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Abstract 

Background: In this paper, we are interested in interactions between a high-
dimensional -omics dataset and clinical covariates. The goal is to evaluate the rela-
tionship between a phenotype of interest and a high-dimensional omics pathway, 
where the effect of the omics data depends on subjects’ clinical covariates (age, sex, 
smoking status, etc.). For instance, metabolic pathways can vary greatly between sexes 
which may also change the relationship between certain metabolic pathways 
and a clinical phenotype of interest. We propose partitioning the clinical covariate 
space and performing a kernel association test within those partitions. To illustrate this 
idea, we focus on hierarchical partitions of the clinical covariate space and kernel tests 
on metabolic pathways.

Results: We see that our proposed method outperforms competing methods in most 
simulation scenarios. It can identify different relationships among clinical groups 
with higher power in most scenarios while maintaining a proper Type I error rate. The 
simulation studies also show a robustness to the grouping structure within the clinical 
space. We also apply the method to the COPDGene study and find several clinically 
meaningful interactions between metabolic pathways, the clinical space, and lung 
function.

Conclusion: TreeKernel provides a simple and interpretable process for test-
ing for relationships between high-dimensional omics data and clinical outcomes 
in the presence of interactions within clinical cohorts. The method is broadly applicable 
to many studies.
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depends on subjects’ clinical covariates (age, sex, smoking status, etc.). For instance, 
metabolic pathways can vary greatly between sexes [1–3] which may also change the 
relationship between certain metabolic pathways and a clinical phenotype of interest, 
e.g. body compositions.

One common way of testing for relationships between omics pathways and pheno-
types is to represent omics data with a kernel machine [4, 5]. These kernel association 
tests test for relationships between the clinical phenotype of interest and an entire omics 
profile [6] or important subsets of omic features [7–9]. These methods all model a con-
stant relationship between the outcome space and the kernel space after controlling for 
clinical covariates. There has been a large effort to extend these methods for multimodal 
data sets [10–12]. The goal of these studies is to integrate multiple high-dimensional data 
sets to better understand intertwined biological systems. These methods are designed 
to model interactions between the omics features. Other kernel interaction techniques 
look for feature-to-feature interactions within the same set [13]. While powerful, these 
methods do not provide easily interpretable interactions and are not built for interac-
tions between clinical and omics features.

We propose partitioning the clinical covariate space and performing a kernel associa-
tion test within those partitions. There are many ways to partition spaces. One common 
method is kd-trees [14], where k represents the number of variables in the space and d 
is the depth of the tree. In the simplest model, one partitions based on the median of 
each variable sequentially. More complex algorithms that consider all k variables at once 
or use measures other than the median may be used as well. The hierarchical clustering 
algorithm [15] is another classic algorithm that can be used to create partitions in the 
data. This algorithm results in a dendrogram that can then be “cut” at different heights, 
resulting in different partitions of the data.

Testing on hierarchical structures has been studied by many authors. Some authors 
group individual analytes (genes, microbes, etc.) into trees and test for a relationship 
with each analyte [16]. We are more interested in grouping subjects and testing within 
those subgroups. Yekutieli studied controlling the false discovery rate for multiple 
hypothesis tests with a hierarchical testing structure [17]. Bogomolov et  al. [18] also 
considered this setting and added the concept of tests being nested within one another. 
This nesting was represented using a tree structure, and the resulting procedure led 
improved power over Yekutieli’s [17] approach. Multiscale test corrections [19, 20] are 
another method for controlling the error rate from multiple structured tests and have 
been studied under a hierarchical setting [21]. Some hierarchical kernel tests have also 
been developed [22]. These do not consider new relationships within covariate parti-
tions, but rather a hierarchy of importance of omics pathways.

