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T Cancer Science Institute A recent paper by Jiang et al. in BMC Bioinformatics presented guidelines on long-read
of Singapore, National University sequencing settings for structural variation (SV) calling, and benchmarked the perfor-
;’%’;gi’r’:re’ singapore 117599, mance of various SV calling tools, including NanoVar. In their simulation-based bench-
2 Division of BioMedical Sciences, marking, NanoVar was shown to perform poorly compared to other tools, mostly due
Faculty of Medicine, Memorial to low SV recall rates. To investigate the causes for NanoVar's poor performance, we

University of Newfoundland, St.

Johns, NL AT8 3V6, Canada regenerated the simulation datasets (3x to 20x) as specified by Jiang et al. and per-

formed benchmarking for NanoVar and Sniffles. Our results did not reflect the find-
ings described by Jiang et al. In our analysis, NanoVar displayed more than three

times the F1 scores and recall rates as reported in Jiang et al. across all sequencing
coverages, indicating a previous underestimation of its performance. We also observed
that NanoVar outperformed Sniffles in calling SVs with genotype concordance by more
than 0.13 in F1 scores, which is contrary to the trend reported by Jiang et al. Besides,
we identified multiple detrimental errors encountered during the analysis which

were not addressed by Jiang et al. We hope that this commentary clarifies NanoVar’s
validity as a long-read SV caller and provides assurance to its users and the scientific
community.
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Background

The benchmarking of structural variation (SV) calling tools provides end-users with vital
information for comparing and selecting the optimal tool and settings for SV detection
in their research. Hence, it is important to ensure that benchmark analyses are accurate
and fair to faithfully reflect the benefits and drawbacks of each tool. In a recent paper
by Jiang et al. [1], a benchmark analysis was performed on long-read SV callers using
simulated datasets of varying sequencing coverages. NanoVar [2], one of the long-read
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SV callers, was shown to perform poorly in the benchmark across all sequencing cover-
ages, mostly due to a low recall rate of SVs. We argue that NanoVar’s poor performance
in Jiang et al. contradicts other independent studies that showed rather adequate results.
For instance, Wu et al. [3] had utilized NanoVar for SV calling in 405 Chinese individu-
als and showed that 72% of SVs called by NanoVar overlapped with 67% of SVs called by
Sniffles on average, suggesting comparable sensitivity of both tools. In the benchmark
analysis of Dierckxsens et al. [4], NanoVar’s F1 scores ranged from 0.841 to 0.853 for
three 20x simulated datasets, which are within 0.05 of the F1 scores of other SV call-
ers. Furthermore, a recent paper by Cleal and Baird [5] benchmarked NanoVar with F1
scores of 0.922 and 0.898 for deletion and insertion SVs, respectively, using real data
from the Genome in a Bottle (GIAB) consortium. The disparity of NanoVar’s perfor-
mance between Jiang et al. and other studies [2-5] is concerning and warrants more
investigation, especially for the prior and present users of NanoVar. This correspond-
ence aims to validate NanoVar’s performance and investigate the underlying causes of its
apparent poor performance in Jiang et al. benchmark.

