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Introduction
As more cell segmentation methods are made available in literature [1–5], it is increas-
ingly difficult to compare these methods on a given dataset using a comprehensive set of 
evaluation metrics. There are many evaluation metrics available [6–8], making it difficult 
to determine which metrics to use when evaluating a segmentation pipeline on a par-
ticular data set. Distinct types of evaluation metrics have their own limitations [9], mak-
ing it essential to obtain results from multiple evaluation metrics to better understand 
cell segmentation quality. While the region of interest (ROI) level evaluation for segmen-
tations can be used to calculate over and under segmentation [10, 11], the pixel level 
(PL) scores can be used to quantify the foreground and background detection [12] and 
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fine grain differences between segmentations. Scores that evaluate feature histograms 
containing morphological, intensity, or textural features can be used to understand 
how meaningful the ROI and PL metrics are to measured values. To simplify the task of 
obtaining such metrics, there is a need to develop tools to assess each feature scalably 
so that images and segmentations of any size can be assessed. Additionally, multi-step 
analysis pipelines are needed to calculate them automatically and select the relevant fea-
tures to compare different imaging algorithms.

Previous works have tackled the task of evaluating image segmentation methods using 
a variety of techniques. Some works have focused primarily on PL metrics [12], while 
others have focused on ROI metrics by implementing a cell-to-cell comparison approach 
[11]. Some researchers have also tried to combine intensity features and ROI level scores 
[13]. All these approaches of segmentation analysis are important; however, it can 
become challenging to implement an array of these metrics for a researcher trying to 
evaluate their model. It is common to evaluate models using one or two metrics at ROI 
or PL [14, 15], since it is difficult to implement a multitude of such metrics from scratch. 
The lack of an open-source pipeline to generate a variety of metrics was the impetus for 
this work. Here, three evaluation methods and several analysis pipelines are provided 
to the community which not only generate a comprehensive list of different metrics but 
also shortlist the relevant metrics using these tools, giving the researcher the means to 
select data driven metrics rather than choosing a metric commonly used in literature.

To evaluate segmentation metrics, a comprehensive comparison of image segmenta-
tion pipelines is performed in both 2D nucleus and cytoplasm images. Two structures 
were chosen to highlight the versatility of the proposed pipeline/tools and their appli-
cability to be used on both simple (elliptical nuclei) and complex (cytoplasm) regions 
[16]. The complexity of cytoplasm morphology and texture highlights the need to quan-
tify segmentations from multiple available assessment methods, as different metrics 
can show different facets of segmentation quality across the complex concave/convex 
regions. We also extract multiple features from the ground truth and predicted images 
and compare them using different distribution metrics. This comparison of features pro-
vides a better understanding of the segmentation quality by assessing biologically rel-
evant parameters like mean intensity and solidity. The algorithms used for comparison 
in this paper are: UF-UNet [17], Mesmer [18], SplineDist [19], Allen Institute Cell Seg-
mentation Tool (AICS) [20] and CellPose [21]. We also compare these methods against 
Columbus [22], a commonly used proprietary commercial imaging tool. It is through 
comparing the above-mentioned state-of-the-art methods that we demonstrate the 
relevance and utility of creating pipelines to obtain comprehensive evaluation metrics 
to delineate and select optimal models based on identifying metrics that best separate 
them. The approach outlined in this manuscript is meant to provide an exhaustive, non-
hypothesis driven assessment of model performance across three distinct concepts of 
model performance (pixel-wise, region-wise, and feature-wise). By assessing this com-
prehensive set of metrics (regardless of downstream application of the output of various 
sets of models) the Authors believe they remove bias from the assessment of model per-
formance (not bias in the results of that assessment). For example, if a model has been 
pretrained on data from the same domain as the test set and is compared to another 
model that has not, it is unlikely that across all metrics outlined here the second model 
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would perform “better” than the first. The proposed tools and pipeline are not meant 
to eliminate or estimate, in any way, the extent of bias in the above mentioned experi-
mental set-up. Instead, they are meant to provide a comprehensive set of metrics that 
can assess differences between the results the two models generate and also identify 
the most significant contributors to the difference in performance between algorithms. 
What researchers do with this knowledge and the significance of these metrics to the 
underlying objective of the segmentation is still left to the expertise of those conducting 
the experiment.

Methods
Segmentation comparison pipeline

The pipeline that was used for evaluating segmented images using a multitude of evalu-
ation metrics can be seen in Fig. 1. To promote reproducibility and numerical stability 
[23] all segmentation algorithms/pipelines in Table 1 were containerized and executed 
using Polus and the Web Image Processing Pipeline (WIPP) [24]. Polus-WIPP allowed 
for the creation of complex imaging pipelines with the help of interoperable analysis 
plugins, which include machine learning and deep learning models and other image 
processing algorithms. Containerization and execution in Polus-WIPP occurred for all 

Fig. 1  Overview of analysis pipeline and segmentation approaches. Intensity images from the fluorescent 
microscopy data set TissueNet, with ground truth labeled regions, were processed to evaluate Histogram, 
ROI, and Pixel level features. The first blue box shows that the intensity and ground truth images are inputs to 
the Cytometric Feature Extraction plugin and the second blue box shows that ROI and Pixel Level Evaluation 
Plugins have the same input of label and ground truth images. The input to Histogram (Feature) Evaluation 
plugin is the feature list from the cytometric feature extraction plugin

Table 1  A table of all region segmentation approaches, whether they use deep learning or not, and 
whether models were fine-tuned on TissueNet or not that were assessed in this work

