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Background
Large feature space ( p ) is an important aspect of high dimensional data owing to model 
overfitting risk, poor generalizability [1] and computational complexity [2, 3]. Feature 
selection is a solution which reduces the input feature space to a smaller feature space 
( q ) in a given dataset of sample size ( n ), which provides a parsimonious best fit model for 
the outcome, y.

(1)y = f (q)|q ∈ (p)
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where, f  represents the model function such that the error function ϕ is minimized, i.e., 
minϕ(y, f (q)) . The approaches adopted for feature selection can be categorized into two 
groups. The first and simpler approach uses expert opinion for feature selection where 
features are selected using domain knowledge [4, 5] and allows feature selection before 
data evaluation. This approach has limited or no applicability if a feature has no or little 
availability of domain information, high dimensional feature space and/or presence of 
interactions among the features.

The second approach uses the data to perform the feature selection. The algo-
rithms under this approach are broadly classified into filter, embedded and wrapper 
algorithms [6–8] and could be used in supervised, semi-supervised or unsupervised 
learning frameworks [8–10]. Filter algorithms rely on the internal data structure of 
the features for selecting features. Commonly, information gain based algorithms 
are used for univariate filtering of features [8, 11] and correlation based algorithms 
are used for multivariate filtering of features [12]. They are computationally efficient, 
but interactions between the features may hinder the feature selection performance. 
Embedded algorithms incorporate feature selection within the model building step 
by adding a penalization step in the model building process. They are efficient and 
can handle interactions between the features. Least Absolute Shrinkage and Selection 
Operator (LASSO) based algorithms [13, 14] are commonly used for linear combi-
nation models, while tree-based algorithms [15] are used in non-linear combination 
models. Wrapper algorithms use an iterative approach of evaluating a feature subset 
for model performance on a given dataset. The process is repeated until the best per-
formance is obtained [16, 17]. It provides better performance than other algorithms, 
but it has a higher computational cost.

The key challenge in wrapper algorithms is that models are prepared for every fea-
ture subset obtained at each iteration. One strategy is to reduce the number of itera-
tions needed to get the target feature set q for addressing the computational cost issue 
by focusing on the sampling of feature subset. Feature subset sampling step is commonly 
performed using either random, sequential or evolutionary sampling. The random sam-
pling approach arbitrarily generates the feature subset [18]. The sequential sampling 
approach adds or removes a feature sequentially from a feature set like forward sampling 
and backward sampling [16, 19]. The evolutionary sampling approach selects the feature 
subset based on the performance of features in the previous subset like genetic algo-
rithm [20] and swarm optimization [21]. Another strategy is to use hybrid algorithms, 
model building at the iteration step is replaced with filter techniques to estimate the per-
formance of many feature subsets at each iteration step [22–24]. However, filter algo-
rithm challenges persist.

We propose a unique strategy which uses an Artificial Intelligence (AI) model instead 
of filter techniques. Currently, the existing wrapper algorithms partially or entirely dis-
card the unselected models of feature subset in selecting the next population of feature 
subsets. Individually, each model may only be useful in providing performance infor-
mation, but in combination, these models could help in identifying hidden relationships 
that could predict the performance of unknown feature subset models. This eliminates 
the need for building models for every single feature subset obtained in the sampling 
step.
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In this study, we propose a novel Artificial Intelligence based Wrapper (AIWrap) algo-
rithm. The algorithm predicts the performance of unknown feature subset using an AI 
model referred here as Performance Prediction Model (PPM). To determine the perfor-
mance of unknown feature set, standard wrapper estimates the performance by building 
a model of unknown feature set on the given dataset to calculate the actual model perfor-
mance. AIWrap predicts the performance by creating PPM that uses the performances of 
known feature subsets to compute the performance of unknown feature subset.

AIWrap contributes in many ways. Firstly, it is unique in its perspective as, unlike 
standard wrapper approach of building models for every feature subset provided by 
feature subset sampling step, it builds models for only a fraction of the feature subset. 
Secondly, it provides a unique application of AI models, that are used to replace the AI 
model-based performance estimation step with AI model-based performance prediction 
step. Thirdly, AIWrap is versatile, which allows its integration with existing statistical 
and machine learning techniques. Fourthly, the algorithm allows the explicit identifica-
tion of interaction terms.

This paper provides the “Results” section to evaluate and compare the algorithm per-
formance against the existing feature selection algorithms for simulations and real stud-
ies. We summarize and provide future directions for research in the “Discussion” and 
“Conclusion” section. We provide “Conceptual Framework” section to explain the basic 
framework of AIWrap. Finally, the “Methodology” section explains the AIWrap algo-
rithm used in this paper.

Results
The performance of AIW rap is evaluated and compared with standard algorithms like 
LASSO, Adaptive LASSO (ALASSO), Group LASSO (GLASSO), Elastic net (Enet), 
Adaptive Elastic net (AEnet) and Sparse Partial Least Squares (SPLS) for both the simu-
lated datasets and real data studies.