Nanovar benchmark

To investigate the poor performance of NanoVar in Jiang et al., we regenerated the long-
read simulation datasets and benchmarked NanoVar in accordance to the methods
stated in Jiang et al. (https://github.com/SQLiu-youyou/The-commands-of-the-evalu
ation). For comparison, we have also included Sniffles [6] (described as one of the soft-
ware with the highest performance) in the benchmarking. Due to errors raised during
the benchmark analysis by Truvari [7] (v3.0.1), some SVs from each tool were filtered-
out (Not mentioned in Jiang et al.), which will be discussed later. Despite employing the
identical simulated datasets, our benchmarking results yielded better NanoVar perfor-
mance scores than Jiang et al. (Fig. 1). As Jiang et al. did not provide the exact benchmark
scores of NanoVar in their benchmark (Table S2 in Jiang et al.), we can only compare our
results with the bar graphs in Fig. 2 of their publication. Jiang et al. showed that NanoVar
acquired F1 scores of less than 0.1 for all sequencing coverages of 3x, 5%, 10x, and 20x,
which is at least threefold lower than what we observed in our results, which had F1
scores of 0.38, 0.45, 0.46, and 0.45, respectively (Fig. 1a). The disparity of F1 score report-
ing is most likely explained by differences in SV recall, where we observed higher recall
rates of 0.28, 0.39, 0.45, and 0.44 for respective sequencing coverages (Fig. 1b), as com-
pared to less than 0.05 for all coverages in Jiang et al. Moreover, at 3x coverage, NanoVar
achieved greater precision than Sniffles (Fig. 1c), which was not reflected in Jiang et al.
NanoVar’s F1 scores of SV calling with genotype concordance was also observed to be
higher in our results (Fig. 1a). Collectively, our repeated benchmark analysis using the
same simulated datasets suggests that Jiang et al. may have underestimated NanoVar’s
performance.

We also observed different performance results for Sniffles. While our F1 scores of
Sniffles for SV calling by presence are broadly in agreement with Jiang et al., our F1
scores for SV calling by genotype concordance were substantially lower (Fig. 1a). F1
scores for Sniffles (Genotype) ranged from 0.17 to 0.24 in our analysis, whereas Jiang
et al. reported F1 scores ranging from 0.50 to 0.70, for sequencing coverages of 3x to
20x. Consequently, we observed that NanoVar (Genotype) has outperformed Sniffles
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Fig. 1 Benchmarking of NanoVar and Sniffles using simulated datasets. Bar plots showing the F1 score (a),
recall (b) and precision (c) for SV calling by NanoVar and Sniffles for simulated long-read sequencing data
with coverages of 3x, 5x, 10x, and 20x. The generation of SV simulated long-read sequencing datasets and
tool benchmarking were carried out as stated by the protocol provided by Jiang et al. with several necessary
modifications due to errors encountered during analysis (Please refer to Availability of data and materials)

(Genotype) by more than 0.13 in F1 scores across all sequencing coverages (Fig. 1a).
Sniffles’ reduced performance in SV genotyping was also consistent with the bench-
marks of Dierckxsens et al. [4], where Sniffles” genotype scores were at least 30% lower
than other SV callers. These results suggest that Jiang et al. may have overestimated Snif-
fles’ SV genotyping capability.

During our analysis, we made some changes to certain output files within the proto-
col described by Jiang et al. However, these changes were made in order to rectify the
errors that we encountered. As these errors were not mentioned by Jiang et al., they were
unanticipated while following their protocol, and we are uncertain how Jiang et al. had
resolved them to allow successful completion of their analysis. The first error we encoun-
tered happened during the long-read simulation step using VISOR [8] (v1.1) where we
obtained an empty BAM output file. After consulting with the author of VISOR, we dis-
covered that the problem was with the “SHORtS.LASeR.bed” file provided by Jiang et al.,
in which the start coordinates of genomic regions in the file were “0”s instead of “1”s (c.f.
https://github.com/davidebolo1993/VISOR/issues/18). The problem was resolved after
we corrected the start coordinates of the file. The second error occurred when Nano-
Var was running on the simulated long-read BAM file produced by VISOR. The error
happened because the read names of the simulated reads contained the comma () sym-
bol, which resulted in a parsing error and prevented NanoVar from completing success-
fully. After removing the commas in the read names, NanoVar completed its run with no
errors. As this was a necessary correction to obtain results from NanoVar, it is unclear
how Jiang et al. had handled it and whether this influenced the results. The third error
happened due to VCEF file incompatibilities with Truvari for NanoVar and Sniffles. For
NanoVar, an error was raised due to the presence of “>” or “” symbols in the “SVLEN”
field of some entries in the VCF file. These symbols were added by NanoVar to refine
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information on SV length, or nullify it for SVs with no lengths, respectively. When these
symbols were omitted from the VCF file, Truvari ran successfully. For Sniffles, the error
was caused by the “STRANDBIAS” string in the “FILTER” column of a few entries (< 50),
and eliminating these entries resolved the problem. With the presentation of these VCF
incompatibilities, it is plausible that there might be more nuances in the VCFs of Nano-
Var and Sniffles that impede an accurate assessment by Truvari. Taken together, we are
uncertain how these fundamental errors were addressed by Jiang et al. and if they may
have affected the results.

