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based method, Net-DMPred, to predict driver missense mutations considering
molecular networks. Net-DMPred consists of the graph part and the prediction part. In
the graph part, molecular networks are learned by a graph neural network (GNN). The
prediction part learns whether variants are driver variants using features of individual
variants combined with the graph features learned in the graph part.

Results: Net-DMPred, which considers molecular networks, performed better

than conventional methods. Furthermore, the prediction performance differed

by the molecular network structure used in learning, suggesting that it is important
to consider not only the local network related to cancer but also the large-scale net-
work in living organisms.

Conclusions: We propose a network-based machine learning method, Net-DMPred,
for predicting cancer driver missense mutations. Our method enables us to consider
the entire graph architecture representing the molecular network because it uses GNN.
Net-DMPred is expected to detect driver mutations from a lot of missense mutations
that are not known to be associated with cancer.
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Background

Genomic sequencing studies have been a massive advancement in cancer genomic med-
icine. In conventional cancer medicine, treatment is uniformly determined by charac-
teristics such as anatomical site and progression stage. However, some patients do not
respond well to treatment. Cancer genomic medicine has become popular because gene
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mutations are associated with cancer development. In this medicine, the best treatment
is selected based on the genomic background of each patient. For this reason, cancer
genomic medicine is expected to enhance therapeutic effects and reduce side effects.

One of the challenges in cancer genomic medicine is the clinical interpretation of
variants. Although a lot of variants are detected by genomic analysis, most of them are
passenger mutations not directly involved in cancer development. A small fraction of
variants are driver mutations that are involved in cancer development [1]. Therefore, it is
important to distinguish between driver mutations and passenger mutations.

It is time-consuming and expensive to validate whether variants are driver mutations,
so machine-learning methods have been developed to predict if missense mutations are
driver mutations. For example, CHASM [2] and CHASMplus [3] predict driver muta-
tions by utilizing features obtained from conserved sequences and protein structure to
characterize each variant. CanDrA [4] is an ensemble tool that uses the results of other
prediction tools as variant features.

In living organisms, molecular networks are formed by various molecular interactions
and signal transduction pathways, and abnormalities in molecular networks are asso-
ciated with cancer. However, despite their importance, most existing tools for driver
mutation prediction do not consider molecular networks. Although CHASMplus uses
the number of molecular interactions for the amino acid site of a mutation as a variant
feature, it only considers local molecular relationships and does not consider molecu-
lar networks. Molecular networks can be represented as a graph with molecules as
nodes and molecular relationships as edges. Some prediction methods utilizing a graph
to consider molecular interactions have been developed. Network&AA [5] is a driver
prediction tool that considers the centrality of graphs representing molecular networks.
However, the previous methods only consider one aggregated aspect of the graph, such
as centrality, and not the entire graph structure.

Here we proposed a new network-based prediction method, Net-DMPred. This
method uses a graph neural network (GNN) and learns a graph represented as molecu-
lar networks. GNN is a deep learning method for graphs and can learn the entire graphi-
cal structure. Net-DMPred predicts driver mutations using the features of the molecular
networks by GNN as background knowledge and combining them with the features of
individual variants used in conventional methods.

Results and discussion

Overview of Net-DMPred

Net-DMPred consists of the graph and prediction part (Fig. 1). The graph part learns
background knowledge and the prediction part learns combining individual informa-
tion and background knowledge learned by the graph part. In this study, molecular net-
works were used as background knowledge and individual variant features as individual
information.