Simulation studies

We perform simulation studies to evaluate the proposed algorithm and com-
pare its performance with other feature selection algorithm. The study uses mul-
tivariate normal distributions to generate high-dimensional datasets for marginal 
and interaction models. The regression model, y = β0 +

∑p
i=1 βixi + ǫ  and 

y = β0 +
p
i=1 βixi +

1
2

i=p,j=p
i �=j,i=1,j=1 βijxij + ǫ provides the outcome variable of the sim-

ulated data for marginal and interaction models, respectively. Error term, ε ∼ N (0, σ 2) 
and features, xi ∼ N (0, 1) follow normal distribution. { xij } represents the pairwise inter-
actions between features {(x1, x2), . . . , (x2, x3), . . . , (xp−1, xp)} . In the current study, only 
two-way interactions are considered for demonstration purposes, but it could be easily 
extended to higher-order interactions. Correlation is added between the first 15 features 
out of p marginal features using the covariance matrix as given below.
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Multiple scenarios are created with the different number of noise features (Table 1). 
Non-zero β value is assigned only to the true features. The AIWrap algorithm is imple-
mented both with and without a performance-based filter step. The final predictive 
model from selected features is prepared using either ridge regression (AIWrap-LR) 
or non-penalized linear regression (AIWrap-LLr). When no performance-based filter 
step is performed, model obtained from embedded feature selection stage is used as the 
final predictive model and is referred to as AIWrap-L technique. All penalized regres-
sion models used in AIWrap performed tenfold cross validation-based optimization of 
hyper-parameters to reduce overfitting.

Computation time estimation

AIWrap algorithm time complexity can change based on the techniques used to per-
form feature subset sampling, PPM and feature subset model building. In the current 
paper, LASSO, random forest and genetic algorithm are used and the time complexity 
is O(g ∗ pop ∗ (p3 + kwlog(kw))) where g is the number of generations in genetic algo-
rithm, pop is the population size in each generation, p is the number of features and kw 
is number of LASSO models used to train PPM (Additional File 1).Still, time complex-
ity is also estimated using computation time of the AIWrap algorithm under different 
scenarios. The algorithm is run on a system with processor Intel® Core (TM) i7-8750H 
CPU@2.20 GHz with 16 GB RAM on a Windows 10 64-bit operating system. AIWrap 
algorithm is compared with a Standard Wrapper (StW) algorithm and hybrid algo-
rithm. In StW, sampling method and feature subset model building method is same as 
AIWrap but does not have PPM and performance-based feature selection step. Further, 
an embedded feature selection step is added in StW. AIWrap-L version of AIWrap algo-
rithm is used for comparison, thus any performance difference would be due to PPM. 
Genetic algorithm is used to generate samples in feature subset sampling step with max-
imum number of iterations fixed to 100.

Two methods are used in hybrid algorithms. Interaction Information-Guided Incre-
mental Selection (IGIS) method is used as a sample hybrid algorithm for comparison 
[22]. This method uses sequential forward selection as wrapper feature sampling tech-
nique. Since, it is designed for classification problem, the filters used are mutual infor-
mation and joint mutual information. Accordingly, the continuous outcome is converted 
into 10 equally spaced bins. A Modification of IGIS (mIGIS) is also used where filters 

Table 1 Description of the simulation data

Models Scenario β(Non-Zero coefficients) p Sample size ( n) σ

Train Test

Marginal 1_M {βi |i = {1, . . . , 10}} =

{0.5,−0.5, 0.5,−0.5, . . . , 0.5}

50 50 500 0.25

2_M 50 100 500 0.25

3_M 100 75 500 0.25

4_M 100 100 500 0.25

Interactions 1_I {βi ,βij |i = {1, . . . , 10}, j = i + 1, j < 11} =

{0.5,−0.5, 0.5,−0.5, . . . , 0.5}

15 100 500 0.25

2_I 25 100 500 0.25

3_I 50 100 500 0.25
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used are correlation and ridge regression to allow the use of continuous outcome. Since, 
IGIS is not designed to provide explicit interaction terms, hybrid algorithms are not 
tested for scenarios containing interaction terms.

Multiple scenarios are created for the comparative analysis of algorithms (Table  1). 
The training datasets vary from 50 to 100 samples, while the test datasets contain 500 
samples. In each scenario, training samples and test samples are independent samples 
that came from same distribution. Along with computation time, we evaluate algorithms 
on their ability to select the target features and predictive performance of selected fea-
tures. F1 score is used to determine the accuracy of selecting target features. Root Mean 
Square Error (RMSE) from the test data is used to determine the predictive performance 
of the model obtained from the embedded feature selection step. RMSE on test data 
would also help in comparing the overfitting problem of different algorithms. All the 
analysis is conducted using R 4.0.3 [25].

In both the marginal and interaction models (Table 2), AIWrap has better or at par 
ability to discriminate between the target and noise features, especially for interaction 
models as compared to other algorithms. The similar performance of StW compared to 
hybrid methods could be the use of different search strategy. Similarly, predictive perfor-
mance of the features shortlisted from AIWrap is better or at par with other algorithms, 
especially for high dimensional data and interaction models. AIWrap performance sug-
gests that this methodology framework can be used as an alternative to the standard 
wrapper and hybrid framework.

The number of iterations in the genetic algorithm is predefined for both StW and 
proposed algorithm which indicates that proposed algorithm used lesser number of 
models to achieve the better outcome. However, AIWrap consumed more time as com-
pared to standard wrapper approach which is counter intuitive. The current approach 
uses random forest to update PPM model and uses LASSO to build the base model for 
the unknown feature subset in both StW and proposed algorithm. Random forest used 
for PPM took more time in each run compared to the Lasso model used to build the 
model because during each upgrade, sample size used for training PPM model increases. 
LASSO needs to build the model on a sample size of 50 or 100 but random forest needs 
to build a PPM model using at least 225 samples (Model 1_I) with sample size increasing 
during the execution of genetic algorithm.

