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Abstract 

Background:  Genome-wide association studies (GWASes) aim to identify single 
nucleotide polymorphisms (SNPs) associated with a given phenotype. A common 
approach for the analysis of GWAS is single marker analysis (SMA) based on linear 
mixed models (LMMs). However, LMM-based SMA usually yields a large number of false 
discoveries and cannot be directly applied to non-Gaussian phenotypes such as count 
data.

Results:  We present a novel Bayesian method to find SNPs associated with non-
Gaussian phenotypes. To that end, we use generalized linear mixed models (GLMMs) 
and, thus, call our method Bayesian GLMMs for GWAS (BG2). To deal with the high 
dimensionality of GWAS analysis, we propose novel nonlocal priors specifically tailored 
for GLMMs. In addition, we develop related fast approximate Bayesian computations. 
BG2 uses a two-step procedure: first, BG2 screens for candidate SNPs; second, BG2 
performs model selection that considers all screened candidate SNPs as possible 
regressors. A simulation study shows favorable performance of BG2 when compared 
to GLMM-based SMA. We illustrate the usefulness and flexibility of BG2 with three 
case studies on cocaine dependence (binary data), alcohol consumption (count data), 
and number of root-like structures in a model plant (count data).
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Introduction
Genome-wide association studies (GWAS) have uncovered many single nucleotide pol-
ymorphisms (SNP) associated to important phenotypes such as plant productivity [1], 
plant response to salt stress [2], and human diseases [3]. To take into account the cor-
relation among GWAS observations, the most widely used methods for the analysis of 
GWAS continuous Gaussian data are single marker analysis (SMA) methods based on 
linear mixed models (LMMs) [4–6]. Recently, SMA based on logistic regression with 
random effects has been proposed for the analysis of GWAS binary data [7]. However, to 
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the best of our knowledge, there are no published methods for the analysis of other types 
of correlated GWAS non-Gaussian data such as count data. One of our contributions is 
to propose the use of generalized linear mixed models for the analysis of GWAS non-
Gaussian data. To that end, we use generalized linear mixed models (GLMMs) and, thus, 
call our method Bayesian GLMMs for GWAS (BG2).

BG2 has two steps: a screening step and a model selection step. The screening step, 
similarly to SMA methods, fits p GLMMs where each model has just one SNP, and uses 
Bayesian FDR control [8, 9] to provide a set of candidate SNPs. After that, the model 
selection step performs a model search through the space of GLMMs that may include 
any number of screened candidate SNPs as possible regressors. BG2 implements both 
steps using a pseudo-likelihood approach. We note that a similar pseudo-likelihood 
approach can be used to implement SMA methods for non-Gaussian GWAS data, and a 
particular case of such an approach has been proposed for GWAS binary data [7]. How-
ever, simulation studies presented in Sect. 4 show that, when compared to such SMA 
methods for non-Gaussian data, BG2 leads to much lower FDR.

The GLMMs for GWAS data considered by BG2 may have two types of random 
effects: kinship randoms effects and overdispersion random effects. The kinship random 
effects account for correlation among GWAS observations due to population stratifica-
tion and hidden relatedness. Similarly to existing literature for Gaussian GWAS data, we 
assume that the vector of kinship random effects follows a multivariate Gaussian dis-
tribution with a mean vector of zeros and a covariance matrix that is the product of a 
one-dimensional unknown variance parameter and a known positive semi-definite kin-
ship matrix [10, 11]. The overdispersion random effects allow for extra variability not 
accounted for by the model for observations; for example, when assuming a conditional 
Poisson model for the observations, the overdispersion random effects account for 
extra-Poisson variability.

Both screening and model selection steps in BG2 are based on nonlocal priors. To the 
best of our knowledge, this is the first time that nonlocal priors are proposed for regres-
sion coefficients in GLMMs. Previous literature in Bayesian model selection for GLMMs 
has assigned for regression coefficients local priors [12]. While local priors have posi-
tive density at null parameter values, nonlocal priors have density equal to zero at null 
parameter values. Nonlocal priors were first proposed by [13, 14] for Gaussian linear 
models. Nonlocal priors have been successfully developed for many different problems 
such as model selection in Gaussian directed acyclic graphical models [15], classifica-
tion with Bayesian probit models [16], variable selection in logistic models [17], Bayesian 
wavelet analysis [18], and variable selection in generalized linear models [19]. In particu-
lar, [20, 21] have proposed methods based on nonlocal priors for variable selection in 
linear mixed models applied to GWAS data. However, because LMMs applied to binary 
or count data may lead to meaningless negative predictions and statistically inefficient 
estimation, LMMs should not be applied to non-Gaussian data such as count and binary 
data, which are the types of data considered by BG2. Nonlocal priors lead to faster accu-
mulation of evidence in favor of a true null hypothesis [13], and have been shown to be 
advantageous for high-dimensional problems [14, 16, 22]. Therefore, BG2 uses nonlocal 
priors for SNP search in GWAS analysis.
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Due to the large number of GLMMs that need to be fitted, BG2 relies on two approxi-
mations to speed up computations: a pseudo-likelihood approximation; and a Popula-
tion Parameters Previously Determined (P3D) approximation that may be seen as an 
empirical Bayes approach. For GLMMs, the integrated likelihood function obtained by 
integrating out the random effects is not available in closed form. Repeated numerical 
integration of the random effects for each GLMM fitted for a GWAS analysis is compu-
tationally too expensive. Thus, BG2 uses a pseudo-likelihood approach [23] to facilitate 
integrating out the random effects. Such pseudo-likelihood approach leads to a Gaussian 
approximation for adjusted observations that allows analytically integrating out the ran-
dom effects. In addition, to avoid the computation of matrix inverses for each SNP and, 
thus, to further speed up computations, we propose a P3D approximation for GLMMs. 
A P3D approximation was first proposed by [24] for Gaussian linear mixed models 
(LMMs) and a variation of this approximation is used in the celebrated and widely used 
method EMMAX for the analysis of GWAS Gaussian data [6]. With our P3D approach, 
BG2 needs to compute a spectral decomposition only once for each screening step and 
only once for each model selection step.