We propose a new approach to produce interpretable interactions between clinical 
covariate spaces and kernel spaces. First, we partition the covariate space into a hier-
archical structure; second, we perform kernel association tests between the outcome 
and the subjects within each partition. The former step involves the clinical covari-
ates, while the latter step tests for association between the omics data and the out-
come. This simple test construction, which we call TreeKernel, provides interpretable 
interactions between omics data and clinical covariates. We explore the validity of this 
approach through simulations and analysis of a metabolomics data set. We find that 
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we achieve good power in detecting interactions between simulated clinical covariate 
and metabolic pathways and that the nominal Type I error rate is preserved. Analysis 
of the metabolomics pathways show that the relationship between lung capacity and 
certain metabolic pathways vary depending on the patients’ smoking status.

Methods
Kernel and covariate spaces

This paper is primarily concerned with interactions between observed clinical covariates 
and omics data. We frame this as an interaction between the clinical covariate space and 
the omics space. Kernel functions map data from a high dimensional observation space, 
Z , to a feature space using a nonlinear feature map. For this work, we refer to a kernel 
function as any bivariate symmetric function h(x, z) on Z × Z for which 
∫
Z

∫
Z

h(x, z)g(x)g(z)dxdz ≥ 0 for all squared integrable functions g on Z , i.e., g ∈ L2(Z) . 

It is known that for every positive definite kernel h , there exists a unique Hilbert space, 
H , of functions on Z for which the function value is reproduced by the kernel, known as 
the reproducing kernel Hilbert space (RKHS) [23]. The RKHS formulation implies that a 
given function, f ∈ H on Z , can be expressed as f (Z) =

〈

f (·), h(·,Z)
〉

H
 , where �·, ·�

H
 is 

the inner product of H and Z ∈ Z is an observed point. One may define a nonlinear (or 
linear) feature map � : Z → H as φ(Z) = h(·,Z). Replacing f  with h

(

·, Z̃
)

 gives 

h
(

Z, Z̃
)

=
〈

h(·,Z), h
(

·, Z̃
)〉

H

 , and, finally, the famous “kernel trick” gives 

h
(

Z, Z̃
)

=
〈

φ(Z),φ
(

Z̃
)〉

H

 , [24, 25]. In words, the kernel function represents the inner 

product between two vectors within the feature space efficiently without needing to 
explicitly define the form of the feature map, φ(·) ., or the space, H.

Kernel association tests

We will assume that omics data are properly normalized and contain no missing val-
ues. Consider a dataset with n observations. Let Y  be a vector of length n representing 
a continuous or discrete outcome. Let C be an n× q matrix of clinical covariates and 
Z be an n×m matrix of high-dimensional biological data. The classic semi-paramet-
ric kernel machine model [1, 2] then relates these three through the model

where g is either the identity or logit link function, β is a q × 1 vector of regression coef-
ficients, ǫ is an n× 1 vector of error terms, and h is a kernel function.

The kernel function, h , can be considered a measure of similarity between two subjects 
within the kernel space. Some common kernel machine representations for h include the 
Linear Kernel: K

(

zi, zj
)

= zTi zj (the dot product), the dth Polynomial Kernel: 

K
(

zi, zj , ρ
)

=
(

zTi zj + ρ
)d , and the Gaussian Kernel: K zi, zj , ρ = exp −

�zi−zj�
2
2

ρ
 , 

where � · �2 is the Euclidean ( L2 ) norm. For the Gaussian kernel, ρ is a precision parame-
ter controlling how quickly similarities approach 0. We will use the median of all pair-
wise Euclidean distances from Z as an empirical estimate of ρ in our Gaussian kernels.

(1)g(Y ) = Cβ + h(Z)+ ǫ,
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Proposed method

We first represent the clinical covariates using a lower-dimensional space that cap-
tures their underlying variation. This can be accomplished by embedding the data 
using their principal components if all data are continuous. If the data contain both 
continuous and factor variables, the primary left singular vectors from the fac-
tor analysis of mixed data are used as covariates [26]. The partitions calculated on 
this embedding will be ignoring the raw noise in the clinical space encoded in the 
removed left singular vectors. We then cluster the data within this embedding to cre-
ate data partitions. Many clustering methods may be appropriate, e.g., k-means or 
kd-trees. We use hierarchical clustering for TreeKernel as we find improvements in 
power using tree-based testing corrections. The number of clusters are estimated 
using the highest relative loss of inertia. Partitions are derived from the clusters 
calculated from each tree cut, and we assume that these partitions give reasonably 
homogeneous grouping of clinical factors.