AIWrap comparison with standard algorithms

AIWrap performance is compared with existing standard penalized regression algo-
rithms namely LASSO, ALASSO, GLASSO, Enet, AEnet and SPLS in ten different trials. 
GLASSO is used only for interaction models. All the analysis is conducted using R 4.0.3 
[25]. The standard algorithms are run using the inbuilt packages in statistical language 
R. glmnet package [26] is used for most algorithms except GLASSO and SPLS for which 
glinternet [27] and spls [28] packages are used. Adaptive weights are obtained from ridge 
regression [29] for adaptive models. In the case of interaction models, all possible two-
way interaction terms are created and entered the model.

Algorithms are evaluated on target feature selection and prediction performance. We 
evaluate their ability to discriminate between true and noise features by measuring the 
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selection of true features and rejection of noise features. We use RMSE from the test 
data as the predictive performance metric.

Table 3 shows the feature selection performance of different algorithms for marginal 
models. All have selected the targeted ten features which means that they can iden-
tify the target features in the marginal dataset. However, in most cases, the number 
of selected features is much higher, indicating that methods also select noise features. 
AIWrap, compared to other algorithms, selected a similar or lesser number of noise fea-
tures which suggests that it has better discrimination ability between noise and target 
features than standard methods (Fig. 1). It is shown that frequency of selecting a noise 
feature is consistently lesser than the target features in all methods, but the maximum 
separation is found only for AIWrap method. In addition, the area under curve (AUC) of 
the features was higher for AIWrap method as compared to standard methods. Thus, in 
the case of marginal datasets, while all methods can identify the target features, AIWrap 
outperforms all other methods with a lesser selection of noise features.

The results from the interaction models reiterate the results of the marginal scenario 
that the feature selection performance of AIWrap is better or at par with the stand-
ard algorithms. Similar to marginal models, Table 4 shows that the number of features 
selected by all algorithms in interaction models is more than the number of target fea-
tures in most cases. They all selected noise features, but the number of noise features 
selected differs with algorithm. Figure 2 suggests that AIWrap may be selecting a lesser 
number of noise features compared to other methods. In low dimensional space, all 

Table 3 Feature selection performance of different approaches in simulated scenarios for marginal 
models

Values in Bold means best results

Methods Performance (Number of features selected)

Marginal Model Scenarios

1_M 2_M 3_M 4_M

p = 50 p = 50 p = 100 p = 100

Target Features: 10 Target Features:
10

Target Features:
10

Target Features:
10

Mean (Range)

ALASSO 24
(18–32)

16
(11–35)

27
(20–39)

28
(14–46)

LASSO 25
(18–37)

23
(14–40)

32
(16–57)

33
(14–55)

SPLS 23
(14–35)

16
(10–39)

25
(12–50)

19
(11–47)

Enet 27
(18–36)

25
(14–41)

32
(21–45)

32
(17–55)

AEnet 26
(21–30)

18
(11–35)

28
(20–43)

30
(15–48)

AIWRAP-L 29
(24–33)

24
(19–31)

44
(29–59)

44
(34–51)

AIWRAP-LLr 15
(11–22)

16
(10–31)

18
(10–26)

19
(10–45)

AIWRAP-LR 12
(10–16)

12
(10–16)

14
(10–21)

13
(10–22)
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algorithms can discriminate between the target and noise features by selecting the tar-
get features at a higher frequency as compared to noise features. However, in very high 
dimensions, only AIWrap and GLASSO can perform. AUC performance of different 
methods also shows better or at par performance of AIWrap as it can predict the target 
and noise features with greater or similar accuracy than other methods.

AIWrap uses existing classic statistical techniques. The statistical techniques could 
influence the wrapper method performance [30]. However, a performance comparison 

Fig. 1 Comparison of different methods’ feature selection performance in marginal models a Frequency of 
selection of target and noise features. b AUC for predicting the target and noise features

Table 4 Feature selection performance of different approaches in simulated scenarios for 
interaction models

Values in Bold means best results

Methods Performance (Number of Features Selected)

Interaction Model Scenarios

1_M 2_M 3_M

p = 15 χ = 105 p = 25 χ = 300 p = 50 χ = 1225

Target Features

10 9 10 9 10 9

Mean (Range)

ALASSO 15
(15–15)

31
(20–41)

24
(22–25)

46
(32–67)

32
(2–45)

36
(1–67)

GLASSO 15
(14–15)

40
(22–51)

25
(24–25)

66
(39–74)

47
(45–49)

76
(72–81)

LASSO 15
(15–15)

33
(18–49)

24
(22–25)

45
(30–65)

16
(1–45)

16
(0–71)

SPLS 14
(12–15)

36
(16–102)

19
(9–25)

65
(6–287)

38
(6–50)

417
(1–1057)

Enet 15
(15–15)

34
(21–44)

22
(14–25)

39
(11–60)

29
(2–50)

36
(1–116)

AEnet 15
(15–15)

32
(24–41)

24
(22–25)

44
(31–64)

37
(2–49)

53
(1–104)

AIWRAP-L 12
(12–14)

34
(20–47)

18
(14–21)

50
(26–60)

29
(27–32)

85
(71–99)

AIWRAP-LLr 12
(12–14)

30
(8–44)

16
(10–20)

36
(5–47)

24
(8–30)

30
(2–52)

AIWRAP-LR 12
(12–14)

34
(20–47)

18
(14–21)

50
(26–60)

28
(24–30)

46
(26–88)
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between LASSO used in AIWrap and as a standalone feature selection algorithm clearly 
showed that AIWrap could improve the LASSO performance. The AIWrap performance 
suggests that the proposed algorithm could enhance the feature selection performance 
of the existing statistical methods by reducing the feature space and increasing the target 
feature percentage.

