
Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Vecchi et al. BMC Bioinformatics          (2023) 24:320  
https://doi.org/10.1186/s12859-023-05444-4

BMC Bioinformatics

Sensitivity of CNN image analysis 
to multifaceted measurements of neurite 
growth
Joseph T. Vecchi1,4, Sean Mullan2, Josue A. Lopez3, Madeline Rhomberg4, Annamarie Yamamoto3, 
Annabelle Hallam4, Amy Lee3, Milan Sonka2 and Marlan R. Hansen1,4* 

Abstract 

Quantitative analysis of neurite growth and morphology is essential for understanding 
the determinants of neural development and regeneration, however, it is complicated 
by the labor-intensive process of measuring diverse parameters of neurite outgrowth. 
Consequently, automated approaches have been developed to study neurite mor-
phology in a high-throughput and comprehensive manner. These approaches include 
computer-automated algorithms known as ’convolutional neural networks’ (CNNs)—
powerful models capable of learning complex tasks without the biases of hand-crafted 
models. Nevertheless, their complexity often relegates them to functioning as ’black 
boxes.’ Therefore, research in the field of explainable AI is imperative to comprehend 
the relationship between CNN image analysis output and predefined morphologi-
cal parameters of neurite growth in order to assess the applicability of these machine 
learning approaches. In this study, drawing inspiration from the field of automated 
feature selection, we investigate the correlation between quantified metrics of neu-
rite morphology and the image analysis results from NeuriteNet—a CNN developed 
to analyze neurite growth. NeuriteNet accurately distinguishes images of neurite 
growth based on different treatment groups within two separate experimental 
systems. These systems differentiate between neurons cultured on different substrate 
conditions and neurons subjected to drug treatment inhibiting neurite outgrowth. 
By examining the model’s function and patterns of activation underlying its classifica-
tion decisions, we discover that NeuriteNet focuses on aspects of neuron morphology 
that represent quantifiable metrics distinguishing these groups. Additionally, it incor-
porates factors that are not encompassed by neuron morphology tracing analyses. 
NeuriteNet presents a novel tool ideally suited for screening morphological differences 
in heterogeneous neuron groups while also providing impetus for targeted follow-up 
studies.
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Introduction
Existing approaches to study neurite growth are inadequate

Understanding the mechanisms that govern neurite growth and branching, during 
development and in response to injury or disease, represents a fundamental objective for 
cellular and molecular neuroscience [1–3]. Neurite growth creates complex morpholo-
gies that are challenging to analyze holistically. The inherent heterogeneity of many neu-
ronal populations further complicates this analysis [4, 5]. Though difficult, deciphering 
the mechanisms that regulate neurite growth is essential to understand neural develop-
ment, treat or prevent peripheral neuropathies [6], direct neurite growth towards targets 
such as a neural electrode [7, 8], and understand pathophysiological underpinnings of 
neurological diseases [9]. Thus, it is essential to create and investigate methodologies 
that comprehensively analyze neurite growth and morphology.

Motivated by this need, we developed NeuriteNet, a machine learning image analysis 
program, that provides a rapid classification and scoring of neurite growth and morphol-
ogy without the potential bias and limitations of manually formulated input parameters 
[10]. This tool was developed to study subtle, yet biologically significant, morphologi-
cal changes resulting from experimental manipulations or genetic models that are dif-
ficult to detect by traditional methods of analysis and thus suggest features of neuron 
growth for further exploration [11]. Researchers may not detect these subtle differences 
because they (1) restrict the analyses to a subpopulation of neurons, (2) decrease the 
sample size to facilitate a low throughput, but more thorough method (i.e., Sholl analy-
sis), or (3) use a higher throughput method that only assesses a narrow, predetermined 
metric (i.e., measuring longest axon). Furthermore, traditional approaches to manually 
measure neuron morphology are insufficient as they fail to simultaneously assess precise 
details and diverse indicators of differences in neuron morphology [12, 13]. For example, 
Sholl analysis presents a thorough picture of neurite growth and branching, however, 
this approach omits quantifying neurite alignment or the orientation of neurites relative 
to one another. An analysis tool that assesses both the precise micro-details of neurite 
morphology while also considering the macro-scale neuron orientation would be ideal.