In our P3D approach, for each BG2 step (screening and model selection) we fit a base-
line GLMM to obtain adjusted observations and estimates of the variance parameters. 
We then keep the adjusted observations and the variance parameters fixed at the val-
ues computed with the baseline GLMM when fitting all other models in that BG2 step. 
In our P3D approach, the baseline model is different for the screening step and for the 
model selection step. For the screening step, the baseline model is a GLMM without any 
SNPs. For the model selection step, the baseline model is a GLMM with all candidate 
SNPs obtained from the screening step. This choice of baseline GLMM for the model 
selection step is based on [25], who have suggested for GLMMs the use of adjusted 
observations based on the full model – the model with all the regressors – when com-
puting BICs for all possible models. Therefore, BG2 with our P3D approximation does 
not need to compute a spectral decomposition for each SNP. As a result, when com-
pared to a usual pseudo-likelihood approach to GLMMs, our P3D approximation greatly 
reduces the computational time and allows the analysis of non-Gaussian GWAS data 
within a reasonable time frame.

To be technical, in this work we use a hierarchical model and an empirical Bayes 
approach to estimate the hyperparameters of the prior distribution of the regression 
coefficients of GLMMs. We then combine this prior distribution with the data through 
Bayes Theorem to compute the posterior probability of the competing GLMMs. The 
Bayesian model selection procedure that we propose in this work is similar to that 
of [26], except that in our current work we are dealing with the problem of Bayesian 
ultra-high dimensional variable selection (p two orders of magnitude larger than n) in 
GLMMs applied to GWAS analysis. To the best of our knowledge, currently there are no 
published methods for Bayesian ultra-high dimensional variable selection in GLMMs.

The remainder of this paper is organized as follows. Section 2 describes the GLMMs 
that we consider for non-Gaussian GWAS data. Section 3 describes our BG2 method for 
the identification of causal SNPs. Section 4 presents the results of two simulation studies 
for binary data and for count data. Section 5 illustrates our method with applications to 
three case studies: human cocaine dependence, alcohol consumption, and the number of 
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root-like structures in the plant A. Thaliana. Section 6 concludes with a discussion and 
future directions.

GLMMs for GWAS
Consider observations y1, . . . , yn that, given random effects, are conditionally independ-
ent and have a distribution from the exponential family of distributions. This flexible 
family of distributions includes the Bernoulli, binomial, Poisson, and gamma distribu-
tions. Thus, this family may be used to model observed GWAS phenotypes such as an 
indicator of disease presence/absence, number of lateral roots in plants, or survival time. 
Then, the density function of yi is

for i = 1, . . . , n , where T (yi) is the sufficient statistics for yi , B(.) and C(.) are known func-
tions. Further, each observation yi has mean µi = B′(ηi) and variance vi = B′′(ηi) . Let 
Xs be a matrix of SNPs and βββs be the corresponding vector of regression coefficients. In 
addition, let Xc be a matrix that contains a column of ones for the intercept and other 
columns for control covariates (e.g., age, sex, and environmental factors) and βββc be the 
corresponding vector of regression coefficients. Thus, βββs and βββc are fixed effects. Further, 
let ααα1 be a vector of random effects that accounts for kinship correlation. Specifically, ααα1 
has a multivariate normal distribution with mean vector 000 and covariance matrix κ1� , 
where κ1 is an unknown scalar and � is a kinship matrix. Furthermore, let ααα2 be a vector 
of overdispersion random effects following N (000, κ2I) . Let yyy = (y1, . . . , yn) be the vector 
of observed phenotypes. Then, the conditional expectation E(yyy|ααα1,ααα2) is linked to the 
linear predictor Xsβββs + Xcβββc + ααα1 + ααα2 by the link function g:

The class of GLMMs given by Eqs. (1) and (2) can be expanded to deal with other 
cases. For example, to account for the experimental design used for data collection, we 
may add another random effect ααα3 following a multivariate normal distribution with 
mean vector 000 and covariance matrix κ3�3 , where κ3 is a unknown parameter and �3 is a 
symmetric positive semi-definite matrix that describes the dependence structure among 
the observations due to the experimental design. Because of the P3D approach, BG2 can 
include additional random effects and still use the spectral decomposition approach to 
speed up computations.