In the graph part, graphs representing molecular networks are learned using GNN,
and feature vectors for each molecular node are computed. GNN can consider the entire
architecture of graph. In the prediction part, the variants are predicted to be driver or
passenger by Random Forest with individual variant features and graph node features



Hatano et al. BMC Bioinformatics (2023) 24:383 Page 3 of 15

~

u u Embedding GINConvBlock GINConvBlock ConcatenateBlock
1 2 g "y ",

IR e e S

u3E u,E y

Node Random Forest
feature
Prediction part e .?‘ t? t?. —— Driver / Passenger
Variant (]
feature
\ 91 dimensions /'

Fig. 1 Model architecture

TP53 pathway PI3K pathway % %

Cancer pathway Molecular interaction Cancer Pathway
+

Molecular interaction
Fig. 2 Three knowledge graphs.“Cancer pathway”includes 10 pathways such as the TP53 pathway and the
PI3K pathway

corresponding to the genes with variants. This framework enables us to utilize general
molecular networks learned in the graph part as common background knowledge of

individual variants in predicting driver mutation.

Performance evaluation of the training dataset

We used the training dataset of gene mutations provided by CHASMplus (http://karch
inlab.org/data/CHASMplus/formatted_training list.txt.gz, acquired on October 28,
2021). We performed the under sampling on this training dataset, and 928 driver and
3712 passenger mutations were used for training.

As features of gene mutations, we used 91 features obtained from SNVBox database
[6] and the outputs of HotMAPS 1D method [7] following CHASMplus.

To investigate the relationship between the graph architecture and the prediction
performance, we constructed three knowledge graphs representing molecular net-
works, “Cancer pathway,” “Molecular interaction,” and “Cancer pathway + Molecular
interaction” (Fig. 2, Table 1). “Cancer pathway” was obtained from PathwayMapper
[8] (acquired on November 1, 2021). PathwayMapper contains 10 public pathways
[9] (such as TP53 pathway and the PI3K pathway) known to be associated with pan-
cancer, and this study used these 10 pathways. “Molecular interaction” was obtained
from Pathway Commons v12 [10]. Pathway Commons is public pathway and molecu-
lar interaction databases. “Cancer pathway + Molecular interaction” was combining
“Cancer pathway” and “Molecular interaction” Moreover, to confirm the usefulness
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Table 1 Details of three knowledge graphs

Graph Node Edge Edge type Data source

Cancer pathway 200 870 23 PathwayMapper [8]
Molecular interaction 30,899 3,672,040 13 Pathway commons [10]
Cancer pathway +molecular 30,923 3,672,910 36 PathwayMapper (8],
interaction Pathway commons [10]

Number of nodes, number of edges, and types of edges in the three graphs. In the “Cancer pathway” graph, each node
represents a protein, complex, and process, such as “apoptosis’, and the edge type represents a type of relationship between
them, such as “Activates” and “Inhibits.” In the “Molecular interaction” graph, each node represents a protein and a small
chemical compound, and the edge type represents a type of relationship between them defined by Pathway Commons,
such as “controls-phosphorylation-of” and “controls-state-change-of”
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Fig. 3 Results of performance evaluation of the training dataset. A Mean value of ROC-AUC, B mean value of
PR-AUC

of our framework, we performed the prediction using only individual variant features
without the graph features (hereinafter referred to as “No graph”). It corresponds to
the conventional prediction approach.

The models were evaluated the mean of ROC-AUC (Area Under the Receiver Oper-
ating Characteristic Curve) and PR-AUC (Area Under the Precision-Recall Curve)
with five-fold cross-validation. In this study, the dimension of the graph node vec-
tor was 16 and 32. Additional file 1: Figs. S1 and S2 present the ROC-AUC results
obtained when using the Support Vector Machine and Multi-Layer Perceptron for
prediction, as opposed to the Random Forest. Random Forest classifier performed
better than other classification methods, achieving this across both graph node vector
dimensions of 16 and 32. Therefore, we employed Random Forest for the prediction
part in subsequent analyses of this study.

Figure 3 shows the results of the performance evaluation of the training dataset
when using the Random Forest for prediction. Comparing the mean value of ROC-
AUC and PR-AUC, the models with graphs, “Cancer pathway,” “Molecular interac-
tion,” and “Cancer pathway 4+ Molecular interaction” performed better than the model
without a graph, “No graph” These results show that considering molecular networks
is useful for driver mutation prediction.