Convolutional Neural Networks represent a promising tool for analyzing neurite growth

Machine learning approaches fill this niche since they are high-throughput and thor-
ough, while holistically analyzing neuron morphology without the need for manually 
crafted input parameters [14, 15]. This is exemplified by convolutional neural networks 
(CNNs) being successfully applied to similar image analysis tasks, including detecting 
or classifying cancer in tissue sections, CT scans, or mammograms [16–18]. Similar to 
neuron morphology, analysis of these structures in images also requires the simultane-
ous assessment of micro and macro features, while balancing throughput with thor-
oughness [19].

In such, similar CNNs have been applied to neuron morphology analysis [20, 21], includ-
ing our work on NeuriteNet, a CNN image classification model that compares neuronal 
populations based on differences in neurite growth patterns [10]. Here, we build upon that 
work by providing further validation of CNN models via studying the sensitivity of Neur-
iteNet to specific and objective measurements of neurite growth morphology. Specifically, 
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to further the application of CNNs in studying neuron growth morphology, our purpose 
here is to study the internal patterns of activation used by NeuriteNet to classify images and 
evaluate the relationship between the model’s classification decision and relevant measure-
ments of neuron morphology.

CNNs need to be validated for this application

Despite their incredible representational power, CNNs function as “black boxes.” This 
means that it is hard for users to know the basis of a model’s classification or scoring of an 
image [22]. This lack of clarity is a major drawback for image analysis tasks where it is essen-
tial to know how or why the treatment groups differ from one another. To this end, new 
approaches are being developed that help explain the factors that drive CNN image classi-
fication decisions in the field of explainable AI and automated feature selection [23–25]. In 
our previous work, we used XRAI (eXplantation with Ranked Area Integrals) saliency maps 
to generate overlays to indicate what regions or aspects of a given image were important for 
dictating the model’s classification prediction of that image [10, 26]. This offered subjective 
insights into the components of neuronal morphology the model determined most distin-
guishing and provided validation of NeuriteNet in that the saliency map highlighted the 
expected distinctive features of each neuron group.

While saliency maps offer some qualitative explanation of CNN function, connecting 
NeuriteNet’s image classification and scoring to quantified neuron measurements would 
further corroborate and strengthen the use of CNNs for investigations into neurite growth 
morphology [27, 28]. However, while this kind of analysis can be relatively intuitive when 
performed on deep learning models trained using tabular data, where the input features 
are discrete values that can be directly examined [SHAP, LIME] [29, 30] It is much more 
difficult to do so for models trained using image data, where the input features can be mil-
lions of pixels that the model has learned to extract higher-order features from. Thus, in 
this study, we seek to further validate NeuriteNet by first using concept vectors [TCAV] 
to determine the relationship between these higher-order features and the morphological 
measurements generated from semi-automated, full-neurite tracing [31, 32]. Then, we use 
these concepts vectors to evaluate how the morphological differences described by these 
measurements effect NeuriteNet’s classification of the images. In our assessment of the 
relationship between these image analysis approaches, NeuriteNet demonstrates that its 
analysis is (1) more accurate in its classification of neurons by target categories than compa-
rable methods and is capable of outputting a score related to its classification decision, (2) 
correlated with quantified the measurements of neuron morphology generated from neu-
rite tracing data which differentiate the treatment groups, and (3) sensitive to variations in 
neuron tracing measurements when assessing the patterns of activation of the neural net-
work model. Thus, in this work, we show that a CNN image analysis model focuses on and 
is activated by relevant features of neuron morphology in its classification as well as gener-
ates quantitative scoring that is sensitive to changes in neurite growth patterns.