BG2: Bayesian SNP selection in GLMMs for GWAS
Our method BG2 consists of two steps: screening and model selection. The BG2 screen-
ing step uses a novel Bayesian single marker analysis for non-Gaussian data and applies 
Bayesian false discovery rate control to yield a set of candidate SNPs. After that, the BG2 
model selection step performs a search through the model space of all GLMMs that may 
include any number of SNPs from the set of candidate SNPs. In both steps, BG2 uses a 
pseudo-likelihood approach to fit models. In what follows, Sect. 3.1 presents the pseudo-
likelihood approach, Sect. 3.2 introduces the BG2 screening step, and Sect. 3.3 presents 
the BG2 model selection step.

(1)f (yi|ηi) = exp[T (yi)ηi − B(ηi)+ C(yi)],

(2)g(E(yyy|ααα1,ααα2)) = Xsβββs + Xcβββc + ααα1 + ααα2.
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Pseudo‑likelihood model fitting

In both the screening and the model selection steps, BG2 uses a pseudo-likelihood 
approach. In this subsection, we provide a summary description of the pseudo-
likelihood approach. In addition, Additional file  1: Section S1 provides a detailed 
presentation of the pseudo-likelihood approach. This is an iterative approach that 
writes the model for the observations as yyy = µµµ+ ǫǫǫ , where ǫǫǫ is a vector of errors and 
V = Var(ǫǫǫ) = Var(yyy)= diag(v1, . . . , vn) is a diagonal matrix. Note that for distribu-
tions in the exponential family, the variance vi depends on the linear predictor ηi and, 
thus, gets updated in each iteration of the pseudo-likelihood algorithm. More details can 
be found in Additional file  1: Section S1. In addition, the pseudo-likelihood approach 
expands µµµ = E(yyy|βββs,βββc,ααα1,ααα2) in a first-order Taylor expansion around current esti-
mates of βββs , βββc , ααα1 , ααα2 , κ1 , and κ2 . The resulting equation is rearranged such that the 
left-hand side depends only on known quantities (observations, current estimates of 
parameters, regression matrices). Then, this equation is pre-multiplied by V−1 . Let V̂  be 
the current estimate for V. The left-hand side of the resulting equation, known as the 
vector of adjusted observations, is yyy⋆ = V̂−1(yyy− µ̂µµ)+ Xsβ̂ββs + Xcβ̂ββc + α̂αα1 + α̂αα2 . Equating 
yyy⋆ to the right-hand side of the resulting equation yields

Then, the pseudo-likelihood approach approximates the GLMM by an LMM given by 
Eq. (3) with vectors of random effects ααα1 ∼ N (000, κ1�) and ααα2 ∼ N (000, κ2I). Based on this 
LMM, new estimates are computed for βββs , βββc , ααα1 , ααα2 , κ1 , κ2 , and V. The pseudo-likeli-
hood algorithm then iterates until convergence of these estimates. More details about 
the pseudo-likelihood method are given in Additional file 1: Section S1.

BG2 screening step

The BG2 screening step uses a P3D approach based on a baseline model that 
assumes a linear predictor given in Eq.  (2) specialized to contain no SNPs, that is, 
g(E(yyy|βββc,ααα1,ααα2)) = Xcβββc + ααα1 + ααα2.

Our P3D approach keeps βββc , κ1 , κ2 , and V fixed at their pseudo-likelihood estimates 
when performing the Bayesian SMA in the BG2 screening step. Let us denote these esti-
mates by β̂ββc , κ̂1 , κ̂2 , and V̂  . In addition, our P3D approach keeps the vector of adjusted 
observations fixed equal to yyy⋆ obtained at the last iteration of the pseudo-likelihood 
algorithm for the baseline model. Let H = κ̂1� + κ̂2I + V̂−1 be the estimated covari-
ance matrix of the adjusted observations yyy⋆ . Consider the spectral decomposition of the 
matrix H given by H = PDPT . The matrix H is kept fixed for all SNPs in the screening 
step. Thus, the spectral decomposition of H, which has a computational cost of O(n3) , 
has to be computed only once at the beginning of the screening step.

Let xxxs be the vector of covariate values for SNP s. Then, the BG2 screening step 
assumes for each SNP s, s = 1, . . . , p , that the adjusted observations yyy⋆ can be modeled 
by the LMM

(3)yyy⋆ = Xsβββs + Xcβββc + ααα1 + ααα2 + V−1ǫǫǫ.

(4)yyy⋆ = Xcβ̂ββc + xxxsβs + ααα1 + ααα2 + V̂−1ǫǫǫ.
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Then, the adjusted observations yyy⋆ have an approximate multivariate Gaussian distribu-
tion N (Xcβ̂ββc + xxxsβs,H). Let ỹyy = PT (yyy⋆ − Xcβ̂ββc) and x̃xxs = PTxxxs . Then, an estimator of βs 

is β̂s = (x̃xx
T
s D

−1x̃xxs)
−1x̃xx

T
s D

−1ỹ . In addition, the estimator β̂s has approximate distribution 
N (βs, σ

2
s ) , where σ 2

s = var(β̂s) = (x̃xx
T
s D

−1x̃xxs)
−1.

