds its own similarity matrix by processing 
the node embeddings computed from two given networks of interest.

Results showed that DANTEml over performed MAGNA++ (a method that does 
not consider the distribution of nodes and edges over multiple layers) by 1193.62% , and 
DANTE (its own progenitor for temporal network) by 25.88%.

Furthermore, we performed the statistical assessment of the resulting alignments. By 
conventional criteria, the p values computed for our solution are statistically signifi-
cant at p < 0.05 ; this corroborates the significance of its own node mappings. Briefly, 
DANTEml provided effective alignments of which node mappings were validated statis-
tically. It has also been tested for aligning large multilayer networks based on real data, 
by showing a high degree of reliability and effectiveness. In this case, DANTEml showed 
an improvement of +111.72% and +4008.75% compared to DANTE and MAGNA++, 
respectively, as well as it was perfectly in line with the expected result.

Finally, DANTEml allowed aligning both synthetic and real multilayer networks, by 
proving itself an effective method, of which node mappings can be validated statistically.

Availability and requirements

• Project name: DANTEml.
• Project home page: https:// github. com/ pietr ocina glia/ dante ml (accessed on 05 July 

2023).
• Operating system(s): Platform independent.
• Programming language: Python 3.
• Other requirements: https:// github. com/ pietr ocina glia/ dante ml/ blob/ main/ requi 

remen ts. txt (accessed on 05 July 2023).

https://github.com/pietrocinaglia/danteml
https://github.com/pietrocinaglia/danteml/blob/main/requirements.txt
https://github.com/pietrocinaglia/danteml/blob/main/requirements.txt
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• Licence: the software is provided AS IS under MIT Licence.
• Any restrictions to use by non-academics: none.
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