Methods
Animals

All procedures involving animals were conducted in accordance with the NIH Guide for 
the Care and Use of Laboratory Animals and were approved by the University of Iowa 
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Institutional Animal Care and Use Committee. All mice were maintained on a C57BL/6 
(Envigo) background, housed in groups on a standard 12:12 h light: dark cycle with food 
and water provided ad libitum, and used at 4–6 weeks of age. Mice used were anesthe-
tized with isoflurane prior to decapitation and desired tissue harvested. The data set used 
consisted of 3 experimental replicates for each condition studied across 3 independent 
variables (Male vs. Female, WT vs. CaBP1 KO (C-KO), and Unpatterned vs. Patterned). 
The characterization of C-KO mice (RRID: MGI: 5780462) has been described previ-
ously [33].

Micropatterned substrates

Topographically micropatterned substrates consisting of repeating rows of ridges and 
grooves were generated using photopolymerization as previously described [34, 35]. 
In short, a monomer solution (40 wt% hexyl methacrylate (HMA, Aldrich) and 59 wt% 
1,6-hexanediol dimethacrylate (HDDMA, Aldrich), 1  wt% of 2,2-dimethoxy-2-pheny-
lacetophenone (DMPA, BASF)) was pipetted onto a silane coupled cover glass square 
and evenly dispersed by placing a glass-chrome Ronchi ruled photomask (Applied Image 
Inc.) on top, while unpatterned substrates were generated by placing a square glass slide 
on top instead. Samples were then exposed to 365  nm light at an intensity of 16mW/
cm2 using a high-pressure mercury vapor arc lamp (Omnicure S1500, Lumen Dynamics, 
Ontario, Canada) to polymerize the monomer solution. This creates a topographically 
micropatterned substrate since the opaque portions of the mask selectively shade mono-
mer from exposure to UV radiation thereby modulating the rate of the polymerization 
locally to generate features on the surface. This modulation creates raised features or 
ridges underneath transparent bands where UV light intensity and the polymerization 
rate are highest [36].

These patterned substrates direct the growth of various cells and neurons, including 
dorsal root ganglion root neurons (DRGNs). These neurons have an innate ability to 
sense and extend their neurites in directions corresponding to these biophysical features 
present in the patterned substrates [37]. Additionally, various geometries of topographi-
cal substrates can be generated by varying the photomask (to change periodicity of the 
ridges and troughs) or UV light exposure (to change feature amplitude) [35, 38]. A sin-
gle micropattern geometry (50 µm periodicity and 4 µm amplitude) was chosen for this 
study since this was expected to elicit moderate guidance of replated DRGN (rDRGN) 
neurites, whereby it is clear that the neurites are following the topographical features, 
but the strength of guidance could be improved upon or inhibited [35, 37].

Neuron cultures

Dissociated DRGN cultures were prepared, as previously described from the 4–6-week-
old mice [10, 39]. First, a 24 well polystyrene plate was coated with poly-l-ornithine 
solution (Sigma-Aldrich) for 1 h at RT. After which the surface was washed with sterile 
Milli-Q® three time prior to a laminin solution (20 μg/ml, Sigma-Aldrich) being added 
and incubated overnight at 4  °C. After warming the coated well plate for 1 h at 37 °C, 
the freshly dissected DRGNs were cultured on this plate for 72 h prior to being replated. 
The replating procedure has been described previously [40]. In short, after a 1 min incu-
bation with TrypLE Express (Thermo Fisher) warm media was used to gently triturate 
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the culture surface and lift the adhered neurons. The resulting replated neurons were 
then cultured on the micropatterned or unpatterned HDDMA/HMA substrates for 
24 h. After 24 h on the HDDMA/HMA surfaces, the cultures were fixed and labeled for 
NF200 via immunofluorescence, as previously described [10].