We assign for βs a prior that is a mixture of a Dirac delta function and a nonlocal prior, 
that is,

where π0 is the probability of the null hypothesis that βs is equal to zero and τ > 0 is a 
scale parameter. Larger values of τ cause the prior to be more spread out and lead BG2 
to focus on identifying SNPs with relatively large regression coefficients. Then, the pre-
dictive density of β̂s is

Based on this predictive density and assuming that β̂1, . . . , β̂p are approximately condi-
tionally independent given π0 and τ , we obtain the approximate likelihood function of τ 
and π0

Let π(τ) and π(π0) be the prior densities of τ and π0 , respectively. Then, by Bayes The-
orem an approximate posterior density for (τ ,π0) is

BG2 estimates τ and π0 by maximizing (7) to obtain posterior modes τ̂  and π̂0.
We assign a noninformative uniform prior on (0,  1) for π0 and consider two prior 

specifications for τ . The first prior specification is a uniform prior for τ on (0,∞) . The 
second prior specification for τ is an inverse gamma distribution with shape parameter 
0.55/0.022+ 1 and rate parameter 0.55, that is τ ∼ IG(0.55/0.022+ 1, 0.55) . This prior 
specification implies a prior mean for τ equal to 0.022, which was the value for a fixed τ 
recommended by [20] for GWAS studies. In addition, we note that values of τ that are 
too small lead to numerical instability. Therefore, our prior specification implies that a 
priori P(τ > 0.01) = 0.999 , stochastically keeping τ away from 0.

Alternatively, we may fix τ at pre-specified values [14, 20]. Specifically, in the context of 
GWAS analysis, [20] suggested fixing τ = 0.022 because GWAS effect sizes are generally 
very small. When τ = 0.022 , the nonlocal product moment prior (pMOM) prior assigns 
a probability of 0.01 to the event that a standardized effect size falls in the interval ( −

p(βs|τ ,π0) = π0δ0(βs)+ (1− π0)
β2
s

nτσ 2
s

N (βs|0, nτσ
2
s ),

(5)

p(β̂s|τ ,π0) =

∫
p(β̂s|βs)p(βs|τ ,π0) dβs

= π0N (β̂s|0, σ
2
s )+ (1− π0)(2πσ

2
s )

− 1
2 (nτ + 1)−

3
2

exp

{
−

β̂2
s

2σ 2
s (nτ + 1)

}[
1+

nτ β̂2
s

(nτ + 1)σ 2
s

]
.

(6)L(β̂1, . . . , β̂p|τ ,π0) =

p∏

s=1

p(β̂s|τ ,π0).

(7)π(τ ,π0|β̂1, . . . , β̂p) ∝π(τ)π(π0)

p∏

s=1

p(β̂s|τ ,π0).
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0.05, 0.05). Thus, in the simulation studies presented in Sect. 4, we also consider fixing τ 
at 0.022.

After estimating τ and π0 , BG2 takes an Empirical Bayes approach and keep them at 
their estimates τ̂  and π̂0 while using Bayes Theorem to compute the posterior probability 
that the regression coefficient of SNP s ( s = 1, . . . , p ) in the screening step is different 
than zero, that is

where p(β̂s|τ̂ , π̂0) is the predictive density given in Eq. (5) with τ = τ̂  and π0 = π̂0.
Finally, based on the posterior probabilities computed with Eq.  (8), the BG2 screen-

ing step uses Bayesian FDR control [8, 9, 27–29] to obtain a list of candidate SNPs while 
keeping the nominal FDR at 5%. Let us denote the number of SNPs contained in this list 
of candidate SNPs obtained in the screening step by k.

BG2 model selection step

The BG2 model selection step considers GLMMs with any number of SNPs from the 
list of k candidate SNPs obtained from the BG2 screening step. Thus, the model selec-
tion step considers S = 2k possible models. Let Mm be the m-th model, m = 1, . . . , S . Let 
Xm be the matrix of SNPs in model Mm , βββm be the corresponding vector of regression 
coefficients, and pm be the number of SNPs in model Mm . Let XS be the model with all k 
candidate SNPs.

We assume that the k candidate SNPs may or may not be in a model according to a 
sequence of exchangeable Bernoulli trials. Specifically, the prior probability of model 
Mm is P(Mm) = π̂

k−pm
0 (1− π̂0)

pm where π̂0 is the estimate of the probability of null 
hypothesis obtained in the screening step. We do this to ensure that the Bayesian control 
of false discoveries in the BG2 model selection step is as strict as the control of false dis-
coveries in the BG2 screening step.