N/A means that the models were not used for cytoplasm segmentation

Nuclear segmentation Cytoplasm segmentation

Deep learning Fine-tuned Deep learning Fine-tuned

Mesmer Yes Yes Yes Yes

AICS No No No No

SplineDist Yes Yes N/A N/A

UF-UNet Yes Yes N/A N/A

CellPose Yes No Yes No

Columbus No No No No
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approaches in Table 1 except Columbus X (v. 2.9.1) from Perkin Elmer. Columbus was 
chosen as an industry standard to compare against these pipelines. The Columbus work-
flow follows the same path from intensity images to segmentations, to segmentation 
clean-up as the AICS pipelines. Then, the segmentations are exported from Columbus 
as labeled bitmaps and the feature extraction and metric assessment steps are identical 
to those shown in Fig. 1. The test data was uploaded to Polus-WIPP, and all the segmen-
tation and evaluation computations were run in the platform. The output from all the 
evaluation plugins was then visualized in Python using violin plots from the Matplotlib 
library 3.4.0 [25]. Polus-WIPP was used to execute all of the steps in the pipeline shown 
in Fig. 1, across all approaches listed in Table 1. The containerized plugins used for each 
step can be seen in Additional file  3: Table  S1, along with links to their source code, 
docker container, and specific version used for this publication. Table 1 below compares 
the different segmentation plugins/pipelines, indicates if they were fine-tuned on Tis-
sueNet, and if the algorithms utilize a deep learning approach or not. Python v 3.7.3 
was used for all libraries and packages in this manuscript unless otherwise indicated. 
While the clean-up step is not necessary, it is commonly used while segmenting images, 
especially when the methods being compared are not solely ML based, but also include 
commercial imaging tools, where the entire pipeline is created manually. A total of 69 
metrics were generated from the plugins. These metrics were obtained by researching 
literature and finding commonly used metrics that can be used for comparing ground 
truth and segmented images.

Datasets assessed

The TissueNet v1.0 dataset (referred to as TissueNet in this manuscript) is composed of 
nuclear and cell (whole-cell and cell membrane) images provided by Greenwald, Miller 
et  al. [18]. It consists of training images of 512 × 512 pixels, and validation and test 
images of 256 × 256 pixels. The dataset can be divided into 6 tissue types—Breast tis-
sue, Gastrointestinal tissue, Immune cells, Lung, Pancreas and Skin Tissue. These images 
were captured using 6 different platforms—Codex, CyCif, IMC, Mibi, Mxif and Vectra. 
Since this dataset consists of a variety of tissue types and has publicly provided annota-
tions, it was used for benchmarking the various segmentation methods.

Segmentation algorithms

Segmentations of cell nuclei and cytoplasm were performed using the approaches indi-
cated in Table  1 on the TissueNet dataset. After segmentation, evaluation metrics for 
each models’ predictions, independently on cytoplasm and nucleus, were assessed. 
Comparisons of models that were trained on more “general” cell nuclei and cytoplasm 
data to models that were further fine-tuned on TissueNet training data were also made 
(as shown in Table  1). The ImageJ UF-UNet plugin from University of Freiburg [17] 
was converted to python and the provided pre-trained weights, 2D Cell Net (v0), for 
the model were used for nuclear segmentation. The default model, initialized with 2D 
Cell Net (v0), was then fine-tuned on TissueNet nuclear images. Community provided 
pre-trained models were used for CellPose and SplineDist (versions 0.6.5 and 09/22/21, 
respectively). SplineDist was also fine-tuned on the TissueNet dataset for nuclear 
segmentation. Preliminary work to train and fine-tune SplineDist and UF-UNet on 
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cytoplasm data was also performed but results were so poor that the training expense 
was determined to be too high to continue (data not shown). The AICS pipelines used 
were not originally created for nucleus or cytoplasm segmentation. The Nucleophos-
min, Playground_npm1, pipeline was used for nucleus segmentation and the Sec61 beta 
and Lamin B1 pipeline, playground_curvi, was used for cytoplasm segmentation [26, 
27]. Mesmer [18] from Deepcell library v. 0.10.0, was provided to the community pre-
trained on TissueNet for Nuclear and Whole-cell images, and was containerized and 
used directly in this work. All plugin repositories, docker container locations, and CWL 
Tool (CLT) locations can be seen in Additional file 3: Table S1.

Segmentation comparison methods

ROI level evaluation

ROI level evaluation is a comparison of each region of interest from a segmentation pre-
diction to its associated region of interest in the ground truth. This technique can be 
used to observe over segmentation (e.g., multiple predicted regions for one ground truth 
region) and under segmentation (e.g., one predicted region for multiple ground truth 
regions). Distance between centroids of individual regions is used to match the ground 
truth with predicted regions [11]. Each ground truth ROI is matched with predicted 
ROIs. If the distance between a predicted ROI centroids is less than half the minor feret 
diameter of the ground truth ROI, it is counted as a match. A label (True Positive, False 
Positive, or False Negative) is assigned, and a pseudo confusion matrix is tabulated. 
No True Negative labels were assigned in this analysis since all background pixels are 
considered a single “negative object”. An ROI is labeled as a True Positive when exactly 
one predicted region matches the ground truth region. An ROI is labeled a False Posi-
tive when a predicted region matches with no ground truth region. An ROI is labeled 
a False Negative when a ground truth region matches with no predicted region. Once 
all ground truth regions have been compared with predicted regions, the matched pre-
dicted regions are deleted from the list of predicted ROIs and the remaining predicted 
ROIs are counted as false positives. Regions are only counted if their size is greater than 
two pixels. From the pseudo confusion matrix, a variety of metrics (not utilizing true 
negative) can be calculated. Additional file 2: File 1 provides formula for all ROI based 
metrics. In addition to these metrics, if a single ground truth region matches with mul-
tiple predicted regions, it is counted as an over-segmented region. Similarly, if multi-
ple ground truth regions match with the same predicted region, they are counted as 
under-segmented.