Table 5 shows the prediction performance of algorithms. RMSE performance suggests 
that AIWrap performs consistently better or at par with the existing algorithms. In low 
dimensionality data (2_M, 4_M and 1_I), it is expected that all algorithms should give 
similar performance as standard algorithms are primarily developed for handling low 
dimensionality data, and results support it. AIWrap can provide better performance 
even in high dimensional settings (1_M and 3_M) and in the presence of interaction 
terms (2_I). However, at very high dimensional data (3_I), all methods perform poorly. 
These findings suggest that the AIWrap may provide better or at par prediction per-
formance than existing algorithms. Overall, the proposed algorithm could expand the 
capability of existing methods like non-penalized regression to operate in high-dimen-
sional settings. However, computational intensiveness will be a significant limitation for 
the proposed algorithm compared to standard methods. In summary, performance of 
all algorithms deteriorates with an increase in data dimensionality, but performance of 
most standard methods decreases more drastically than AIWrap.

Real studies: population health data

Four real studies are analyzed to evaluate the performance of AIWrap and existing algo-
rithms. Community Health Status Indicators (CHSI) study focuses on non-communi-
cable diseases from US county with data (n = 3141) containing 578 features [31] (Study 
I). National Social Life, Health and Aging Project (NSHAP) datasets focusing on the 
health and well-being of aged Americans contains multiple datasets. We chose two data-
sets (Study II and Study III) containing data for 4377 residents on 1470 features [32] and 
3005 residents on 820 features [33]. Study IV is the Study of Women’s Health Across the 
Nation (SWAN), 2006–2008 dataset focusing on 887 physical, biological, psychological 
and social features in middle-aged women in the USA (n = 2245) [34].

The raw data of the real studies are processed for ease of analysis to obtain final 
datasets (Table 6). Features and samples are filtered to remove highly correlated fea-
tures, non-continuous features, and missing values. Then, each dataset is randomly 

Fig. 2 Feature selection performance comparison of different methods in interaction models a Frequency of 
selection of target and noise features. b AUC for predicting the target and noise features
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split into training and testing datasets. As the sample size is large, only 20% of data 
is used for training while remaining 80% of data is used for testing to create a high 
dimensional data setting. We compare the performance of different algorithms for 
marginal models and interaction models using mean RMSE of the test data in ten 
trials.

Table  7 summarizes the feature selection results. It is shown that standard algo-
rithms are selecting a lesser number of features as compared to AIWrap. However, the 
results from the previous simulated data studies suggest that standard methods may 
struggle to discriminate between target and noise features (Figs. 1 and 2). Further, the 
predictive performance results of AIWrap is better than the standard algorithms for 
both marginal as well as interaction models (Table 8). The better performance of the 
proposed algorithm suggests that it may be more reliable than standard algorithms in 
identifying the target features.

Table 5 Outcome prediction performance of different approaches in simulated scenarios for the 
test dataset

Values in Bold means best results

Methods Performance (RMSE)

Marginal Model Scenarios Interaction Model Scenarios

1_M 2_M 3_M 4_M 1_I 2_I 3_I

Mean (95% Confidence Interval)

ALASSO 0.44
(0.35–0.54)

0.28
(0.23–0.33)

0.39
(0.32–0.46)

0.30
(0.26–0.35)

0.44
(0.36–0.52)

0.94
(0.74–1.13)

1.36
(1.31–1.41)

GLASSO 0.36
(0.3–0.43)

0.65
(0.51–0.80)

1.20
(1.15–1.26)

LASSO 0.45
(0.36–0.54)

0.29
(0.24–0.34)

0.40
(0.33–0.47)

0.31
(0.26–0.36)

0.40
(0.33–0.47)

0.94
(0.76–1.13)

1.36
(1.32–1.40)

SPLS 0.45
(0.35–0.55)

0.26
(0.21–0.31)

0.43
(0.28–0.58)

0.27
(0.23–0.31)

0.52
(0.38–0.66)

1.33
(1.21–1.45)

1.47
(1.38–1.56)

Enet 0.45
(0.36–0.53)

0.29
(0.24–0.35)

0.42
(0.34–0.5)

0.32
(0.27–0.36)

0.41
(0.34–0.49)

1.02
(0.82–1.22)

1.34
(1.29–1.38)

AEnet 0.46
(0.35–0.57)

0.28
(0.23–0.33)

0.41
(0.33–0.48)

0.31
(0.26–0.35)

0.46
(0.38–0.54)

0.97
(0.79–1.15)

1.34
(1.30–1.39)

AIWRAP-L 0.51
(0.38–0.65)

0.28
(0.23–0.32)

0.43
(0.34–0.52)

0.31
(0.26–0.36)

0.36
(0.29–0.43)

0.50
(0.40–0.61)

1.43
(1.30–1.57)

AIWRAP-LLr 0.41
(0.26–0.56)

0.26
(0.21–0.31)

0.33
(0.27–0.39)

0.27
(0.22–0.32)

0.39
(0.31–0.48)

0.58
(0.39–0.77)

1.44
(1.33–1.55)

AIWRAP-LR 0.46
(0.33–0.58)

0.30
(0.26–0.33)

0.34
(0.30–0.38)

0.29
(0.26–0.33)

0.56
(0.48–0.65)

0.79
(0.68–0.91)

1.35
(1.28–1.41)

Table 6 Summary of the real datasets

Real Studies Marginal 
Features (p)

Outcome feature Sample size (n)

Total Train Test

Study I 44 Percentage of unhealthy days 1471 294 1177

Study II 19 Height 1287 257 1030

Study III 33 Height 943 189 754

Study IV 26 Body Mass Index 1406 281 1125
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The results show that in Study III, marginal models performed better than their inter-
action models for all algorithms. Better performance of the marginal model compared to 
the interaction model suggests that AIWrap cannot completely reject noise features and 
is sensitive to an increase in feature space. However, AIWrap is still more robust than 
standard algorithms and can perform in different dimensions and datasets.