The BG2 model selection step uses a P3D approach where the baseline model is the full 
model MS with linear predictor g(E(yyy|ααα1,ααα2)) = Xcβββc + XSβββS + ααα1 + ααα2. The pseudo-
likelihood approach then yields estimates β̂ββc , κ̂1 and κ̂2 , V̂  , and adjusted observations yyy⋆ . 
We then consider all models Mm,m = 1, . . . , S , where we keep βββc , κ1 , κ2 , and V fixed at 
these estimates. Let H = κ̂1� + κ̂2I + V̂−1 and consider the spectral decomposition of 
the matrix H given by H = PDPT . The matrix H is kept fixed for all non-baseline models 
in the model selection step. Thus, even though the spectral decomposition has a compu-
tational cost of O(n3) , this decomposition has to be computed only once at the beginning 
of the model selection step. In addition, following the recommendation of [25], we keep 
the adjusted observations for all the S considered models fixed at the adjusted observa-
tions yyy⋆ obtained while fitting the full model.

Therefore, under model Mm and with the P3D approach, the adjusted observations 
yyy⋆ follow the approximate distribution N

(
Xcβ̂ββc + Xmβββm,H

)
. In addition, let 

ỹyy = PT (yyy⋆ − Xcβ̂ββc) and X̃m = PTXm . Then, we can rewrite the LMM as 
ỹyy|βββm

a
∼N (X̃mβββm,D) , where a∼ denotes “approximately distributed as.” Because D is a 

diagonal matrix, computations for this latter model are very fast.

(8)P(βs  = 0|β̂s, τ̂ , π̂0) =1−
π̂0N (β̂s|0, σ

2
s )

p(β̂s|τ̂ , π̂0)
,
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We propose a novel nonlocal prior for GLMMs. Specifically, we propose a prior den-
sity that is the product of a multivariate Gaussian density and the product of the square 
of each element of the vector of regression coefficients βm . In this multivariate Gaussian 
density, the covariance matrix is τn(XT

mH
−1Xm)

−1 . Using the spectral decomposition of 
the matrix H, the prior we propose for βββm is

where dm is a normalizing constant.
Let Cm = X̃

T
mD

−1
X̃m(1+ (τ̂n)−1) , β̃ββm = C

−1
m X̃

T
mD

−1
ỹyy , and Rm = ỹyy

T
D
−1(D − X̃mC

−1
m X̃

T
m) 

D
−1
ỹyy = ỹyy

T
D
−1
ỹyy− ỹyy

T
D
−1

X̃mβ̃ββm. Then, the marginal density of the adjusted observations ỹyy 
conditional on model Mm is

where E1
(∏pm

i=1 β
2
mi

)
 is the expected value with respect to N (000, (1+ τ̂n)C−1

m ) and 
E2

(∏pm
i=1 β

2
mi

)
 is the expected value with respect to N (β̃ββm,C

−1
m ) . To approximate 

E1
(∏pm

i=1 β
2
mi

)
 and E2

(∏pm
i=1 β

2
mi

)
 , we simulate 2000 samples from N (β̃ββm,C

−1
m ) , denoted 

as βββ(j)
2m, j = 1, . . . , 2000 . We compute 

∑2000
j=1 (

∏pm
i=1 β

2(j)
2mi)/2000 as an approximation to 

E2
(∏pm

i=1 β
2
mi

)
 . Let βββ(j)

1m = (1+ τ̂n)
1
2 (βββ

(j)
2m − β̃ββm), j = 1, . . . , 2000 . Finally, we compute 

∑2000
j=1 (

∏pm
i=1 β

2(j)
1mi)/2000 as an approximation to E1

(∏pm
i=1 β

2
mi

)
.

Then, the posterior probability of model Mm is

Note that the posterior distribution of the vector of regression coefficients is multi-
modal. BG2 deals with this multimodality without any difficulties. In the screening step, 
when βs is a scalar, we compute the posterior probability of βs  = 0 using Eqs. (5) and (8). 
In the model selection step, when βββm is a vector of coefficients, we compute the poste-
rior probability of model Mm using Eqs. (10) and (11).

If the number of candidate covariates k is small ( k < 16 ), we compute the posterior 
probabilities for all 2k candidate models and select the highest posterior probability model 
as the best model. If the number of candidate covariates is large, we use a genetic algo-
rithm from the R package GA [30] to search for the highest posterior probability model.

Simulation studies
We have performed simulation studies to compare our nonlocal-prior-based BG2 
method versus SMA for binary data and count data. Specifically, we consider single 
marker analysis with Bonferroni correction with nominal FDR set to 0.05. To assess the 

(9)

π(βββm|Mm) = dm(2π)
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performance of our methods, in these simulation studies we use genotype SNP data 
from humans and from A. Thaliana. These are the same genotype data used in the case 
studies we present in Sect. 5. We use four criteria to compare the competing methods: 
true positives (TP), false positives (FP), false discovery rate (FDR) and F1 score. Within 
each simulation study, for each method we compute the average TP, FP, FDR and F1 over 
100 simulated datasets. We use a buffer to define what is a true positive and a false posi-
tive. Following [21], if one or more detected SNPs are adjacent (within 5000 base pairs) 
to a same causal SNP, that is counted as a true positive. In addition, each detected SNP 
not adjacent to a causal SNP is counted as a false positive.

Binary data

We simulate binary GWAS data using genotype information from the Study of Addic-
tion: Genetics and Environment (SAGE) which is part of the National Human Genome 
Research Institute’s Gene Environment Association Study Initiative [Database for Gen-
otypes and Phenotypes (dbGaP) study accession phs000092.v1.p1]. Specifically, we use 
genotype information from 2,772 European Americans in a total of 800,000 SNPs with 
minor allele frequency (MAF) larger than 0.01.