Comparing the differences in graph architectures, “Molecular interaction” and
“Cancer pathway+ Molecular interaction” performed better than “Cancer pathway”
This result demonstrates that the prediction performances were increased when not
only the local network, “Cancer pathway,” but also the large-scale network, “Molecular
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interaction,” were used as molecular networks. It also indicates that it is important to
construct appropriate graphs because the prediction performances differed by graphs.

For the dimension of the node vectors, the prediction performance was slightly higher
when 32, rather than 16 dimensions, were used. Therefore, we used the node features
with 32 dimensions in the following analysis.

Performance evaluation with the benchmark datasets

We compared our approach with existing methods using five benchmark datasets
obtained from Tokheim and Karchin [3] (http://karchinlab.org/data/CHASMplus/Tokhe
im_Cell_Systems_2019.tar.gz, acquired on October 28, 2021); Kim et al. [11], IARC TP53
[12], Ng et al. [13], Gene panel (OncoKB) [14, 15], CGC-recurrent [16]. These datasets
were derived from in vivo and in vitro experiments and literature. Each dataset had dif-
ferent criteria for positive (driver) and negative (passenger) mutations. Therefore, these
five datasets allowed for the multifaceted evaluation of the prediction model. In these
datasets, some gene mutations overlapped with the training dataset. To strictly evalu-
ate the prediction model, gene mutations that overlapped with the training dataset were
dropped from benchmark datasets. Table 2 shows counts of gene mutation and unique
genes with mutations used in benchmark datasets.

Figure 4 shows the prediction performances of the proposed models and the existing
prediction tools for cancer driver mutations; CHASM, TransFIC [17], CanDrA, ParsSNP
[18], CHASMplus, Network&AA. (The performances of other tools are shown in Addi-
tional file 2: Table S1 and Additional file 3: Table S2. The results of accuracy, precision,
recall and F1 are shown in Additional file 4: Tables S3—S6.) The prediction performance
of our models with the graph, “Cancer pathway,” “Molecular interaction,” and “Cancer
pathway + Molecular interaction,” was better or comparable to the model without a
graph, “No graph”

The proposed models showed higher performance than Network&AA, which consid-
ers the centralities of molecular networks. These results show that it is important to con-
sider the entire molecular networks.

Moreover, in the proposed models, “Molecular interaction” and “Cancer path-
way + Molecular interaction” showed overall higher performances than “Cancer path-
way.” These results show that the prediction performances were increased when not
only the local network, “Cancer pathway,” but also the large-scale network, “Molec-
ular interaction,” were used. The performance on some benchmark datasets was
increased when the models with graphs, but others were not increased. It may be

Table 2 Benchmark datasets

Benchmark Data source Positive Negative Protein unique
Kim et al. In vivo 8 17 11
IARCTP53 In vitro 375 1533 1
Ng etal. In vitro 116 357 43
Gene panel (OncoKB) Literature-based 329 38,596 410
CGC-recurrent Literature-based 33 6805 3261

Number of positive and negative data and unique of proteins with mutations
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Fig. 4 Results of five benchmark datasets. A Bar graph of ROC-AUC score. B Table of ROC-AUC score. For
each benchmark dataset, tools were ranked based on the ROC-AUC score and represented on the color
scale: white signifies a lower rank, while shades of red, culminating in dark red, represent higher ranks.

In Network&AA, we could not acquire prediction scores of variants in IARC TP53 and CGC-recurrent. In
CHASMplus and CHASM, variants in CGC-recurrent did not have prediction scores

caused by the variety and differences between the five benchmark datasets in terms of
the label definition and the data source.