Once the p partitions are identified, we perform kernel association tests between 
the outcome of interest and the kernel space within the partitions. I.e., we perform a 
kernel association test using the model

where β(p)
0  is the intercept within partition p and Y (p), (Cβ)(p),Z(p), and ǫ(p) are the out-

come, clinical covariates, high dimensional biological data, and model residuals from 
within each partition, respectively. Each model is fit separately. Finally, we perform the 
multiple testing correction procedure TreeBH [18] which controls the global error rates 
on hypotheses that are organized hierarchically in a tree structure. Our workflow is visu-
alized in Fig. 1.

(2)g
(

Y
(p)
i

)

= (Cβ)(p) + h
(

Z
(p)
i

)

+ ǫ
(p)
i ,

Fig. 1 Flowchart of the TreeKernel workflow. Subjects are clustered based on their clinical  data, then kernel 
association tests are performed within these partitions with p-values adjustments applied at the end. This 
allows for interpretable interactions between omics and clinical variables
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Simulation study

We conducted multiple simulation studies to assess the power and nominal Type I error 
rates of our proposed method using R [27]. We first simulated our n×m dimensional 
set, Z , to mimic metabolic abundance within connected pathways. Random graphs were 
generated from the igraph package in R [28] and Z was generated using the same method 
described in [9]. We Then simulated a clinical covariate space, C , with four variables 
and 2, 3, or 4, distinct partitions. We refer to these settings as “4-partition,”, “3-parti-
tion,”, and “2-partition.” First, we simulated data from a multivariate normal distribution, 
MVN (µ, I) , where I is the identity matrix. The mean vector, µ , is a constant vector of 
one of 0, 2, 4, or 8 for the different partitions. For example, the 2-partition simulations 
draw half of the total sample size from the MVN  distribution with a vector mean of 0 
and the other half from a distribution with a mean vector of 2. Next, we simulated data 
sets with categorical variables driving the clustering. Three uniform distributed variables 
with a range of (− 0.15, 0.15), (− 1, 1), and (0, 4), respectively, were simulated. We then 
generated a fourth partitioning variable from a factor variable with 4, 3, or 2 levels for 
the partition settings. The final partitioning variable came from an interaction between 
two factor variables with two levels. This gives only a 4-partition scenario. All simula-
tions settings had a sample size of 200 and were repeated 2,000 times. We simulate 50 
observations within each partition in the 4-partition setting. In the 3-partition setting, 
we simulate 66, 66, and 68 observations per partition, respectively. Finally, we simulate 
100 observations per partition in the 2-partition setting.

This covariate space was then embedded using their principal components or left sin-
gular vectors from factor analysis and partitioned with hierarchical clustering. Within 
each partition, an outcome was simulated as Yi = Ciβ + hp(Zi)+ ǫi , where β is the vec-
tor (1, 0.05, − 0.26, 0.1, − 0.1, 0.26, − 0.02), which come from observed relationships in 
our metabolomics cohort, and ǫi is a normally distributed random variable with mean 0 
and standard deviation 1.3688. This standard deviation was also drawn from observed 
metabolomics data. We used a linear kernel in all settings, i.e., hp(Zi) = bp · Zi . For 
power calculations in the 4-partition and 3-partition, we had two sub-settings with either 
1 active group, b1 = 0.5 and b2 = b3 = b4 = 0 , or two active groups, b1 = b2 = 0.3, and 
b3 = b4 = 0. For the power calculations in the 2-partition, we had only had one setting, 
b1 = 0.5 and b2 = 0. For the Type I error rate estimation all bp = 0. We repeated these 
simulations with three pathway sizes, m = 15, 30, or 45. We performed each of these sim-
ulations using either 3 or 5 embedding components for clustering to assess the sensitiv-
ity. Lastly, we compare the power of our method to two simple competing approaches: 
an F-test on all principal components (FPC) of Z [29] and the minimum Simes’ adjusted 
p-value [30] from univariate tests on Z (Univariate Simes). The code for all our simula-
tions can be found at https:// github. com/ Ghosh lab/ TreeK ernel.