Pixel level evaluation

This technique involves comparing each pixel from a predicted segmentation with 
each pixel from the corresponding ground truth segmentation. For these metrics, 
only a binary segmentation mask is needed in which regions of interest are assigned 
a value of 1, to represent foreground, and all other pixels are assigned a value of 0, 
to represent background. For each class of region (nucleus and cytoplasm) an inde-
pendent comparison is made. Each pixel is assigned a label (True Positive, False Posi-
tive, True Negative, or False Negative), and a confusion matrix is tabulated. A pixel is 
labeled as a True Positive when both the predicted pixel and the ground truth pixel 
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have a value of 1. A pixel is labeled as a False Positive when a predicted pixel has a 
value of 1 but the ground truth pixel has a value of 0. A pixel is labeled a True Nega-
tive when both predicted and ground truth pixels have a value of 0. A pixel is labeled 
a False Negative when the predicted region has a value of 0 and the ground truth pixel 
has a value of 1. Of note is that more pixel level metrics are assessed than region level. 
This is due to pixel level metrics having a full confusion matrix, with true negatives, 
to be able to calculate metrics from. Additional file 2: File 1 provides formula for all 
pixel level metrics.

Feature level evaluation

After segmentation, 367 cytometric features were extracted from regions using the 
Nyxus library [28] v. 0.2.4, for both nuclei and whole cell regions. After extraction, fea-
ture values were binned into histograms using Freedman-Diaconis rule and 38 distribu-
tion comparison metrics were used to evaluate the changes in the distributions of the 
extracted features between ground truth and predicted images. A subset of the total fea-
tures (area, perimeter, mean intensity, and solidity) is presented in the results section 
to compare the segmentations with respect to cell morphology and intensity. 9 features 
and 3 distribution metrics per feature can also be found in Additional file 1: Figs. S65–
S118. Out of the 38 feature level metrics assessed; histogram intersection was selected 
to compare the extracted features. It was found, for this dataset, nearly all feature level 
metrics were highly correlated for a given feature and thus the results shown for histo-
gram intersection were reproducible across all feature level metrics extracted. For the 
scope of this paper, 16 distance metrics out of the 38 feature metrics were used for PCA 
analysis for feature selection. The feature extraction plugin generates 367 features per 
image and with 38 metrics per feature, it generates 13,946 metrics per image pair. While 
certainly obtainable for this study, since the point of this paper was not to perform an 
exhaustive analysis but instead to show a method and tools that enables that exhaus-
tive method, the Authors chose to limit their feature space. The distance metrics are as 
follows—L1 distance, L2 distance, L infinity, Kolmogorov–Smirnov Divergence, Match 
Distance, Cramer-von Mises Distance, PSI value, Kullback–Leibler Divergence, Jensen 
Shannon Distance, Histogram Intersection, Correlation, Chi Square, Bhattacharya Dis-
tance, Cosine Distance, Canberra Distance and Wasserstein Distance. Additional file 2: 
File 1 provides formula for all feature level metrics. 21 out of the 38 feature metrics were 
implemented using the forecasting metrics GitHub repository from Boris Shishov [29]. 
The code was first accessed in November 2021.

Dimension reduction and feature importance

The principal component analysis (PCA) function from SciKit Leearn v 1.0.1 was used 
to generate Eigen vectors and values, as well as assessing data variance. The CatBoost 
library was implemented from the library version 1.0.2, https://​github.​com/​catbo​ost/​
catbo​ost. The CatBoost model was trained using 500 iterations and a learning rate of 
0.01. For both PCA and Catboost analysis, only the metrics with the highest impor-
tance/weight were discussed in this paper.

https://github.com/catboost/catboost
https://github.com/catboost/catboost
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Statistics

Normality of metrics was assessed using the Jarque Bera test and the tseries package 
v 0.10-49. All metrics were found to be significantly non-normal, so the Freidman test 
using stats package v 4.1.2, followed by Tukey’s Post Hoc test was used to generate pair-
wise comparisons of the metrics from different models for all plots. Population mar-
ginal means, as opposed to least square means, were used for the linear model, and the 
emmeans package, v 1.7.2, in R was used with Tukey adjustment to generate the pair-
wise p-values between different models. The effective significance level calculated with 
Tukey adjustment was p < 0.0001, meaning results were determined to be statistically 
significant when p < 0.0001. The histogram intersection of area was Null for a small set 
of images where no regions were found, and thus no distributions were calculated (< 10% 
of total), therefore, for these metrics only common images across all segmentation meth-
ods without null values were used for the statistical analysis. This analysis was used in 
conjunction with the mean values of metrics to understand the model performance indi-
vidually and with respect to each other.

Results
Segmentation comparison

The goal of this work was to compare segmentation metrics and find a set of metrics that 
characterizes various aspects of segmentation quality. To that end, multiple segmenta-
tion pipelines were run on TissueNet. The only model tuned to TissueNet was Mesmer, 
so the expectation would be that Mesmer outperforms all other models on TissueNet 
segmentation. The segmentation masks from different imaging algorithms can be seen 
in Fig. 2A for nuclear images and Fig. 2B for cytoplasmic images across all segmentation 
methods. Quantitative assessment of each of these segmentation approaches was per-
formed and described below.

ROI level metrics

ROI level metrics measure the accuracy of individual ROIs, and ROI metrics from Mes-
mer segmentations were expected to outperform other segmentation pipelines since 
Mesmer was trained on the reference data set (TissueNet). Table 2 shows the mean ± std 
for performance metrics for nuclear and cytoplasm segmentation at the region level and 
Fig. 3 shows the violin plots for these metrics. While Mesmer was significantly better 
with nuclear segmentation than other models for F1 score (Fig. 3A), it did not perform 
the best for false discovery rate (FDR, Fig. 3B). Mesmer was also found to perform other 
models for Intersection over Union (IoU) (Fig. 3C), and Fowlkes–Mallows index (FMI) 
(Fig. 3D). Unexpectedly, the FDR for Mesmer was not found to be significantly different 
than that of CellPose, despite significantly outperforming them for other metrics. Thus, 
all metrics showed Mesmer outperformed all other models except for the FDR.