Real studies: genomic data

AIWrap-L algorithm is compared with StW in the genomic datasets to determine the 
biological relevance of the solutions obtained from AIWrap. In many cancer studies, it is 
found that smoking can be detrimental to the cancer patient health [35, 36]. Further, an 
association between gene expression levels and cancer patient smoking habit has been 
reported [37]. Thus, it would be relevant to identify the genes in cancer patients which 
are associated with smoking-related traits. In this study, The Cancer Genomic Atlas 
(TCGA) program is used to get the data from nine cancer projects (Table 9) which main-
tained records related to amount smoked and gene expression profile of patients [38]. 
The sample size n for these projects range from 89 to 592 samples with feature space p of 
56,602 genes. The gene expression profile is used as the input feature space and number 
of cigarettes smoked per day (CPD) is used as the outcome.

Table 7 Number of features selected by different wrapper methods on the real studies

Values in Bold means best results

Real 
Studies

Performance
(Number 
of Features 
Selected)

Existing Models AIWRAP

ALASSO GLASSO LASSO SPLS Enet AEnet AIWRAP-L AIWRAP -LLr

Mean (Range)

Marginal Models

I Marginal
(p = 44)

7
(4–14)

7
(3–16)

23
(3–44)

13
(4–22)

11
(4–21)

13
(7–21)

10
(5–16)

II Marginal
(p = 19)

5
(1–10)

7
(1–12)

9
(1–15)

8
(1–15)

7
(1–12)

9
(4–13)

6
(3–9)

III Marginal
(p = 33)

8
(4–11)

12
(6–16)

11
(4–33)

13
(5–18)

10
(4–18)

13
(10–18)

9
(4–13)

IV Marginal
(p = 26)

6
(5–7)

7
(5–9)

7
(5–14)

8
(5–11)

7
(5–12)

7
(5–9)

5
(3–9)

Interaction Models

I Marginal 
(p = 44)

13
(7–24)

42
(41–43)

12
(7–23)

12
(3–44)

22
(10–36)

21
(7–32)

21
(15–26)

20
(14–26)

Interaction 
(χ = 946)

4
(1–11)

170
(156–183)

4
(0–11)

63
(0–591)

13
(1–46)

11
(0–23)

23
(8–47)

17
(5–35)

II Marginal 
(p = 19)

10
(2–18)

19
(19–19)

9
(1–16)

11
(1–19)

9
(1–15)

10
(1–16)

12
(9–15)

10
(1–14)

Interaction 
(χ = 171)

6
(0–19)

94
(87–108)

4
(0–8)

24
(0–117)

6
(0–21)

6
(0–14)

15
(5–37)

8
(0–13)

III Marginal 
(p = 33)

15
(6–26)

33
(32–33)

15
(3–23)

4
(1–10)

14
(4–23)

16
(10–23)

16
(10–21)

15
(2–21)

Interaction 
(χ = 528)

6
(1–25)

125
(113–137)

5
(0–16)

1
(0–4)

4
(0–16)

5
(1–15)

22
(1–49)

19
(1–49)

IV Marginal 
(p = 26)

5
(3–6)

7
(5–9)

6
(3–9)

9
(6–12)

7
(4–10)

5
(3–6)

10
(6–13)

10
(6–13)

Interaction 
(χ = 299)

3
(1–4)

7
(5–10)

4
(2–6)

12
(7–16)

5
(2–7)

3
(1–5)

13
(7–26)

13
(7–26)
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Preliminary processing of all datasets is performed to reduce the input feature space 
and remove samples with missing values. The input feature space is reduced from 
56,602 to 50 features through multi-stage processing (Table  9). Step one involved 
removing the features which are not differentially expressed in cancer patients as 
compared to normal patients using TCGAbiolinks package [39]. Step two involved 
supervised dimensionality reduction of the differentially expressed genes using par-
tial least squares technique and select top 100 features with highest absolute weights 
in first latent feature. Step three involved removing correlations among the features. 
Thus, among any pair of features with more than 0.8 absolute correlation, one feature 

Table 8 RMSE performance of different wrapper methods on the real studies for test data

Values in Bold means best results

Methods Performance (RMSE)

Marginal Model Scenarios

I II III IV

Mean (95% Confidence Interval)

ALASSO 0.95
(0.95–0.96)

3.76
(3.67–3.84)

3.08
(3.01–3.14)

0.86
(0.81–0.90)

LASSO 0.96
(0.95–0.97)

3.75
(3.65–3.85)

3.10
(3.03–3.16)

0.84
(0.8–0.87)

SPLS 0.97
(0.95–0.99)

3.61
(3.54–3.69)

3.35
(3.03–3.66)

0.77
(0.76–0.79)

Enet 0.95
(0.94–0.96)

3.79
(3.7–3.87)

3.15
(3.08–3.23)

0.85
(0.81–0.90)

AEnet 0.96
(0.94–0.97)

3.76
(3.67–3.85)