For the Kim et al. dataset, the models with graphs showed higher performance than
conventional tools. Kim et al. dataset was derived from in vivo and evaluated for the
impact of tumor growth on missense mutation in mice. It can be speculated that the
consideration of molecular networks may be useful in predicting in vivo datasets,
such as this data. The proposed model “Cancer pathway+ Molecular interaction”
correctly predicted AKT1 p.Q79K as driver and IDH1 p.P33S as passenger. AKT1
p-Q79K well known to be a hotspot mutation [19] and relate with oncogenicity [20].
Moreover, AKT1 p.Q79K has been shown to be involved in acquired BRAF inhibitor
resistance in melanoma [21, 22].

IDH1 p.P33S has been shown to be neutral to oncogenesis because the gene expres-
sion patterns in cells with p.P33S mutation in IDH1 were similar to those of wildtype
[11].

On the other hand, in the prediction of IARC TP53 and Ng et al. datasets, the pre-
diction performances of the models with graphs were not increased. IARC TP53 and
Ng et al. datasets were derived from in vitro. The criteria for driver and passenger were
transactivation levels for TP53 targets in IARC TP53 dataset and cell viability in Ng et al.
dataset, respectively; these criteria differed from those in the training dataset.
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The prediction performance of our models for the Gene panel (OncoKB) dataset
was not improved. This dataset uses OncoKB annotations as labels. Mutations anno-
tated with “Oncogenic” and “Likely Oncogenic” were defined as positive, and mutations
with other annotations were defined as negative. In the negative data, there were mis-
sense mutations not only annotated with “Likely Neutral” and “Inconclusive” but also
“Unknown” in OncoKB. Therefore, there is the possibility that some missense mutations
which were labeled as negative in the dataset may be positive. Among 38,925 mutations
in the Gene panel (OncoKB) dataset, the proposed model “Cancer pathway + Molecular
interaction” predicted 8876 mutations as the driver mutations, 8624 of which were anno-
tated as “Unknown” in the provided Gene panel (OncoKB) dataset. Then, we confirmed
the latest annotations for these 8624 mutations. As of March 20, 2023, in the OncoKB
database, 12 mutations (RUNX1 p.D198N, PIK3CA p.D549N, KRAS p.D33E, PDGFRB
p.N666K, ATM p.R3008C, MET p.H1094Y, PIK3CB p.A1048V, ERBB2 p.Q709L, BRAF
p-S467L, BRAF p.N5811, MAP2K1 p.L177V, JAK3 p.R657W) were annotated as “Onco-
genic” and 593 mutations as”Likely Oncogenic”” This finding implies that our proposed
method is expected to identify driver mutations from a lot of mutations of uncertain
significance. In addition, of the 8876 mutations in the benchmark dataset that our model
predicted as the driver mutations, 7966 mutations remained classified as “Unknown”
according to OncoKB as of March 20, 2023. Some of these mutations have potential to
be confirmed as driver mutations through further experimental validation.

In the prediction of CGC-recurrent, the models with graphs performed better than
models without graphs. This dataset includes a variety of genes with mutations. In
a dataset consisting of such a large number and variety of genes, the graph features
of each molecule learned in the graph part may be useful to increase the prediction

performance.

Interpretation of results

We used SHAP (Shapley Additive exPlanations) [23] to evaluate the contribution of
graph features. Figure 5 shows the driver prediction scores obtained from “Cancer path-
way + Molecular interaction” and “No graph,” and the contribution rate of graph features
in “Cancer pathway+ Molecular interaction” for the prediction of Kim et al. dataset.
Here the graph feature importance rate was defined as the sum of SHAP values of graph
features (32 features) divided by the sum of SHAP values of all features (123 features).
The straight lines in Fig. 5 show the thresholds for the driver and passenger of each
model. The upper left plots show missense mutations which “Cancer pathway + Molecu-
lar interaction” predicted to be positive and “No graph” predicted to be negative. Three
missense mutations (AKT1 p.E267G, KRAS p.D33E, AKT1 p.R370C) indicated by the
arrows have positive labels as the correct answers. These three mutations were correctly
predicted by “Cancer pathway-+ Molecular interaction” and incorrectly predicted by
“No graph” The graph feature importance rates for these variants show that the graph
features had a significant impact on the predictions of these three mutations. In other
words, by using the graph features, the model with the graph could have been predicted
as positive for mutations correctly, which have been predicted as negative in models
without the graph.
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Fig. 5 Interpretation of the results for Kim et al. dataset. This figure shows the prediction scores for “Cancer
pathway + Molecular interaction”and “No graph,”and the graph feature importance rate for “Cancer
pathway + Molecular interaction."The circle plots are positive variants and square plots are negative
variants in this benchmark dataset. The straight lines are thresholds for positive and negative for “Cancer
pathway + Molecular interaction”and “No graph” ("Cancer pathway + Mo-lecular interaction"=0.270, "No
graph"=0.218). The plots with red arrows were predicted negative incorrectly for “No graph”but positive
correctly for “Cancer pathway 4+ Molecular interaction”