Comparison of the remaining segmentation pipelines revealed stark differences in 
performance between cytoplasm and nuclear segmentation. CellPose and SplineDist, 
had comparable performance for all metrics (for cell nuclei) and were not statisti-
cally different for F1 score, IoU and FMI. For cell nuclei Columbus performed worse 
across all metrics than Mesmer, CellPose, or SplineDist but outperformed AICS and 



Page 8 of 23Goyal et al. BMC Bioinformatics          (2023) 24:388 

Fig. 2  Segmented Labels from pre-trained and commercial imaging algorithms. A Nuclear Segmentation 
Labels. B Cytoplasm Segmentation Labels

Table 2  Mean ± std for ROI based metrics using default models for nuclear and cytoplasm 
segmentations

Bold indicates best performer for a given metric

Method Region F1 Score IoU score False discovery rate Fowlkes–
Mallows 
index

Mesmer Nucleus 0.91 ± 0.06 0.85 ± 0.09 0.08 ± 0.07 0.91 ± 0.06
CellPose Nucleus 0.81 ± 0.16 0.71 ± 0.18 0.09 ± 0.11 0.82 ± 0.15

SplineDist Nucleus 0.81 ± 0.09 0.69 ± 0.12 0.14 ± 0.09 0.81 ± 0.09

Columbus Nucleus 0.64 ± 0.14 0.49 ± 0.14 0.21 ± 0.12 0.66 ± 0.13

AICS Nucleus 0.47 ± 0.20 0.33 ± 0.19 0.30 ± 0.13 0.50 ± 0.18

UF-UNet Nucleus 0.16 ± 0.20 0.11 ± 0.17 0.72 ± 0.21 0.18 ± 0.19

Mesmer Cytoplasm 0.83 ± 0.09 0.72 ± 0.13 0.16 ± 0.10 0.83 ± 0.09
CellPose Cytoplasm 0.32 ± 0.19 0.20 ± 0.14 0.29 ± 0.24 0.37 ± 0.19

SplineDist Cytoplasm N/A N/A N/A N/A

Columbus Cytoplasm 0.41 ± 0.15 0.27 ± 0.12 0.46 ± 0.15 0.42 ± 0.15

AICS Cytoplasm 0.17 ± 0.13 0.10 ± 0.08 0.59 ± 0.21 0.20 ± 0.12

UF-UNet Cytoplasm N/A N/A N/A N/A
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UF-UNet. While for cell cytoplasm segmentation (Fig.  3E–H) Columbus generally 
outperformed CellPose across all metrics, with the exception of FDR (Fig. 3F) where 
Columbus had a statistically higher prevalence of identifying false positive regions 
erroneously. Across all metrics the AICS pipeline performed better than UF-UNet 

Fig. 3  ROI level metrics for nucleus and cytoplasm regions. Nuclear Segmentation (A). F1-Score (B). False 
Discovery Rate (C). Intersection over Union (IoU) (D). Fowlkes-Mallows Index. Cytoplasm Segmentation E. 
F1-Score F. False Discovery Rate G. IoU H. Fowlkes-Mallows Index. n.s.—not significant
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but worse than all other approaches for both nuclei and cytoplasm. The UF-UNet 
model performed the worst across all metrics shown in Fig. 3A–D. Across all segmen-
tation pipelines except Mesmer, the metrics present a comprehensive assessment that 
none of the models perform well in cell cytoplasm segmentation, and while nuclear 
segmentation was acceptable for several algorithms/pipelines without fine-tuning, 
Mesmer performed statistically better.

PL metrics

PL metrics give a better indication of total foreground pixels accurately segmented, 
and as with the ROI metrics, it was expected that Mesmer would outperform all other 
models. Table  3 shows the mean ± std for performance metrics for nuclear and cyto-
plasm segmentation at the pixel level and Fig.  4 shows the violin plots for these met-
rics. As expected, Mesmer performed significantly better on nuclear segmentation than 
other models for traditional metrics such as Matthew’s Correlation Coefficient (MCC) 
(Fig. 4A) and IoU (Fig. 4B). Unexpectedly, both CellPose and AICS had a significantly 
lower FDR (p < 0.0001, Fig. 4C) for nuclear segmentation than did Mesmer, meaning a 
lower prevalence of false positives. The FDR for Mesmer was not found to be signifi-
cantly different from that of Columbus and SplineDist (p = 0.4852 and 0.01 respectively). 
AICS was found to have a lower FDR than Mesmer, as seen in Fig. 4C, despite having 
poorer segmentation. This can be attributed to AICS having the least number of pixel 
level false positives, as seen in Additional file  1: Fig. S21. Since Mesmer is trained on 
TissueNet, it was unexpected that it would have a higher false discovery rate than other 
segmentation algorithms. In agreement with ROI metric results, UF-UNet performed 
significantly worse than all other approaches. Interestingly, while Columbus generally 
performed worse than Mesmer, CellPose, and SplineDist for region level metrics (Fig. 3), 
it was not statistically different than CellPose or SplineDist when assessing most pixel 
level metrics.

Table 3  Mean ± std for pixel-based metrics using default models for nuclear and cytoplasm 
segmentations

Bold indicates the top performer for a given region type for each metric shown

Method Region IoU score False discovery rate Cohen’s kappa index Matthews 
corr. 
coefficient

Mesmer Nucleus 0.88 ± 0.10 0.08 ± 0.11 0.89 ± 0.10 0.90 ± 0.09
CellPose Nucleus 0.69 ± 0.18 0.02 ± 0.02 0.73 ± 0.19 0.75 ± 0.17

SplineDist Nucleus 0.72 ± 0.11 0.09 ± 0.08 0.75 ± 0.12 0.76 ± 0.10

Columbus Nucleus 0.70 ± 0.14 0.07 ± 0.07 0.74 ± 0.13 0.76 ± 0.11

AICS Nucleus 0.67 ± 0.09 0.02 ± 0.04 0.71 ± 0.13 0.74 ± 0.10

UF-UNet Nucleus 0.45 ± 0.20 0.39 ± 0.18 0.37 ± 0.25 0.39 ± 0.25

Mesmer Cytoplasm 0.83 ± 0.09 0.08 ± 0.07 0.71 ± 0.17 0.73 ± 0.16
CellPose Cytoplasm 0.33 ± 0.19 0.63 ± 0.21 0.20 ± 0.17 0.25 ± 0.17