From these 800,000 SNPs, we selected 20 evenly spaced SNPs to be the causal SNPs. 
We set the regression coefficients for 5 of these causal SNPs to 0.2, and for 5 other 
causal SNPs to −0.2. In addition, the regression coefficients for the other 10 causal 
SNPs have the same value β , but that value varies in six settings: 0.2, 0.3, 0.4, 0.5, 0.7 
and 1. Further, we set the intercept at β0 = −0.5 . Furthermore, the variance compo-
nent κ of the kinship random effects ααα is set to 0.15. Thus, the binary phenotype data 
are simulated from a Bernoulli GLMM with logistic link function and linear predictor 
β0 +

∑10
i=1 βxij +

∑15
i=11 0.2xij +

∑20
i=16(−0.2)xij + αi, with ααα ∼ N (000, κ�) where � is the 

kinship matrix.
Figure  1 shows for binary data the performance of our BG2 method with three dif-

ferent ways to choose the parameter τ , as well as the performance of the SMA method. 
These performances in terms of TP, FP, FDR, and F1 averaged over 100 datasets for each 
setting are plotted as functions of the varying regression coefficient β . In addition, Fig. 1 
shows the computational time. Additional file 1: Figure S2 show boxplots of TP, FP, FDR, 
and F1. Our BG2 methods take twice as long as SMA, which is to be expected since 
SMA has only a screening step whereas BG2 has a screening step and a model selection 
step. Among the three ways considered to choose τ for BG2, estimating τ based on a uni-
form prior provides higher F1 scores for smaller values of β , and provides comparable 
F1 scores for larger values of β . In addition, when compared to SMA, BG2 with uniform 
prior provides larger average number of true positives TP than when β is small, and a 
smaller TP when β is large. However, BG2 with uniform prior leads to a much smaller 
average number of false positives than SMA. As a result, when compared to SMA, for 
all considered values of the regression coefficient β , BG2 with uniform prior has much 
larger F1.

Finally, we have tested the robustness of BG2 to the case of binary GWAS data with no 
causal SNPs. Specifically, we have simulated 100 datasets with binary GWAS data from a 
Bernoulli GLMM with logit link function and linear predictor β0 + αi . While BG2 with 
any of the ways to choose τ does not yield any false positive for 100 simulated datasets, 
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SMA has an average of 0.06 false positives. Therefore, BG2 performs better than SMA 
for binary GWAS data and is robust to the case when there are no causal SNPs.

Count data

We simulate count GWAS data using genotype information from The Arabidopsis Infor-
mation Resource (TAIR9) (https://www.arabidopsis.org/). This simulation study is based 
on a case study on root-like structures in A. Thaliana that we present in Sect. 5.3.

Specifically, we use 188,980 SNPs with MAF>0.01 from 152 ecotypes of A. Thali-
ana. This simulation study assumes 10 causal SNPs evenly located among all available 
SNPs. Of these 10 causal SNPs, 5 causal SNPs have fixed coefficients equal to 0.2, and 
the other 5 causal SNPs have the same coefficient β which varies in eight settings: 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 1. In addition, we set the intercept β0 equal to 1. Further, 
we assume that there are two random effects: a kinship random effect ααα1 with vari-
ance component κ1 equal to 1; and an overdispersion random effect ααα2 with variance 
component κ2 equal to 0.3, which is close to the estimate obtained in the case study 
presented in Sect.  5.3. Let ri be the number of replicates of ecotype i. Because in the 
case study most ecotypes have 12 replicates, in this simulation study we assume that 
all ecotypes have 12 replicates. In addition, the phenotype yi for ecotype i is the total 
number of root-like structures of the ri replicates. These phenotype count data are 
sampled from a Poisson GLMM with logarithm link function and linear predictor 
log(ri)+ β0 +

∑5
i=1 βxij +

∑10
i=6 0.2xij + α1i + α2i.

Figure 2 shows for count data the performance of our BG2 method as well as the per-
formance of the SMA method. These performances are averaged over 100 simulated 
datasets for each setting and plotted as functions of the varying regression coefficient 
β . In addition, Fig.  2 shows the computational time. Additional file  1: Figure S3 show 
boxplots of TP, FP, FDR, and F1. Our BG2 methods take about eight times longer than 
SMA, but they still provide results in a feasible amount of time. Among the three ways 
considered to choose τ for BG2, estimating τ based on an inverse gamma prior provides 
larger average number of true positives and about the same FDR level. As a result, when 

Fig. 1  SNP search performance of BG2 and SMA methods for simulated binary data
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compared to the other ways to choose τ , estimating τ based on an inverse gamma prior 
has higher F1 scores for most considered values of β . In addition, when compared to 
SMA, BG2 with an inverse gamma prior provides larger average number of true posi-
tives TP for most considered values of β . Further, BG2 with inverse gamma prior has 
about the same FDR level as SMA for β ≤ 0.5 and a much smaller FDR level for β > 0.5 . 
As a result, while BG2 with an inverse gamma prior has comparable F1 to SMA for small 
values of β , the F1 of BG2 with an inverse gamma prior becomes much larger than the 
F1 of SMA as β increases.