COPDGene data

We analyzed data collected from the COPDGene study [31], a multicenter observational 
study that collected genetic data as well as multiple measures of lung function to study 
chronic obstructive pulmonary disease (COPD). Between 2007 and 2011, 10,198 par-
ticipants with and without COPD enrolled (Visit 1). A 5-year follow up visit took place 

https://github.com/Ghoshlab/TreeKernel
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between 2013 and 2017 (Visit 2). Blood samples were also obtained for -omics analy-
ses from participants who provided consent. In total, 1136 subjects (1040 non-Hispanic 
white, 96 African American) participated in a metabolomics ancillary study in which 
they provide fresh frozen plasma collected using an 8.5 mL p100 tube (Becton Dickson) 
at Visit 2.

Metabolomics and data processing

P100 plasma was profiled using the Metabolon (Durham, NC, USA) Global Metabolomics 
platform. Briefly, untargeted liquid chromatography–tandem mass spectrometry (LC–
MS/MS) was used to quantify 1392 metabolites and described in [32, 33]. A data normali-
zation step was performed to correct variation resulting from instrument inter-day tuning 
differences: metabolite intensities were divided by the metabolite run day median, then 
multiplied by the overall metabolite median. It was determined that no further normali-
zation was necessary based on the reduction in the significance of association between 
the top PCs and sample run day after normalization. Subjects with aggregate metabolite 
median z-scores greater than 3.5 standard deviation from the mean (n = 6) of the cohort 
were removed. Metabolites were excluded if > 20% of samples were missing values [34]. 
For the 995 remaining metabolites, missing values were imputed across metabolites with 
k-nearest neighbors imputation (k = 10) using the R package impute [35]. As a final step, 
metabolomic data was log transformed and standardized. Linear regression models were 
fit to each metabolite controlling for white blood cell count, percent eosinophil, percent 
lymphocytes, percent monocytes, percent neutrophils, and hemoglobin. The partial 
residuals were then used as the observed metabolomics data. These data are available at 
Metabolomics Workbench [36] with identifier PR000907.

Four hundred and thirty six of these metabolites had an id in the KEGG database of 
human pathways, which was accessed using the keggLink function from the KEGGREST 
package [37]. These 436 metabolites appear in 161 KEGG pathways, and 29 of these 161 
KEGG pathways contained 10 or more metabolites. This cutoff was to ensure that our 
observed pathways aren’t too small. Note that our filtered dataset did not contain every 
metabolite within the 29 KEGG pathways selected, and therefore some of the analyzed 
pathways have only 10 metabolites. Edges in a pathway’s graph were defined by connec-
tions within a pathway from the KEGG reaction database.

Analysis

We focus on two COPD phenotypes: (1) percent emphysema and (2) the ratio of post-
bronchodilator forced expiratory volume at one second divided by forced vital capacity 
 (FEV1/FVC). Emphysema, a measure of erosion of the distal airspaces, has been linked 
with the clinical severity of COPD [38]. It is an imaging-based phenotype defined as the 
15th percentile lung voxel density in Hounsfield units adjusted for total lung capacity 
from quantitative CT imaging analyses.  FEV1/FVC is a measure of airflow obstruction. 
To normalize  FEV1/FVC, we use the following log ratio transformation, 
log

((

FEV1
FVC

)

/

(

1− FEV1
FVC

))

 . After removing incomplete cases we were left with 1,113 

complete cases for the  FEV1/FVC analysis and 1,065 complete cases for the percent 
emphysema analysis.
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Our clinical covariates were age, sex, BMI, smoking pack years, clinical center, and 
smoking status (current, former, never). We performed a factor analysis of mixed data 
on these clinical covariates and hierarchical clustering on the first 5 left singular vectors 
using the FactoMineR package in R [39]. We then used PaIRKAT [9] to test for relation-
ships between the outcomes and the selected metabolic pathways within the partitions 
and applied the TreeBH correction to p-values. In our analysis, the patients grouped into 
1 large group (former smokers, n ≈ 785) and 2 smaller groups (current n ≈ 260, and 
never smokers n ≈ 65). Many pathways were significant associated with the outcomes 
in the overall group and former smokers but not the other groups. We believe this had 
most to do with the differences in sample size, so we randomly downsampled the former 
smoking group to n = 275 and performed the test on this subset. We repeated this 100 
times and reported the average p-values. The current and never smokers were assessed 
using all subjects in those groups. We do not recommend this in a formal analysis. We 
only do this as a sensitivity analysis of our method.