SplineDist Cytoplasm N/A N/A N/A N/A

Columbus Cytoplasm 0.62 ± 0.17 0.19 ± 18 0.35 ± 0.21 0.38 ± 0.21

AICS Cytoplasm 0.17 ± 0.17 0.81 ± 0.18 0.06 ± 0.09 0.11 ± 0.13

UF-UNet Cytoplasm N/A N/A N/A N/A
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For cell cytoplasm segmentation (Fig. 4E–H) Mesmer performed better than all other 
algorithms and Columbus generally outperformed CellPose. The AICS pipeline per-
formed the worst across all metrics shown in Fig. 4E–H. Figure 4 highlights that per-
formance on Region Level features (Fig.  3) is not always predictive of performance at 
the Pixel Level and vise-a-versa. Thus, to pick optimal assessment metric(s) a nuanced 

Fig. 4  Pixel level metrics for nucleus and cytoplasm regions. Nuclear Segmentation A Matthews Correlation 
Coefficient. B False Discovery Rate. C IoU. D Cohen’s Kappa Index. Cytoplasm Segmentation. E Matthews 
Correlation Coefficient. F False Negative Rate. G IoU. H Cohen’s Kappa Index. n.s.—not significant
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understanding of the application is needed and cannot be directly inferred from perfor-
mance of an algorithm at a given “level”.

Feature based metrics

Feature based metrics assess features extracted from ROIs and is an important set of 
metrics because differences in segmentation may not produce meaningful differences in 
features. Table 4 shows the mean ± std for performance metrics for nuclear and cyto-
plasm segmentation at the pixel level and Fig.  5 shows the violin plots for these met-
rics. As with previous sections, Mesmer was expected to have the best performance. As 
expected, Mesmer had a better histogram intersection metric for various features than 
other models for nuclear segmentation (Fig. 5A–D). Both CellPose and SplineDist per-
formed similarly across most nuclear features, but SplineDist was the worst performer 
for some metrics (Fig. 5D). Generally, Columbus either performed equivalently (Fig. 5B) 
to CellPose or worse (Fig.  5A, C, D) depending on the nuclear metric assessed. AICS 
pipelines performed between UF-UNET (worst) and Columbus. Taken together Mesmer 
outperforms other models in nuclear feature level metrics with CellPose and SplineDist 
following behind. Also, in agreement with ROI and PL results, UF-UNet performed sig-
nificantly worse than all other approaches.

For cytoplasm features (Fig. 5E–H), Mesmer performed better than all other segmen-
tation pipelines and Columbus generally outperformed CellPose or was not statisti-
cally different. The AICS pipeline performed the worst for cytoplasm features across all 
metrics shown in Fig. 5E–H. For more complex morphological structures like cell cyto-
plasm, it is notable that different trends between model performance were seen than for 
simple structures such as the nuclei.

As mentioned at the beginning of this section, differences in segmentation may not 
lead to meaningful differences in extracted features and this is highlighted when com-
paring feature level metrics to ROI and PL metrics. Comparing ROI and PL metrics 

Table 4  Mean ± std for feature-based metrics using default models for nuclear and cytoplasm 
segmentations

Bold indicates the top performer for a given region type for each metric shown

Method Region Intersection area Intersection perimeter Intersection 
mean 
intensity

Intersection solidity

Mesmer Nucleus 0.89 ± 0.06 0.85 ± 0.08 0.89 ± 0.05 0.62 ± 0.20
CellPose Nucleus 0.83 ± 0.09 0.77 ± 0.11 0.78 ± 0.12 0.53 ± 0.22

SplineDist Nucleus 0.82 ± 0.07 0.77 ± 0.10 0.82 ± 0.08 0.30 ± 0.20

Columbus Nucleus 0.76 ± 0.09 0.67 ± 0.11 0.78 ± 0.12 0.32 ± 0.15

AICS Nucleus 0.69 ± 0.12 0.62 ± 0.13 0.73 ± 0.11 0.48 ± 0.16

UF-UNet Nucleus 0.37 ± 0.22 0.32 ± 0.20 0.52 ± 0.16 0.24 ± 0.17

Mesmer Cytoplasm 0.85 ± 0.78 0.84 ± 0.08 0.89 ± 0.07 0.58 ± 0.22
CellPose Cytoplasm 0.66 ± 0.14 0.67 ± 0.14 0.67 ± 0.16 0.32 ± 0.20

SplineDist Cytoplasm N/A N/A N/A N/A

Columbus Cytoplasm 0.66 ± 0.15 0.61 ± 0.15 0.78 ± 0.12 0.36 ± 0.18

AICS Cytoplasm 0.49 ± 0.14 0.44 ± 0.52 0.59 ± 0.16 0.33 ± 0.12

UF-UNet Cytoplasm N/A N/A N/A N/A
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(Figs. 3 and 4 respectively) to feature level metrics (Fig. 5) shows that ROI and PL met-
rics are not necessarily predictive of feature level performance and vise-a-versa. A good 
example of this can be seen in Fig. 5B and Table 4, which shows that the mean intensity 
feature for Columbus and CellPose was not significantly different. However, CellPose 

Fig. 5  Histogram Intersection metrics on nucleus and cytoplasm regions. Nuclear Segmentation. A 
Perimeter. B Mean Intensity. C Area. D Solidity. Cytoplasm Segmentation. E Perimeter. F Mean Intensity. G 
Area. H Solidity. n.s.—not significant
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showed significantly better performance than Columbus with respect to ROI metrics in 
“ROI level metrics” section, highlighting how Columbus had worse segmentation accu-
racy but similar feature accuracy to CellPose. Despite spot differences, looking across all 
metrics assessed, the feature level metrics were in line with the ROI and PL metrics, with 
Mesmer outperforming other methods and AICS performing the worst for whole-cell 
segmentation.