3.11
(3.07–3.15)

0.84
(0.8–0.87)

AIWRAP-L 0.94
(0.93–0.94)

3.65
(3.59–3.71)

3.02
(2.98–3.06)

0.83
(0.8–0.86)

AIWRAP-LLr 0.96
(0.94–0.97)

3.59
(3.55–3.64)

2.97
(2.91–3.03)

0.75
(0.73–0.78)

AIWRAP-LR 0.95
(0.94–0.96)

3.80
(3.72–3.87)

3.19
(3.11–3.28)

1.20
(1.17–1.24)

Methods Interaction Model Scenarios
I II III IV
Mean (95% Confidence Interval)

ALASSO 0.94
(0.93–0.95)

3.69
(3.61–3.76)

3.12
(3.02–3.23)

0.52
(0.49–0.55)

GLASSO 1.44
(1.2–1.68)

4.46
(4.35–4.57)

8.24
(5.37–11.11)

0.31
(0.28–0.34)

LASSO 0.95
(0.94–0.96)

3.74
(3.67–3.81)

3.15
(3.02–3.27)

0.43
(0.39–0.47)

SPLS 1.03
(0.91–1.15)

3.81
(3.76–3.86)

4.34
(3.26–5.42)

0.24
(0.22–0.26)

Enet 0.94
(0.93–0.95)

3.78
(3.72–3.84)

3.24
(3.13–3.34)

0.44
(0.4–0.48)

AEnet 0.93
(0.92–0.94)

3.73
(3.65–3.81)

3.14
(3.06–3.21)

0.53
(0.5–0.56)

AIWRAP-L 0.94
(0.92–0.95)

3.58
(3.53–3.63)

3.07
(2.98–3.17)

0.29
(0.26–0.33)

AIWRAP-LLr 1.04
(0.99–1.1)

3.76
(3.58–3.93)

3.65
(3.26–4.04)

0.26
(0.21–0.31)

AIWRAP-LR 0.93
(0.92–0.94)

3.70
(3.64–3.76)

3.22
(3.18–3.26)

1.11
(0.99–1.24)
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is randomly selected. Step four involves selecting the top 50 features among the non-
correlated features based on their absolute weight in the first latent feature obtained 
in step two. No interaction effects are considered for this analysis.

The performance of AIWrap and StW in all datasets is compared on three metrics 
namely predictive performance, computation time and number of genes selected. The 
results are based on tenfold cross-validation (Table  10). It observed that in all the 
datasets the predictive performance of AIWrap based features is better or at par with 
StW based features. Further, it is observed that a smaller set of features are selected 
by AIWrap as compared to StW which suggests AIWrap could provide a more parsi-
monious set of features as compared to StW without compromising on the predictive 
performance of the features. In terms of computation time, the results are similar to 
those observed in simulation studies with StW taking less time than AIWrap in most 
cases. The stability of AIWrap is similar to StW when compared using standard devia-
tion of predictive performance (Additional file 2:  Table S1).

Table 9 Summary of the genomic datasets

Datasets Number of cigarettes smoked 
per day
(µ(σ))

Sample size
(n)

Feature space
(p)

TCGA-BLCA 1.16 (2.34) 433 56,602

TCGA-CESC 0.30 (0.62) 307 56,602

TCGA-ESCA 0.95 (1.21) 172 56,602

TCGA-HNSC 1.41 (1.89) 544 56,602

TCGA-KICH 0.21 (0.67) 89 56,602

TCGA-KIRP 0.42 (1.04) 320 56,602

TCGA-LUAD 1.53 (1.59) 592 56,602

TCGA-LUSC 2.44 (1.88) 551 56,602

TCGA-PAAD 0.46 (0.88) 181 56,602

Table 10 Wrapper methods comparison of predictive performance, number of genes selected and 
computation time

Values in Bold means best results

Dataset Performance (µ [95% CI])

Predictive performance (RMSE) Number of genes 
selected

Computation time (minutes)

StW AIWRAP-L StW AIWRAP-L StW AIWRAP-L

TCGA-BLCA 0.79[0.31,1.27] 0.78[0.30,1.26] 4[0,9] 1[0,3] 5.9[3.2,8.6] 12.2[10.1,14.3]

TCGA-CESC 1.00[0.84,1.16] 0.98[0.84,1.13] 10[7, 13] 5[4, 6] 11[7.7,14.2] 14.6[9.9,19.3]

TCGA-ESCA 1.04[0.87,1.20] 1.00[0.85,1.15] 11[5, 17] 8[2, 14] 7.2[4.9,9.5] 27.9[3.6,52.2]

TCGA-HNSC 0.99[0.82,1.16] 0.98[0.81,1.15] 16[12, 20] 6[3, 9] 11.4[8.7,14] 20.3[9.3,31.2]

TCGA-KICH 1.03[0.61,1.46] 0.82[0.39,1.25] 11[9, 13] 6[4, 8] 50.2[24.7,75.7] 10.6[7.5,13.7]
TCGA-KIRP 0.95[0.66,1.24] 0.95[0.65,1.24] 19[18, 20] 15[11, 19] 10.4[8.8,12] 41.1[12.5,69.8]

TCGA-LUAD 1.02[0.93,1.11] 1.02[0.94,1.09] 25[22, 28] 21[16, 26] 11.6[9.1,14.1] 42.3[11.6,72.9]

TCGA-LUSC 0.99[0.91,1.08] 0.99[0.91,1.08] 2[1, 3] 1[0,2] 5.7[4.4,7] 12[8.8,15.2]