Results
Simulation results

The estimated power from the simulation using 1 Normal partition variable and 5 com-
ponents for clustering are displayed in Table  1. The Univariate Simes approach had 
lower power than TreeKernel in almost every setting. We this method have the highest 
power in detecting the two active groups with 4 partitions in simulated omics sets of 
only 15 variables. The FPC test has the highest power when there is only one active par-
tition in the 4-partition setting with 15 omics variables. With fewer partitions or larger 
simulated omics pathways we see that TreeKernel has the highest power in every setting. 
This general patter repeats for all simulation studies. The FPC test has the highest power 
in the smallest simulated omics pathways with 4 partitions, and TreeKernel has the best 
power in all other settings whether it is one factor variable (Table 2) or two factor vari-
ables (Table 3) creating the partitions. The pattern is also there when we only 3 PCs or 
left singular vectors for clustering (Additional file 1: Tables S1–S3).

Importantly, we see that TreeKernel is the only method with consistent power in the 
presence of multiple active partitions. The other methods have high power in detecting 
one partition but are often unable to detect the second. The estimated clusters from hier-
archical clustering were also accurate. The average F1-scores ranges from 0.85 to 0.97 in 
all simulation settings. The hierarchical clustering did better with fewer clusters present, 
which also corresponded to the higher power we see in those simulation settings.

Table 4 shows the Type I error from 2000 simulations from multivariate normal dis-
tributions with 15, 30, and 45 omics variables using five components for clustering. All 
three methods maintain a Type I error rate close to the expected 0.05. In the 2-parti-
tion simulations the competing methods have a Type I error rate slightly closer to the 
expected 0.05, although this difference is negligible. See Additional file  1: Tables S4–
S8 for the Type I error rates under the remaining simulation scenarios. We see that all 
methods maintain a Type I error rate reasonably close to the expected 0.05 in each simu-
lation setting, although TreeKernel has a relatively low Type I error rate in larger simu-
lated omics pathways. Again, we see this to be generally true in all simulation settings.
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COPDGene analysis results

The clinical data partitions aligned almost perfectly with the subjects’ smoking status 
(current, former, never; Additional file 1: Table S9). Only 4 patients in the study were 
misclassified. There were only three metabolic pathways that were not significantly asso-
ciated with the log FEV1/FVC ratio in at least one partition (smoking status). There were 
five that were significantly associated within each partition, but we will focus on the 
pathways where results differed among the partitions. Of the 29 pathways tested, there 
was one pathway significantly associated with the log FEV1/FVC ratio within the never-
smoker group only, one pathway was significantly associated within the current-smokers 

Table 1 Estimated power from 2000 simulations from a multivariate normal distribution with 2, 3, or 
4 partitions with 15, 30, and 45 omics variables

Tests used five principal components for clustering. Bold cells indicate the top performance within the simulation. ‘Group 1’ 
and ‘Group 2’ refer to the two partitions where the outcome was related to the simulated pathway