Metric assessment as a function of network training for nuclear segmentation

Once the performance metrics were calculated on pretrained models, we then assessed 
the metrics after fine tuning image processing pipelines on TissueNet. We calculated 
metrics as a function of the number of images the model was fine-tuned on and num-
ber of epochs. UF-Unet was selected for testing since it performed worst on all metrics 

Fig. 6  Assessment of relevant metrics as a function of training the UF-UNet model on TissueNet dataset. 
ROI Level F1 Score for different A Training Sizes and B Training iterations. Pixel level C MCC Score for different 
Training sizes and D FDR for different Training iterations. Feature level Histogram Intersection of Area for 
different E Training Sizes and F Training iterations. n.s.—not significant
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in the previous section, so it was expected that the largest changes would be observed 
when fine-tuning this model. Figure 6 shows ROI (Fig. 6A, B), PL (Fig. 6C, D), and fea-
ture (Fig. 6E, F) level metrics after training UF-UNet on different numbers of TissueNet 
nuclear images and different numbers of epochs. Figure 6A, C, E show the evolution of 
various evaluation metrics as a function of training dataset size; 15–2601 (all TissueNet 
training) images for a constant number of epochs. Figure 6B, D, F show how the model 
evaluation metrics evolved as a function of epoch for 50–1000 epochs. These compari-
sons were included to show the variation in segmentations with training parameters and 
highlight the importance of capturing a variety of evaluation metrics when comparing 
different versions of a model as well as how different metrics evolve as a function of 
training data and epoch. An additional 25 plots of metric values can be seen in Addi-
tional file 1: Figs. S119–S143. The mean ± std values for relevant metrics are included in 
Additional file 3: Tables S2–S7.

As expected, in Fig.  6A, ROI metrics significantly improved with using all available 
training data. The improvement in ROI metric performance was also visible in Fig. 6B 
when increasing the amount of training epochs. The F1 score was not found to be sig-
nificantly different between n = 15, n = 45, n = 500 and n = 1000 images, but the F1 score 
was significantly different when all training images (n = 2601) were used (p < 0.0001). 
Figure 6A, B highlights F1 score, however, all other metric plots for ROI can be seen in 
Additional file 1: Figs. S119–S127. Although fine-tuning UF-Net improved the resulting 
segmentation metrics, which were significantly worse than Mesmer, fine-tuning UF-Net 
did not lead to significantly better performance than Mesmer.

The PL metrics also improved with respect to number of training iterations (Fig. 6C, 
D). While the ROI level scores in 6A and Additional file 1: Figs. S119–S124 improved 
with all training data, Fig. 6C and Additional file 1: Figs. S133–S134 show that PL metric 
scores plateaued at 500 images. Interestingly, the FDR metric for pixel level data did not 
improve as a function of number of training epochs (Fig. 6D), and unexpectedly smallest 
for 50 epochs. The discrepancies between ROI and PL metrics for training with different 
number of training images highlight the importance of calculating these metrics.

Figure 6E, F showed similar trends in feature metrics to that of PL metrics. The UF-
Net area metric plateaued when fine-tuned with 500 images − 0.80 ± 0.09 (compared to 
the entire dataset score of 0.79 ± 0.10 which was not statistically different). There was no 
significant difference between the histogram intersection of area for n = 45, n = 500 and 
n = 2601 (all) images. The average histogram intersection of area metric improved for 
UF-UNet with more training, increasing from 0.67 ± 0.14 over 50 epochs to 0.79 ± 0.10 
for 1000 epochs. While the ROI based metrics showed segmentations to significantly 
improved when fine-tuned on all training images, the PL and feature metric improve-
ments plateaued at n = 500 images. These findings are seen across most metrics meas-
ured and can be seen in Additional file 1: Figs. S138–S140.

Segmentation comparison with trained machine learning models

Next, we compared segmentation methods after fine-tuning. The general expectation 
was that fine-tuning models should improve in segmentation metrics, and optimisti-
cally they would perform as well as Mesmer after fine-tuning. Figure  7A shows the 
segmentation results after fine tuning UF-UNet and SplineDist compared to all other 
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segmentation pipelines. A detailed comparison of performance metrics for UF-UNet 
and SplineDist are shown in Table 5 to provide a closer look at differences between two 
fine-tuned models across all metric types. Table  5 and Fig.  7 highlight that the tools 
developed in this work are able to distinguish between high performing models, both 

Fig. 7  Nuclear Segmentation Labels and performance after fine-tuning UF-UNet and SplineDist. A Nuclear 
Segmentation Labels. ROI Level metrics for Nuclear Segmentation Labels for B F1 Score and C False Discovery 
Rate. Pixel Level metrics for D Matthews Correlation Coefficient and E False Discovery Rate. Feature Level 
metrics for Histogram Intersection of F Area and G Solidity. n.s.—not significant
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before and after fine-tuning on target data, which is a common task in AI/ML data 
analysis.

It can be seen from Table  5 and Fig.  7 that the metrics for UF-UNet significantly 
improved with training across all measured metrics. Figure  7B shows the ROI level 
scores between different models after training SplineDist and UF-UNet. Of note is that 
after fine-tuning, UF-UNet was not significantly different from CellPose when F1 scores 
were compared (p = 0.6545) and had significantly lower false discovery rates (Table 5). 
Interestingly, the ROI false positive metric was the smallest for SplineDist after training 
even compared to Mesmer (Additional file 1: Fig. S145). The F1 score for SplineDist was 
also found to not be significantly different from Mesmer (p = 0.0022).

The PL scores from SplineDist and UF-UNet also significantly improved with train-
ing, as seen in Fig.  7D, E. The results from UF-UNet after training were not signifi-
cantly different from Columbus and CellPose for MCC loss (p = 0.2726 and p = 0.9620 
respectively, Fig. 7D). The improvement in PL scores from UF-UNet can also be seen in 
Table 5, where the mean ± std for MCC for pre-trained UF-UNet model changed from 
0.37 ± 0.25 to 0.75 ± 0.13 after training. SplineDist also showed significant improve-
ment in pixel level scores with its mean ± std for MCC changing from 0.75 ± 0.12 to 
0.89 ± 0.04, showing no statistically significant difference between Mesmer and trained 
SplineDist. After training, the FDR for UF-UNET became comparable to that of AICS 
and CellPose (p = 0.997 and 0.6528, respectively). The changes in p value for SplineDist 
and UF-UNet, along with the changes in their evaluation metrics, highlight the improve-
ment in their segmentations with training, with the results from SplineDist becoming 
comparable to those of Mesmer, and UF-UNet becoming comparable with CellPose and 
Columbus. These comparisons are important since it could be seen in “Segmentation 
comparison” section that Mesmer consistently exhibited statistically higher performance 
than other models before pre-training.