In addition, we have tested the robustness of BG2 to the case of count GWAS data 
with no causal SNPs. Specifically, we have simulated 100 datasets with count GWAS data 
from a Poisson GLMM with logarithm link function and linear predictor β0 + α1i + α2i . 
The average number of false positives for all considered methods is 0. Thus, both SMA 
and BG2 methods perform well in the case of count GWAS data with no causal SNPs.

Choice of prior for τ

Choice of priors is an important part of the implementation of Bayesian methods. To 
obtain more information about the impact of prior choice on the results of BG2 imple-
mentations, we have expanded our simulation studies presented in Sects.  4.1 and  4.2. 
Specifically, we have performed two additional simulation studies: one that uses count 
data simulated with human genome and another one that uses binary data simulated 
with A. Thaliana genome. Unfortunately, the simulated binary datasets simulated with 
A. Thaliana genome did not contain enough information for SNPs to be detected by 
SMA or BG2. Additional file 1: Figure S1 presents the results for count data based on 
human genome data. Similarly to the results from Sects. 4.1 and 4.2, any of the imple-
mentations of BG2 perform much better than SMA in terms of FDR and F1. In addition, 
for count data based on human genome data, the three implementations of BG2 provide 
similar results. Therefore, from the results of the simulation studies, there is no prior 
choice that dominates the other prior choices.

Fig. 2  SNP search performance of BG2 and SMA methods for simulated count data
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Another important consideration is that the performance of the priors will vary for 
different GWAS datasets. And, of course, BG2 is to be used by scientists who are not 
Bayesian statisticians – thus, ideally there should be a default prior that would be safe 
to use with any GWAS dataset. One such class of priors is the class of non-informative 
priors [31–34] that impart little or no information in the analysis. The uniform prior is 
not concentrated around any particular value of τ and, in this sense, is non-informative. 
In addition, in the simulation studies considered here, BG2 with the uniform prior for τ 
performed similarly or better than BG2 with other prior choices for τ . Therefore, in the 
implementation of BG2 we recommend the uniform prior as a default choice for τ.

Case studies
To illustrate the usefulness and flexibility of the nonlocal-prior-based BG2 method, this 
section presents three case studies on cocaine dependence, alcohol consumption, and 
number of root-like structures in A. Thaliana.

Maximum number of alcoholic drinks

The Collaborative Study on the Genetics of Alcoholism (COGA) [35] was a large-scale 
family study that had as primary objective to identify genes related to alcohol depend-
ence. Here, we consider as the response variable the maximum number of alcoholic 
drinks consumed in 24  h. We analyze data on 2759 European Americans considering 
846,076 SNPs with MAF>0.01 and with less than 5% missing. To perform this analysis, 
we use the Poisson GLMM for count data considered in Sect. 4.2. In our analysis, the 
846,076 SNPs are possible regressors. Our Poisson GLMM accounts for genetic struc-
ture among 2759 subjects by including a vector of kinship random effects, and allows for 
extra-Poisson variability with a vector of overdispersion random effects.

While SMA detected 10 SNPs, BG2 detected only one SNP. More specifically, the 
screening step of BG2 identified 10 candidate SNPs which were then given to the BG2 
model selection step. The BG2 model selection step then identified one SNP. Likelihood 
ratio tests indicate that the identified SNPs do not violate the hypothesis of Hardy-Wein-
berg equilibrium. While we cannot be sure about which of these SNPs are false positives, 
the simulation studies in Sect. 4 show that SMA tends to have a much higher FDR than 
BG2. Thus, in this case study the nonlocal-prior-based BG2 method provides a list of 
SNPs for further investigation that is much more focused. The SNP detected by BG2 
is located in the protein-coding gene PTGER4 on chromosome 5. The protein encoded 
by PTGER4 is a receptor for prostaglandin E2 (PGE2). An increase in PGE2 is part of 
the inflammatory response to alcohol consumption, and the use of the PGE2-inhibitor 
tolfenamic acid significantly reduces the severity of several hangover symptoms [36].

Cocaine dependence

In this case study, we analyze the association between cocaine dependence and single 
nucleotide polymorphisms (SNPs). We analyze data from the Family Study of Cocaine 
Dependence (FSCD) [37], which was part of the Study of Addiction: Genetics and 
Environment. Specifically, we analyze data on 2,767 European Americans considering 
846,076 SNPs with MAF>0.01 and with less than 5% missing. The response variable is 
whether or not the subject is addicted to cocaine. To perform this analysis, we use the 
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model for binary data considered in Sect. 4.1. Because males and females seem to have 
different behaviors with respect to cocaine use, we include sex as a control covariate. All 
846,076 SNPs are possible regressors. In addition, to account for the genetic structure 
among the 2767 subjects, our Bernoulli GLMM has a vector of kinship random effects.