Upon a detailed examination of the contribution levels of individual features in the
predictions when using “Cancer pathway+ Molecular interaction,” we observed that
while numerous variant features rank highly, the contribution of graph features remains
substantial (Additional file 1: Fig. S3A).

The graph part in the proposed method assigns random values to the initial graph
features, and then graph features are trained to represent graph structure during the
GNN training process. To ascertain whether the utility of graph features for prediction
resulted from the GNN process, we also investigated the contribution of the initial graph
features (Additional file 1: Fig. S3B). The results showed that the initial graph features
did not contribute significantly to the predictions as much as variant features. These
results suggest that the GNN training process is key to obtaining beneficial features for
driver predictions.

Conclusion

In this study, we proposed Net-DMPred, which predicts driver mutation considering the
entire architecture of molecular networks. The performance of the proposed method
showed higher than or comparable to the conventional methods. This result shows that
it is important to have information about molecular networks in predicting cancer driver
mutation.

The prediction performances differed by the graph architecture, considering not only
the local network, “Cancer pathway,” but also the large-scale network, “Molecular inter-
action” improved the performance. This result indicates the importance of the construc-
tion of the graph appropriately.

We investigated the contribution of the graph to the prediction results using SHAP.
It was confirmed that the graph features representing molecular networks contributed
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to the prediction of cancer driver mutation. However, the proposed method has limita-
tions. The graph part, which learns the graph representing the molecular network, and
the prediction part, which learns whether the mutation is driver or passenger, are inde-
pendent of each other. Thus, we cannot interpret the contribution of each node in the
graph, that is, related molecules in driver prediction.

Although the development of genome sequencing technology has facilitated the detec-
tion of variants, a lot of variants of uncertain significance have been accumulated. In this
study, we demonstrated that Net-DMPred was able to predict the driver mutations that
were previously unannotated but recently have been shown to be involved in cancer as
the data accumulated. This result suggests that Net-DMPred holds promise in identify-
ing driver mutations from a large number of mutations whose association with cancer is
not yet known.

Our prediction model has room for improvement in two aspects. In the graph part,
the performances were affected by graph architecture, and our proposed model can
improve depending on the design of the graph. In the prediction part, while we used fea-
tures such as amino acid properties, sequence conservation, and protein structure, our
proposed model can utilize these features and various additional features such as cancer
type and the result of conventional prediction tools. Additionally, while the effectiveness
of the graph features obtained through the GNN training process was confirmed in this
study, it is challenging to interpret the specific implications of each feature within the
proposed model’s framework. Therefore, future considerations could involve expanding
to an end-to-end framework that integrates the graph part.

Methods

Training dataset of gene mutation

The training dataset provided by CHASMplus consisted of 2051 driver mutations and
616,515 passenger mutations from the missense mutation dataset based on The Cancer
Genome Atlas (TCGA) [24]. Positive data (driver mutations) were defined as mutations
that occurred in genes listed in Cancer Genome Landscapes [25] and with a lower muta-
tion frequency (less than 500 mutations) in samples. Negative data (passenger muta-
tions) were defined as other mutations.