Table 5  Mean ± std for nuclear segmentation evaluation metrics using trained SplineDist and 
UF-UNet models

Bold indicates the top performing model for each metric shown

Metric Type Pre-training Post-training

SplineDist UF-UNet SplineDist UF-UNet

Region based measurements

F1 score ROI 0.81 ± 0.09 0.16 ± 0.20 0.89 ± 0.05 0.80 ± 0.09

IoU score ROI 0.69 ± 0.12 0.11 ± 0.17 0.81 ± 0.07 0.68 ± 0.13

False discovery rate ROI 0.14 ± 0.09 0.72 ± 0.21 0.06 ± 0.05 0.18 ± 0.10

Fowlkes–Mallows index ROI 0.81 ± 0.09 0.18 ± 0.19 0.89 ± 0.05 0.80 ± 0.09

Pixel based measurements

IoU score Pixel 0.72 ± 0.11 0.45 ± 0.20 0.87 ± 0.03 0.69 ± 0.13

Cohen’s kappa index Pixel 0.09 ± 0.08 0.39 ± 0.18 0.88 ± 0.04 0.72 ± 0.16

Matthews correlation coefficient Pixel 0.75 ± 0.12 0.37 ± 0.25 0.89 ± 0.04 0.75 ± 0.13

False discovery rate Pixel 0.76 ± 0.10 0.39 ± 0.25 0.06 ± 0.02 0.02 ± 0.03
Feature based measurements

Intersection area Feature 0.82 ± 0.07 0.37 ± 0.22 0.87 ± 0.07 0.79 ± 0.10

Intersection perimeter Feature 0.77 ± 0.10 0.32 ± 0.20 0.82 ± 0.09 0.73 ± 0.11

Intersection mean intensity Feature 0.82 ± 0.08 0.52 ± 0.16 0.89 ± 0.05 0.80 ± 0.08

Intersection solidity Feature 0.30 ± 0.20 0.24 ± 0.17 0.35 ± 0.22 0.66 ± 0.12
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The improvement in scores can also be observed from the feature level metrics in 
Table 5 and can be seen in Additional file 1: Figs. S180–S208. While the score for histo-
gram intersection of area (Fig. 7F) for UF-UNET and SplineDist improved with training 
as seen in Table 5, it was still significantly different from that of Mesmer. However, the 
histogram intersection of Solidity (Fig. 7G) for UF-UNET after training was found to not 
be significantly different from that of Mesmer (p = 0.0002).

Metric selection using principal component analysis

From the hundreds of possible Feature level metrics to the dozens of PL and ROI met-
rics, quickly and efficiently identifying metrics that best represent model performance is 
challenging. Two simple machine learning approaches were used to select a small num-
ber of relevant performance metrics for a dataset. Principal Component Analysis (PCA) 
was used for selecting metrics for the purpose of comparing models. To select ROI, PL, 
and feature level metrics, PCA was implemented on the ROI, Pixel, and feature met-
rics separately for nuclei and cytoplasm segmentation. The absolute coefficient values 
and percentage variance from PCA were multiplied to get the features with maximum 
variance and these were selected for model comparison. The 69 metrics identified in this 
manuscript were collated by performing an extensive literature review to incorporate all 
assessment metrics the community commonly uses. The libraries are easily extensible 
and open source for easy expansion to other metrics the community finds of interest in 
the future. Figure 8A shows the variance ratio percentage (explained variance ratio*100) 
for all the components and Fig.  8B shows the heatmap for absolute coefficient values 
(eigenvectors) multiplied by their variance percentage from PCA for pre-trained mod-
els for nuclear segmentation. For ROI metrics, the first two components were found to 
account for 98.5% data variance (Principal component 1 (PC1) 86.8% and PC2 11.7%); 
for PL metrics, the first 3 components were found to explain more than 90% of the data 
variance and for feature level metrics, the first 4 components explained more than 90% 
of the data variance. Figure 8A shows a bar plot of each of these values. The remaining 
PCA plots for nuclear and cytoplasm segmentation metrics have been included in Addi-
tional file 1: Figs. S209–S214. A Catboost Classifier model was also implemented for PL 
metrics of Cytoplasm segmentations to provide an example of another method for met-
ric selection. The feature importance table from the Catboost model has been included 
in Additional file 1: Fig. S213. The results from PCA and Catboost classifier were similar 
as can be seen in Additional file 1: Fig. S213. Catboost was not used for the main feature 
selection in this paper but was used as a secondary method to validate that the features 
from the PCA were robust to feature selection methods. We used Catboost as an exam-
ple of a more modern method that yields nearly identical results.

Discussion
Selecting evaluation metrics for evaluating segmentation quality is essential to the pro-
cess of selecting a good method for a given dataset. We have demonstrated the advan-
tages of having access to a pipeline that generates a comprehensive set of metrics and the 
methods to select them. While the trend has been to use a few metrics [14, 15], our pro-
posed methods enable researchers to easily obtain an array of evaluation metrics, iden-
tify metrics that differentiate approaches, and select metrics of scientific importance or 
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relevance. We show that these tools can be applied to traditional segmentation pipelines, 
novel deep learning-based pipelines, as well as in the context of comparing between 
diverse segmentation approaches, within a model as a function of training (either on 
data or epoch), and also between highly performing fine-tuned models. The results in 
this paper highlight the importance of having access to metrics at ROI, pixel, and feature 

Fig. 8  ROI based Metric Selection for Nuclear Segmentation for Pre-trained Models using PCA. A PCA 
variance percentage for all metrics. B Absolute coefficient values (eigenvectors) multiplied by variance 
percentage for components adding to 90% for (1) ROI Level Metrics (2) Feature Level Metrics and (3) Pixel 
Level Metrics
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level, with each method providing essential and distinctive information regarding seg-
mentation quality.