Test

TreeKernel Univariate Simes Principal 
Component F-test

15 omics variables

4-partition

 2 Active groups Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

0.563 0.214 0.673 0.334 0.154 0.107

 1 Active group 0.740 0.696 0.832
3-Partition

 2 Active groups Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

0.898 0.613 0.597 0.023 0.833 0.018

 1 Active group 0.978 0.843 0.918

2-Partition

 1 Active group 0.998 0.965 0.962

30 omics variables

4-Partition

 2 Active groups Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

0.633 0.338 0.298 0.099 0.443 0.326

 1 Active group 0.723 0.510 0.621

3-Partition

 2 Active groups Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

0.909 0.771 0.486 0.107 0.656 0.020

 1 Active group 0.980 0.703 0.766

2-Partition

 1 Active group 0.998 0.931 0.884

45 omics variables

4-Partition

 2 Active groups Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

0.706 0.691 0.219 0.109 0.359 0318

 1 Active group 0.704 0.358 0.508

3-Partition

 2 Active groups Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

0.912 0.881 0.347 0.017 0.551 0.016

 1 Active group 0.960 0.556 0.659

2-Partition

 1 active group 0.996 0.885 0.799



Page 9 of 14Carpenter et al. BMC Bioinformatics          (2023) 24:398  

group only, eleven were associated within the former-smokers group only, and six asso-
ciated with 2 of the partitions. Of note, the β-alanine metabolism pathway was only 
associated with the never-smoker subgroup, The tryptophan metabolism pathway was 
only associated with the current-smoker subgroup, the pathways glycine, serine, and 
threonine metabolism and neuroactive ligand-receptor interaction were only associated 
with the former-smoker subgroup.

In the percent emphysema analysis, there were eight pathways that were not associ-
ated with any of the smoking subgroups. There were eighteen pathways that were only 
significantly associated with percent emphysema in the former-smoker subgroup, two 

Table 2 Estimated power from 2000 simulations with 15, 30, and 45 omics variables using five 
components for clustering with 1 categorical grouping variable

‘Group 1’ and ‘Group 2’ refer to the two partitions where the outcome was related to the simulated pathway

Bold cells indicate highest power in the simulation setting

Test

TreeKernel Univariate simes Principal 
component F-test

15 omics variables

4-Partition

 2 Active groups Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

0.657 0.323 0.011 0.008 0.731 0.413
 1 Active group 0.836 0.033 0.869

3-Partition

 2 Active groups Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

0.895 0.586 0.011 0.014 0.841 0.015

 1 Active group 0.985 0.036 0.924

2-Partition

 1 Active group 0.998 0.038 0.973

30 omics variables

4-Partition

 2 Active groups Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

0.673 0.461 0.008 0.008 0.542 0.379

 1 Active group 0.825 0.036 0.682

3-Partition

 2 Active groups Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

0.923 0.774 0.010 0.013 0.658 0.018

 1 Active group 0.982 0.029 0.759

2-Partition

 1 Active group 0.989 0.036 0.880

45 omics variables

4-Partition

 2 Active groups Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

0.715 0.583 0.008 0.007 0.429 0.373

 1 Active group 0.759 0.030 0.537

3-Partition

 2 Active groups Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

0.928 0.881 0.011 0.012 0.559 0.024

 1 Active group 0.967 0.036 0.666

2-Partition

 1 Active group 0.997 0.033 0.792
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associated with both the current- and former-smoker subgroups, and one associated 
with both the never- and former-smoker subgroups. Of note was the arginine and 
proline metabolism pathway which was associated in the current- and former-smoker 
subgroups. We will elaborate on the importance of these pathways in the current lit-
erature in the Discussion.

Table 3 Estimated power from 2000 simulations with 15, 30, and 45 omics variables using five 
components for clustering with 2 discrete grouping variables

‘Group 1’ and ‘Group 2’ refer to the two partitions where the outcome was related to the simulated pathway

Bold cells indicate highest power in the simulation setting

Test

TreeKernel Univariate simes Principal 
component F-test

15 omics variables

4-Partition

 2 Active groups Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

0.656 0.348 0.003 0.017 0.716 0.410
 1 Active group 0.848 0.141 0.878

30 omics variables

4-Partition

 2 Active groups Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

0.693 0.481 0.004 0.006 0.530 0.398

 1 Active group 0.827 0.024 0.680

45 omics variables

4-Partition

 2 Active groups Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

0.729 0.608 0.005 0.007 0.426 0.374

 1 Active group 0.777 0.024 0.546

Table 4 Type I error from 2000 simulations with 15, 30, and 45 omics variables using five 
components with 1 continuous variable for clustering