This dataset was imbalanced in two respects; driver mutations were in a limited num-
ber of genes, and there were many more passenger mutations than driver mutations. We
performed the following sampling steps on the training dataset to resolve these imbal-
ances. First, driver and passenger mutations were sampled randomly for each gene up to
the median of the driver mutations per gene (=21) to prevent mutations from being in
limited genes. As a result, 928 driver mutations and 310,450 passenger mutations were
obtained. Next, because 928 passenger mutations out of 310,450 occurred in genes with
driver mutations, they were selected and always included in the training dataset. This
process prevented excessive dependence on gene features on the dataset in predicting
driver and passenger mutations. Finally, passenger mutations of genes that did not have
driver mutations were randomly sampled in order that four times as many as driver
mutations. As a result, the training dataset contained 4640 mutations (928 driver muta-
tions and 3712 passenger mutations).
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Features of gene mutations

As the features of individual gene mutations, the proposed method uses 91 features.
We obtained 88 features (Additional file 5: Supplementary Method) from SNVBox. It
is a database of precomputed features for codons in the human exome, such as amino
acid properties, sequence conservation, and protein structure. Other three features were
obtained by running HotMAPS 1D. It is a method for estimating each gene’s recurrently
mutated genome region (hotspot regions). In this study, we used gene mutation data
extracted from TCGA as input data. We ran this method with window sizes (hyperpa-
rameters) of 0, 5 and 10, following the precedent set in the previous study [3]. Then, we
used the results (p-values) of the estimated regions as features of individual variants.

Molecular network dataset

A knowledge graph representing molecular networks was constructed from two data-
bases. The first was from molecular interaction data from Pathway Commons v12. The
second was from cancer signaling pathway data from PathwayMapper. These datasets
describe molecules and their relationships in living organisms.

Pathway Commons integrates more than 20 public pathways and interactions data-
bases and describes relationships between proteins and small chemical compounds with
13 types of binary relationships.

PathwayMapper is a web-based visualizing tool that includes various cancer-related
pathways. Each cancer pathway contains information on regulatory relationships
between molecules, such as activation and inhibition.

Construction of knowledge graph

The molecular network dataset can be represented as a knowledge graph with molecules
as nodes and molecular relationships as edges, and the type of molecular relationship
can be represented as an edge label.

In this study, we constructed three knowledge graphs using the molecular networks
and compared each graph’s difference in prediction performance. The first is the can-
cer pathway graph, “Cancer pathway,” obtained from PathwayMapper. The second is the
molecular interaction graph, “Molecular interaction,” obtained from Pathway Commons.
The third is the graph, “Cancer pathway+ Molecular interaction,” combining “Cancer
pathway” and “Molecular interaction”

Net-DMPred model architecture
Graph part
A graph consists of a pair of nodes and edges G=(V, E). An edge is represented (u, r,
v) €E using node u, v, and the relation r where u, ve V, reR. R is a finite set of edge
labels, E is a finite set of edges, and Vis a finite set of nodes. In this study, background
knowledge was molecular network, V' was a set of molecules, and G was a set of molecu-
lar relationships.

In the graph part, the node vectors z, € R® is calculated by the operation of the embed-
ding layer and the graph neural network (GINConv) [26]:

zy = GNN (4, G) (1)
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The architecture of this graph neural network has a connection between the output
of each layer and the concatenate block to enhance expression of graph neural network.
This graph neural network is constructed using a graph isomorphism network (GIN)
block. A GIN block is defined as follows:

Al =¢ (Z Wiy - o (GINConv (z[, G(,))) + b(r)> 2)
v

where z¢ represents a node vector of £-th layer, 7€ R is relation (edge label) in the graph
G, and G, is defined as a subgraph that extracts the edges with relation r from the graph
G.