TCGA-PAAD 1.26[0.74,1.79] 1.24[0.75,1.73] 22[20, 24] 14[9, 19] 10.8[7.6,14.1] 29[0.6,57.4]
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In order to assess the biological relevance of the genes selected by each method, 
selected genes of each dataset are pooled together to create final list of genes selected 
by each method. The results show that some genes are selected at a very high frequency 
in dataset during tenfold feature selection process. Genes need to fulfill one of the two 
criteria of either having highest selection frequency or selection frequency of more than 
80%. Accordingly, across nine datasets, AIWrap provided 13 genes while StW provided 
40 genes. 11 genes (VCX3A, WNT3A, CALHM5, ZMYND10, FOXE1, PLAT, BAAT, 
WFDC5, CGB5, FADD, APOE) are found to be common across the two methods. Based 
on the univariate of the genes selected from two algorithms, it is found that 9 out of 13 
AIWRAP genes and 19 out of 40 StW genes are statistically significant. In multivariate 
analysis, it is found that 8 out of 13 AIWrap and 18 out of 40 StW genes are statistically 
significant (Additional file 2: Table S2). Among the 13 genes from AIWrap, seven genes 
(WNT3A [40], TMEM45A [41], BAAT [41], WFDC5 [42], HS3ST5 [43], CGB5 and 
APOE [44]) have been reported in literature to exert influence on tobacco or smoking-
related traits. Further, AIWrap identified six new genes (VCX3A, CALHM5, ZMYND10, 
FOXE1, PLAT, FADD) which could be related to smoking in cancer patients, thus pro-
viding an opportunity for identifying previously unknown biological functions.

Discussion
Building models for each sample feature set obtained during the feature sampling stage 
of wrapper methods consume computational resources and may not always provide the 
best results. AIWrap allows skipping the model building for many sample feature sets by 
training an AI model, i.e., PPM, which could predict the performance of sample feature 
sets. AIWrap feature selection performance and predictive performance are better or at 
par than both the standard wrapper method and penalized standard algorithms, namely 
LASSO, ALASSO, GLASSO, SPLS, Enet and AEnet.

The proposed algorithm has certain limitations. The current study primarily focuses 
on testing the concept; thus, the study performed testing on limited datatypes. Future 
research could focus on evaluating the robustness of the approach using different types 
of data such as temporal data and categorical data, and outcomes such as binary out-
comes and time to event outcomes. Other than data types, the focus could also be 
directed towards the techniques used in the algorithm. Currently, the study uses a linear 
combination function for building actual models, but future studies could also explore 
the non-linear combination function for model building. Further, the current study 
reduced the need to build actual models in the wrapper approach but could not eliminate 
it. Therefore, future research could use other PPM building techniques like an artificial 
neural network and support vector machines to eliminate the need for actual models. 
Finally, time complexity is a challenge which could be explored in future research.

Conclusion
In the paper, we propose AIWrap, an innovative algorithm to perform wrapper based 
feature selection. The algorithm is flexible enough to work with both marginal and 
interaction terms. The algorithm could be easily embedded with any of the wrapper 
techniques as it does not alter existing methods, which allows users to integrate the algo-
rithm in their existing wrapper pipelines. This approach could enhance the performance 
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of existing wrapper techniques available in the literature for high dimensional datasets 
by reducing the number of models needed to search space. AIWrap can identify both the 
marginal features and interaction terms without using interaction terms in PPM, which 
could be critical in reducing the feature space any pipeline has to process.

The benefits of AIWrap comes from using AI to learn the dataset performance behav-
ior and build the PPM, which replaces the actual model building process. The studies 
involving marginal effects with and without interaction effects in simulated data showed 
that AIWrap could outperform existing algorithms in feature selection and prediction 
performance. Similar performance in real datasets also demonstrates the practical rel-
evance of AIWrap.

Conceptual framework

In a wrapper algorithm, given a dataset D of sample size n with p feature space and 
outcome y , a subset feature set q is created from p . In the standard wrapper algorithm 
(Fig. 3a), a model is built for the subset of D containing q features and performance is 
estimated by building model using the dataset. This performance is used to select the 
next subset of p . This dependence of a standard wrapper algorithms upon model build-
ing step for each subset of feature to estimate its performance is targeted in our AIWrap 
algorithm.

The conceptual framework used to design AIWrap algorithm (Fig. 3b) aims at reduc-
ing (or removing) the dependence of the wrapper algorithm on model building step for 
obtaining performance value of q . PPM will compute the unknown subset performance 
based on the known subsets performance. A user may not have a predefined list of 
known k feature samples with their actual performance. AIWrap algorithm creates a 
random set qAI =

{
qAIj

}
|qAIj ∈ {{1}, . . . , {1, . . . , p}}, j ∈

{
1, . . . , k

}
 of k feature samples, 

Fig. 3 Flow chart of A Standard wrapper approach and B Proposed wrapper (AIWrap) conceptual approach
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where each feature sample is a subset of p . The algorithm builds a model for qAI samples 
to estimate their performance C =

{
cj
}
 . The algorithm creates PPM with qAI as the 

input and c as the outcome using a machine learning model to enable performance pre-
diction of any subset of p . Finally, the algorithm executes the standard wrapper 
approach, but uses PPM as a surrogate to the actual model building step that predicts 
rather than estimates the actual performance of q.

Methodology

This section explains the design of AIWrap algorithm based on the conceptual frame-
work. The algorithm is divided into four steps: PPM, wrapper based coarse feature selec-
tion, embedded-feature selection and performance-based feature selection (Fig. 4).