Test

TreeKernel Univariate simes Principal 
component 
F-test

15 omics variables

4-partition 0.051 0.056 0.050

3-partition 0.051 0.041 0.053

2-Partition 0.057 0.050 0.047

30 omics variables

4-partition 0.047 0.048 0.053

3-partition 0.047 0.046 0.048

2-Partition 0.057 0.040 0.058

45 omics variables

4-partition 0.040 0.053 0.047

3-partition 0.040 0.054 0.052

2-Partition 0.049 0.052 0.052
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Discussion
We have explored a method for interpretable interactions between high dimensional 
omics and clinical predictors with a continuous or binary clinical phenotype using 
kernel association tests and multivariate partitioning methods. Work has been done 
on interactions between and within multiple kernel spaces [10–12]. They still suffer 
from the ‘black box’ issue that many high-dimensional analysis techniques need to 
overcome. Interpreting and communicating interactions is often a challenge working 
within multidisciplinary teams, and these methods do not offer immediate interpre-
tations of interactions. Our proposed method, TreeKernel, provides easily interpret-
able interactions between clinical spaces and kernelized spaces, which is an important 
piece to understanding biological processes. Our choice of hierarchical clustering 
may seem arbitrary, but we are in favor of having the addition information of the tree 
structure. When a deeper clustering structure exists, i.e., when the appropriate cut 
for clustering appears several nodes down the tree, there are benefits to using tree-
structured p-value corrections [18].

Our simulations showed excellent power to detect multiple subgroups related to an 
outcome. Higher-dimensional kernel spaces may be interesting to explore, but our focus 
for this paper was on the analysis of smaller metabolic pathways. We note that TreeK-
ernel’s power was slightly below FPC’s when the simulated pathways were small and 
there were many subgroups within the clinical data. However, we see higher power from 
TreeKernel in all other simulation settings. We also would like to stress the consistency 
of our method in the presence pathways related to the outcome within multiple sub-
groups. The power of TreeKernel was related to the accuracy of the estimated subgroups 
of the clinical data, so researchers should take the time to improve cluster quality when 
they can. However, improving clustering methods is not the focus of this paper, so we 
suggest hierarchical clustering with the standard relative inertia loss estimate for the 
number of clusters.

We were still able to detect pathways with multiple subgroup interactions in our 
analysis of the COPDGene data despite the low sample sizes. Moreover, our findings 
of these associations were consistent with prior research into COPD as well. The β-ala-
nine metabolism pathway has been previously associated with COPD [40, 41]. The β-ala-
nine metabolism and Pantothenate and CoA biosynthesis pathways have been previously 
associated with lung cancer patients and were significantly associated within our cur-
rent-smokers [42]. The tryptophan metabolism pathway has been associated with acute 
exacerbations of COPD [43], and the arginine metabolism has documented upregulation 
in COPD patients [44].

In our analysis of the COPDGene data, we have clear grouping based on smoking sta-
tus that aided with interpretation. Unsupervised clustering may not give such clear sub-
groups in other data sets. A factor analysis like the one we employ using the FactoMineR 
should give some insights into the variables driving the clusters. We posit that unex-
pected clinical grouping with clear interactions with a phenotype and a kernel space 
would make for excellent hypothesis generation. One should also be cautious about the 
size of the estimated subgroups, as smaller sample sizes can negatively impact kernel 
association tests. Different methods for creating embeddings of the clinical space, such 
as kd-trees, may also be beneficial depending on the setting. These will ensure larger 
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sample sizes since the algorithm focuses on equal partitions, but this also mean the esti-
mated clusters are not as driven by the clinical information.

Other kernel machines built to test for interaction, such as the garrote kernel [13], test 
for interactions between individual elements within the kernel. For our purposes, this 
would be equivalent to including a matrix of both the clinical and pathway variables, 
A = [C ,Z] , into the garrote kernel. However, users would not be able to know which 
elements of A are interacting. Furthermore, ‘kernelizing’ clinical information would nec-
essarily make all elements of C continuous. Our approach allows for users to directly 
test of interactions between omics pathways and clinical subgroups, allowing for easier 
interpretations.
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