Image processing

Digital epifluorescence images were captured using MetaMorph software (Molecular 
Devices) on a Leica DMIRE2 microscope (Leica Microsystem) with a Leica DFC350FX 
digital camera. All images were captured as greyscale images with 1024 × 1360 pixel 
resolution and saved as unsigned 8-bit PNG images with pixel values between 0 and 
255. The pre-processing for the images was done using three steps. First, to decrease 
the influence of extreme points of brightness, the image intensities were clipped so that 
any pixel values from 50 to 255 were set to only 50. Second, to remove any lighting-
based background features, the magnitude of the image gradients was estimated using 
the combination of horizontal and vertical Sobel kernels, equation below [41].

Third, each image was rescaled to values between 0 and 1 based on image-level inten-
sity ranges before and after the gradient magnitude estimates were performed.

Semi‑automated measurements of neuron morphology

For this study, rDRGNs were used due to their vigorous neurite growth and simpler 
morphology [40]. This morphology enabled large numbers of DRGNs to be traced via 
semi-automated approaches for this analysis. The first image set for this study consisted 
of 3 culture replicates of rDRGNs across 3 independent binary variable conditions: sub-
strate (unpatterned or patterned), genotype (WT or C-KO), and sex.

In this study we focused our analyses on the substrate comparison. Thus 10 random 
neurons from each experimental replicate of each treatment group were selected for 
full neurite tracing analysis using NeuronJ [31], creating 240 total traced neurons for 
the dataset. From the tracing data, we generated data describing 6 aspects of neuron 
morphology, (1) Total Length (sum length of all traced branches), (2) Branch Length 
Variation (variance in branch lengths of a neuron), (3) Number of Branches (count of 
all branches traced), (4) Branching Density (number of branches per 100 µm of neurite 
length), (5) Alignment Index (total neurite length divided by total length in direction of 
pattern), and (6) Alignment Variation (variance in alignment index for each branch of a 
neuron).

The second image set consisted of 3 culture replicates from WT male mice of rDRGNs 
treated either before or after replating with Nocodazole (50 µM). In this image set, only 
the length of the longest neurite was measured, as described previously [39].

Training NeuriteNet

We used the previously described NeuriteNet architecture for each of our experi-
ments [10]. The network makes use of the source image resolution of 1024 × 1360 to 
best preserve any fine features of the neurons that would otherwise be lost during any 

G = Gx2 + Gy2
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down-sampling process. The network is comprised of two main structural features: 
a core of alternating strided and un-strided convolution layers and a series of side 
branches that connect different layers of spatial representation. Each pair of convolution 
layers that comprise the core of the model start with a convolution with a stride of 2 × 2, 
decreasing the spatial representation by half. The first pair of these layers uses 4 feature 
channels, and then each of the following 4 pairs of convolution layers doubles this num-
ber up to 64 feature channels.

After each pair of convolution layers, a side-branch of the network is created. These 
branches use a max-pooling operation followed by an un-strided convolution to pass 
forward each spatial level of feature representation. The size of each pool is relative to 
the point of the core that it branched from so that each branch results in a feature map 
of the same spatial dimensions with 16 feature channels. The final layer of the core of the 
model and the 4 side-branches of the model are concatenated together to form a single 
feature map with 32 × 43 spatial dimensions and 128 feature channels. This is passed 
through one final convolution layer to further merge the feature maps. A global average 
pooling layer is applied so that each of the 128 feature channels are reduced to a single 
representative value, resulting in a 128-feature vector. The pooling layer is followed by 
a fully-connected layer with 128 nodes. Finally, a 20% dropout layer followed by a final 
fully-connected layer with a sigmoid activation is used to generate the final classifica-
tion decisions. For each classification decision, NeuriteNet outputs a continuous score 
with a possible range from 0 to 1. Each output decision is a classification between two 
classes, so scores approaching 0 indicate a stronger decision towards the 0 class (Unpat-
terned and After) while scores approaching 1 indicate a stronger decision towards the 
class associated with 1 (Patterned and Before). As the model does not have prior knowl-
edge about the training data, the decision to assign a class to 0 or 1 is arbitrary so long 
as the two classes are mutually exclusive. Additionally, the number of output nodes was 
dependent on the number of classification decisions being made in each experiment. 
This was either a single node for the experimental-condition classification predictions 
(Before vs After) or three nodes for the substrate, genotype, and sex comparison. Impor-
tantly, while we focused on the substrate comparison for this work, the inclusion of 
genotype and sex classification comparisons were used to provide NeuriteNet with all 
the information of the dataset and improve model performance. Requiring the model to 
learn information related to the two additional classification tasks forced it to encode a 
wider variety of features than if it were trained only for the substrate comparisons. Addi-
tionally, introducing the additional tasks as part of the training process acts to prevent 
the model from over-fitting on any single task and allows it to converge to a more gener-
alizable set of weights.