The results for nuclear and cytoplasm segmentation using models that had not been 
fine-tuned on TissueNet validated each metric, since Mesmer was expected to outper-
form all other segmentation pipelines and did according to the majority of the met-
rics [18]. While it is not surprising that Mesmer outperforms the models that were not 
trained on the same TissueNet dataset, the reasons for this performance compared to 
other methods that are fine-tuned on TissueNet are beyond the scope of this paper to 
evaluate as the focus of this paper is to extract the metrics and not understand the rea-
son behind the performance of imaging algorithms. The ROI metrics in Table  2 and 
Fig. 3A-H highlighted the quality of region-based segmentation. The importance of PL 
metrics to quantify foreground versus background segmentation could be observed 
through metrics like MCC in Table 3 and Fig. 4A–H. As MCC depends on both the posi-
tive and negative classes, it can be a better indicator of the quality of segmentation in 
case of binary classification, compared to metrics like F1 score and accuracy [30, 31]. 
The extraction of features like cell area, perimeter, mean intensity, and solidity also 
helped in deducing the quality of segmentation, providing more fine-grained insights 
into what types of morphological errors a particular algorithm made. A list of distance 
metrics like histogram intersection, L1 score, and JS divergence were used to compare 
the ground truth and predicted feature metrics. The results from evaluation metrics for 
nuclear segmentation using pre-trained models proved the significantly better perfor-
mance of models like Mesmer, SplineDist and CellPose over segmentations from AICS, 
UF-UNet and Columbus for most metrics. The performance (ROI, PL, or feature level) 
from Columbus and CellPose for cytoplasm segmentation was better than AICS but 
worse than Mesmer as seen in Figs.  3E–H, 4E–H and 5E–H. This was expected since 
the pipeline used to segment using AICS was not originally meant for cytoplasm, but 
curvilinear structures like Sec61 beta and Lamin B1 [20]. Results from ROI, PL and fea-
ture level metrics provided a more detailed picture of how and what type of errors each 
segmentation approach was showing.

UF-UNet and SplineDist models were also trained on the TissueNet dataset to 
obtain comparable results as Mesmer for nuclear segmentation. The results from 
training UF-UNet on TissueNet over different iterations and dataset sizes were 
included in “Metric assessment as a function of network training for nuclear segmen-
tation” section for the purpose of highlighting the change in metrics with varying 
training parameters. The discrepancies between ROI, PL and feature based metrics 
for training UF-UNet with varying training sizes in Fig. 6 highlighted the importance 
of obtaining the distinct types of metrics. While fine-tuning UF-UNet on all train-
ing data improved the ROI based scores, it also made the pixel level scores worse, 
likely because of a decrease in the number of pixel level true positives and an increase 
in false negatives and false positives (Additional file  1: Figs. S128, S130 and S131, 
respectively). According to Falk et  al. [17], UF-UNet should only require approxi-
mately 10 images for training in cases of extremely complex datasets, since TissueNet 
comprises of 6 different tissue types and imaging platforms, we started training with 
15 images, and saw significant improvements, but more training data showed signifi-
cant improvements across ROI, Pixel, and Feature metrics. The evaluation scores for 



Page 21 of 23Goyal et al. BMC Bioinformatics          (2023) 24:388 	

UF-UNet further improved with more training; however, it was a trade-off between 
training time and quality of segmentation. All ROI, pixel, and feature level metrics for 
SplineDist and UF-UNet were seen to improve with training as seen in 4.3. Through 
a combination of hypothesis testing and evaluation metrics, we could prove that UF-
UNet and SplineDist improved with training on TissueNet for nuclear segmentation.

Principal Component Analysis was used for extraction of metrics that best sepa-
rate models in a dimensionally reduced space from the extensive list of ROI and pixel 
level metrics. More modern classification methods, Catboost Classifier [32], were 
also utilized to identify metrics that best correlated with model performance. Similar 
results were found for both approaches as seen in Fig.  8 and Additional file  1: Fig. 
S213. For feature level metrics, it is recommended to perform correlation analysis on 
the features or spot checking, followed by dimensionality reduction on the Histogram 
metrics. Researchers can also select features based on their pertinence to research, 
like cell morphology vs intensity. Correlation analysis can also be used to shortlist 
ROI and pixel level metrics [22, 24, 33], but this type of feature selection is hypoth-
esis driven and cannot be generalized, unlike the methodology outlined here. Com-
mon community standards in the field of feature assessment do not currently exist. 
However, recent publications [34, 35] have shown that the community is aware of this 
problem and that a large effort is underway to develop these standards. Producing 
these artifacts is therefore seen as outside of the scope of this particular paper but 
an area of active research for the Authors. Whenever these standards are developed/
released the Authors will incorporate these standards into the unit tests for each 
feature.

Conclusions
The purpose of our work is to share the vast variety of evaluation metrics, implemented 
in three tools and a single pipeline. These tools are fully open source, scalable to any 
image size, available as containers, in GUI form in the Web Image Processing Pipeline 
platform, as Common Workflow Language tools, and from the command line. These 
metrics, as we have demonstrated through our results, are important for a qualitative 
and quantitative comparison of imaging algorithms. Our pipeline enables researchers 
to analyze their segmentations using a wide range of ROI, pixel, and feature level met-
rics efficiently and comprehensively across all common use cases in both traditional and 
machine learning workflows. Through a range of results, we have proven the importance 
of obtaining ROI level metrics to analyze segmentations at an instance level, pixel level 
metrics to analyze foreground and background segmentations, and feature level metrics 
to understand the properties of segmented regions like cell morphology.
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