PPM

The algorithm generates k random sample datasets containing qAIj features, and sample 
size n fromD . A set of models M =

{
mj

}
 are created from k sample datasets for an out-

come , y using any modeling technique to obtain its performance,c . k is a hyperparam-
eter which user needs to optimize. In the current study,k = 15 ∗ p , which is determined 
heuristically.

A performance set C =
{
cj
}
 contains the performance of M models. The algorithm 

creates a performance dataset Dperf  , a matrix of features used in each model of M ( qf  ) 
and their performance, C.

As shown in Eq. 3, feature matrix ( qf  ) is a binary matrix that consists of p columns 
and k rows. The matrix takes the value of 0 for ith column and jth row, if ith feature is not 
used in mj model, else ith column and jth row takes the value of 1. PPM is constructed 
using any machine learning technique from Dperf  to predict performance, Cpred of any 
unknown dataset.

In this study, we have used LASSO to prepare mj models and random forest to build 
the PPM with RMSE as the performance metric. During the preliminary analysis (Addi-
tional file 3), it is found that predicted performance and actual performance is strongly 
and positively correlated, but predicted performance may not match the actual perfor-
mance, as a result subset corresponding to best predicted performance may not be the 
best subset.

Wrapper based coarse feature selection

The standard wrapper algorithm as shown in Fig. 3a is an iterative process where a subset 
of feature is evaluated, and performance of the feature subset is used to select the next sub-
set of features. In our work, we used genetic algorithm to search through the feature space 

(2)mj : yj = f
(
qAIj

)
|j ∈

{
1, . . . , k

}

(3)Dperf =
∥∥ qfij cj

∥∥qfij =
{
0, qAIij /∈

{
mj

}
, i ∈ {1, p}, j ∈

{
1, . . . , k

}

1, qAIij ∈
{
mj

}
, i ∈ {1, p}, j ∈

{
1, . . . , k

}

(4)PPM : Cpred = f
(
qf
)
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Fig. 4 AIWrap algorithm graphical flow chart. Dark Background represents main steps and light background 
represents sub-steps



Page 18 of 22Jain and Xu  BMC Bioinformatics          (2023) 24:392 

iteratively as it is used in wide range of datasets [45, 46]. In the proposed algorithm, we use 
PPM for all iterations to predict the performance Cpred of a feature set q . Since, we found 
that best Cpred may correspond to one of the high performing feature sets but not the best 
feature set, we validate Cpred values by building a model using q features to estimate the 
performance Ctrue (Fig. 4). The algorithm uses user-defined criteria valcrit to select sample 
feature sets for validation of Cpred values.

In this study, the top quartile of C is used as the valcrit criterion, thus q with Cpred in top 
quartile of C are selected for model building. Dperf  is updated with feature set q whose Ctrue 
value is available and consequently, is used to update PPM. The iteration stops when we 
get qwrap features, which provide the best performance. RMSE is used as the performance 
metric.

Embedded feature selection

The qwrap features obtained from the wrapper step are processed to obtain the final fea-
tures because the prediction model does not explicitly provide the non-linear combinations 
of  qwrap features. Thus, an embedded feature selection model is used on qwrap features for 
an outcome , y which allows the additional features χ like interactions terms to be incor-
porated. LASSO framework is used as the embedded model in the proposed algorithm. 
LASSO hyper-parameters are optimized using tenfold cross validation of training data to 
reduce overfitting issue of the algorithm (Additional file 3).

Performance-based feature selection

The features selected from the embedded model qembed undergo the last stage of processing 
to provide final features q . This step selects features based on their contribution to the 
model performance. l models mperf l

: y
j
= f (qembed − l)|l ∈ {1, . . . , qembed} are prepared 

with each model containing  qembed − 1 features. l feature importance is determined from 
the mperf l

 performance.
To obtain l feature robust importance, we create multiple models using bootstrapping of 

samples, and their performance ĉj is pooled to get overall model performance ĉpoolj . In this 
study, we use ridge regression for model building as we are focusing on high dimensional 
data and non-penalized linear regression could only work for cases with qembed < n . Good-
ness of fit ( R2 ) of out of the bag (OOB) samples is used as the performance metric. Finally, 
the performance metric is pooled to provide a coefficient of variation of R2 as the overall 
model performance for l feature.

A performance threshold ccutoff  needs to be defined to select the features. Rather than 
using an arbitrary threshold, our algorithm uses a dynamic cutoff. The algorithm tries differ-
ent performance thresholds and selects the threshold which provides the best performance 
cbest for the smallest feature space qbest . In the current study, we use genetic algorithm to 
search through the performance threshold space. Two different techniques, namely non-
penalized regression and adaptive ridge regression are used for the model building. Pseudo 
Algorithm summarizes the complete AIWrap algorithm.



Page 19 of 22Jain and Xu  BMC Bioinformatics          (2023) 24:392  



Page 20 of 22Jain and Xu  BMC Bioinformatics          (2023) 24:392 

Abbreviations
AEnet  Adaptive Elastic net
AI  Artificial Intelligence
AIWrap  Artificial Intelligence based wrapper
ALASSO  Adaptive LASSO
AUC   Area under curve
CHSI  Community Health Status Indicators
Enet  Elastic net
GLASSO  Group LASSO
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OOB  Out of the bag
PPM  Performance Prediction Model
RMSE  Root Mean Square Error
SPLS  Sparse Partial Least Squares
StW  Standard wrapper
SWAN  Study of Women’s Health Across the Nation
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