Outlook

In conclusion, based on the Jiang et al. published materials, we were not able to entirely
reproduce the results described by the authors’ benchmark. Indeed, our analysis per-
formed on the same simulated datasets suggests an underestimation of NanoVar’s
performance and an overestimation of Sniffles’ SV genotyping performance. We also
encountered multiple errors while trying to replicate their analysis which might explain
the discrepancy in results. We hope that the discussions provided here, as well as other
studies [2—5], have clarified the performance of NanoVar as a long-read SV caller and
provided the confidence for its continual use in research.

Abbreviation
SV Structural variation

Acknowledgements
The authors thank the Centre for Analytics, Informatics and Research (CAIR) at Memorial University, the Digital Research
Alliance of Canada and the CSI Genomics and Data Analytics Core (GeDAC) for providing high-performance computing.

Author contributions
CYT generated the simulated datasets and carried out the benchmarking according to Jiang et al. CYT and TB inter-
preted the data and wrote the correspondence.

Funding
This research was undertaken, in part, thanks to funding from the Canada Research Chairs (Grant No. 4334) program and
by the National Research Foundation, the Singapore Ministry of Education under its Centres of Excellence initiative.

Availability of data and materials

The commands used to replicate the benchmark analysis by Jiang et al. (Including the changes mentioned) can be
found at https://github.com/cytham/nv_benchmark_jiang. The Truvari results of each benchmark can be found at
https://github.com/cytham/nv_benchmark_jiang/tree/main/truvari_summary.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 21 January 2022 Accepted: 13 September 2023
Published online: 20 September 2023

References

1. JiangT, et al. Long-read sequencing settings for efficient structural variation detection based on comprehensive
evaluation. BMC Bioinform. 2021;22:1-17.

2. Tham CY, et al. NanoVar: accurate characterization of patients'genomic structural variants using low-depth nanop-
ore sequencing. Genome Biol. 2020;21:56.


https://github.com/cytham/nv_benchmark_jiang
https://github.com/cytham/nv_benchmark_jiang/tree/main/truvari_summary

Tham and Benoukraf BMC Bioinformatics (2023) 24:350 Page 5 of 5

3. Wu Z etal. Structural variants in the Chinese population and their impact on phenotypes, diseases and population
adaptation. Nat Commun. 2021;12:1-12.

4. Dierckxsens N, Li T, Vermeesch JR, Xie Z. A benchmark of structural variation detection by long reads through a
realistic simulated model. Genome Biol. 2021;22:1-16.

5. Cleal K, Baird DM. Dysgu: efficient structural variant calling using short or long reads. Nucl Acids Res. 2022;50(9):e53.

6. Sedlazeck FJ, et al. Accurate detection of complex structural variations using single molecule sequencing. Nat Meth-
0ds. 2018;15:461.

7. Zook JM, et al. A robust benchmark for detection of germline large deletions and insertions. Nat Biotechnol.
2020;38:1347.

8. Bolognini D, et al. VISOR: a versatile haplotype-aware structural variant simulator for short- and long-read sequenc-
ing. Bioinformatics. 2020;36:1267-9.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

thorough peer review by experienced researchers in your field

rapid publication on acceptance

support for research data, including large and complex data types

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions . BMC




	Correspondence on NanoVar’s performance outlined by Jiang T. et al. in “Long-read sequencing settings for efficient structural variation detection based on comprehensive evaluation”
	Abstract 
	Background
	Nanovar benchmark
	Outlook
	Acknowledgements
	References