BG2 detects one SNP, which is located in the protein-coding gene ABCC8 on chromo-
some 11. In this case study, the screening step of BG2 identified 1 candidate SNP which 
was then selected in the model selection step. For this dataset, SMA only detects the 
same SNP. A likelihood ratio test indicates that the identified SNP does not violate the 
hypothesis of Hardy-Weinberg equilibrium. The protein encoded by this gene is a mem-
ber of the superfamily of ATP-binding cassette (ABC) proteins which transport various 
molecules across extra-cellular and intra-cellular membranes. In addition, a quantita-
tive transcriptomics analysis (RNA-Seq) has shown that this gene is overexpressed in the 
brain [38]. Further, cocaine increases expression of ABCC1 (another gene that encodes 
an ABC protein) in mice [39]. Finally, ABCC1-siRNA (a silencer of ABCC1) blocks 
cocaine-induced place preference in mice [39].

Root‑like structures in A. Thaliana

To illustrate the application of our method to count data, we analyze data from a study 
of plant regeneration from root explants of the selfing species A. Thaliana [40]. Specifi-
cally, we consider as response variable the number of root-like structures. We note that 
[40] applied a square root transformation to analyze this count phenotype variable. In 
contrast, we use the Poisson GLMM with overdispersion considered in Sect. 4.2 to ana-
lyze the original count data. Our model contains a vector of kinship random effects to 
account for the correlation among individuals and a vector of overdispersion random 
effects. We focus on the number of root-like structures after 21 days in which seedlings 
are under warm white light at 21o C following a 14/10  h light/dark regime. There are 
188,980 SNPs for 152 ecotypes, with 12 biological replicates per ecotype, from TAIR9 
with MAF>0.01.

BG2 detects 3 SNPs. More specifically, the screening step of BG2 screened 5 candi-
date SNPs and then the BG2 model selection step identified 3 of these SNPs. For this 
dataset, SMA detects the same 3 SNPs. These 3 SNPs are expressed in the root and are 
located in protein-coding genes AT1G20090, AT1G20100 and AT1G20720. Specifically, 
AT1G20100 encodes a DNA ligase-like protein involved in the regulation of metabolic 
processes. In addition, gene AT1G20720 encodes a RAD3-like DNA binding helicase 
protein that acts in the repair of double-strand breaks in DNA, and in nucleotide-exci-
sion repair. Finally, AT1G20090 encodes a ROP2 protein which is known to effect root 
hair initiation and tip growth [41].

Discussion
We have proposed BG2, a two-stage Bayesian SNP detection method for non-Gaussian 
GWAS data. BG2 uses a GLMM framework that includes kinship random effects and 
overdispersion random effects. BG2 has two steps: a screening step and a model selec-
tion step. The screening step performs a Bayesian SMA that selects a set of candidate 
SNPs. The model selection step then considers all possible GLMMs based on this set of 
candidate SNPs. To speed up computations, we develop a pseudo likelihood approach 
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combined with P3D. Further, we develop a novel class of nonlocal priors for the regres-
sion coefficients specially tailored for GLMMs. Simulation studies show that, for both 
binary and count GWAS data, BG2 is much better than SMA in terms of FDR and F1.

The simulation studies show that, when compared to SMA, BG2 has a much lower 
FDR. Of course, there are some combinations of parameters for which SMA and BG2 
provide similar results, and that is what seems to have happened in Sects. 5.2 and 5.3. 
However, in some applications BG2 provides a much smaller number of false discover-
ies than SMA, and that is what seems to have happened in the case study presented in 
Sect. 5.1. Therefore, when compared to SMA, BG2 is more robust and precise.

A relevant question is how sensitive to the choice of prior is the performance of BG2. 
We considered here implementations of BG2 with three different choices of priors. The 
simulation studies presented in this paper and in the additional file have shown that BG2 
implementations with each of these three different choices of priors have similar per-
formance. As a matter of fact, BG2 with the different choices of priors considered here 
provide the same results for the three case studies. Therefore, the performance of BG2 
seems to be relatively robust to the choice of priors.

While we have chosen to implement BG2 with a pseudo-likelihood approach and a 
genetic algorithm to explore the model space for the analysis of non-Gaussian GWAS 
data, we acknowledge that other approaches may be possible. For example, instead of the 
pseudo-likelihood approach, researchers may consider variational inference approaches 
[42, 43]. In addition, instead of combining the pseudo-likelihood approach and a genetic 
algorithm, researchers may consider implementing a parallel tempering approach [44] to 
perform estimation and model selection at the same time. However, we think that such 
parallel tempering approach may not be computationally feasible for Bayesian ultra-high 
dimensional variable selection in GLMMs applied to non-Gaussian GWAS.

There are several possible avenues for future research. One promising research direc-
tion is to adapt BG2 for application to biobank scale data. Another possible research 
direction is to implement BG2 with an iterative procedure that would allow smaller 
effect sizes to be detected. Finally, another possible research avenue is to develop BG2 
for GWAS analysis when the phenotype is survival time.

Conclusion
We propose BG2, a novel two-stage Bayesian approach for non-Gaussian GWAS data. 
Compared to SMA, BG2 provides a much lower FDR, is more precise and robust. BG2 
is implemented in the R package BG2 that is available on BioConductor at https://​bioco​
nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​BG2.​html.
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