The learning of the graph is pre-trained by link prediction. Link prediction is predict-
ing the probability of the existence of an edge (link) between nodes. This pre-training
learns node features based on the observed graph structure. The loss function is defined

as follows:
L=—0y(uv)—~L_(u,v) (3)

where 4, v is randomly sampled from E and v'is randomly sampled from V.

L4(u,v) = log (o (MTV)) (4)

L_(u,v) = log (U (—MTV)) (5)
When a link with a relation is predicted, weight matrix is used:

Li(u,r,v) =log (U (uTW,v)) (6)

¢_(u,r,v) = log (a (—uTW,v)) )

where Wis a diagonal matrix.

In this study, the dimension of the node vector was C=16 and 32, and the continuous
random values were initially assigned to each vector. We employed a learning rate of
0.0001, and the model after 50 epochs was used for the analysis.

Prediction part
In the prediction part, the driver mutation prediction is performed using the features of
individual variants combined with graph node features learned by the graph part. We
used the Random Forest model [27] for prediction.

The probability of driver mutation ¥ is calculated using graph features and variant fea-

tures as follows:
9i = RFXi{zy :u € V}) (8)

where X; is an variant feature of mutation i of gene u, and z,, is a graph feature of gene u.
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We performed Random Forest using the scikit-learn package (version 0.24.2). The
hyperparameters of the model were tuned by three-fold grid search. Missing values were
complemented by the mean.

Performance evaluation with the benchmark datasets

To compare our approach with existing methods, we used five benchmark datasets
obtained from Tokheim and Karchin [3] (http://karchinlab.org/data/CHASMplus/Tokhe
im_Cell_Systems_2019.tar.gz, acquired on October 28, 2021); Kim et al., IARC TP53, Ng
et al., Gene panel (OncoKB), and CGC-recurrent.

The hyperparameters of our models used in the evaluation were obtained from the
model with the best performance in the five-fold cross-validation. To ensure robust
evaluation, we performed this trial three times. Then, three trained models were
used to predict each benchmark dataset, and the models were evaluated on the aver-
age performance. The prediction performance was evaluated by ROC-AUC and PR-
AUC. The thresholds for positive and negative were defined as the average value of
the Youden index [28] in the three trained models: “Cancer pathway+ Molecular
interaction”=0.270, “Molecular interaction”’=0.281, “Cancer pathway”=0.264, “No
graph”=0.218.

We compared the prediction performance of our approach with 26 preceding tools.
There are six tools to predict driver mutations in cancer (CHASM, TransFIC, CanDrA,
ParsSNP, CHASMplus, and Network&AA) and there are 20 tools to predict the effect of
gene mutations on proteins, not specific to gene mutations in cancer (SIFT [29], Mut-
Pred [30], LRT [31], Polyphen2_HVAR [32], Polyphen2_HDIV [32], MutationAssessor
[33], PROVEAN ([34], VEST4 [35], FATHMM [36], CADD [37], MutationTaster [38],
MetaSVM [39], DANN [40], REVEL [41], M-CAP [42], DEOGEN?2 [43], MPC [44], Clin-
Pred [45], LIST-S2 [46], and MVP [47]).

We obtained prediction scores of CHASM, TransFIC, CanDrA, and ParsSNP from
Tokheim et al. [3], Network&AA from Ozturk et al. [5], and other prediction scores from
the dbNSFP database [48, 49].

Interpretation of results

We employed SHAP to interpret the contribution of each feature to the prediction
results. SHAP is an approach to explain the prediction result, and the SHAP value
expresses the contribution of each feature. A larger absolute SHAP value means a larger
contribution of the feature to the prediction result. In this study, we evaluated the con-
tribution of the graph features in predicting gene mutations in benchmark datasets using
the SHAP values. SHAP Python package (version 0.39.0) was used to calculate the SHAP

values.
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GNN Graph neural network

ROC-AUC  Area under the receiver operating characteristic curve
PR-AUC Area under the precision-recall curve
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TCGA The Cancer Genome Atlas
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