To train our model, we divided our images into five cross-validation groups. For each 
fold of our validation, four of these groups were used to train our model and the left-out 
group was used to test the model. The images were separated into groups based on their 
experimental group so that no experimental group was present in both the training and 
test data for any of our models.

Each model was trained using a batch size of 4 images for 300 epochs, where one 
epoch presented each image to the model exactly once. We used binary cross-entropy as 
the loss function for our model and updated the weights using the Adam optimization 
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algorithm [42] and a decaying learning rate. Our learning rate started at a value of 0.001 
and was decreased by 10% every time the model had gone 5 epochs without a decrease 
in classification error. To prevent model over-confidence and over-fitting, scores were 
smoothed by 0.05 during training so that the “correct” values used to calculate classifica-
tion error were 0.05 and 0.95 rather than 0 and 1.

As mentioned earlier, NeuriteNet does not simply classify an image, but rather assign 
a score to each image. This score gives the strength of the model’s classification decision 
for the given input image and represents how characteristic of a treatment it is based on 
the features learned by the model. For the classification based on substrate (Unpatterned 
vs. Pattern), this score will be referred to as Predicted Pattern Score with values closer 
to 0 indicating that the model more strongly associates the given image with the Unpat-
terned condition while values closer to 1 indicate a stronger association with the Pattern 
condition. Similarly, in the second classification comparison (Before vs. After), this score 
will be referred to as Predicted Treatment Score with values towards 0 indicating After 
and values towards 1 indicating Before.

Training generic CNN classification model

We employ a “generic CNN” as a comparison for NeuriteNet, which we train and test 
using the same approach as NeuriteNet. The generic CNN has an identical architecture 
as NeuriteNet but lacks side-branches. The remaining structure of alternative strided 
and non-strided convolutions is a standard architecture that has been applied to many 
basic classification tasks. Using this generic CNN as a comparison allows for the assess-
ment of the side branches which enable our model to simultaneously use features from 
multiple levels of spatial resolution.

Classifying images by tracing data

As a comparison for the classification accuracy of the CNN approaches, we employed a 
machine learning approach to classify images based on their tracing data using Scikit-
learn [43]. We classified the 240 neurons with tracing data via the following approach. 
First, tracing data were scaled in a standardized manner by using the QuantileTrans-
former function followed by the MinMaxScaler function. This approach was done to 
minimize the effect of outliers, preserve the unique distribution of each metric, and put 
all data in the same 0 to 1 scale. Then, as with NeuriteNet, data were split into 5 cross-
validation groups and a standard RidgeClassifier model was trained on 4 folds and the 
omitted group was used to test the model. This was repeated 5 times to generate a classi-
fication result for all the images. A confusion matrix was generated to compare the three 
classification methods and ascertain the Kappa Statistic for each classification test [44].

Saliency map overlays

To aid the interpretation of our trained networks, we generated saliency maps for our 
models’ predictions (Additional file  1: Fig. S1). Saliency maps determine the relative 
importance that each pixel of an input image has for the resulting prediction from a 
given deep learning network. We generated the saliency maps for our model using an 
adapted version of the XRAI attribution method [26]. The original XRAI implementa-
tion is a form of segment-based post-processing applied to a gradient-based method of 
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saliency map acquisition [45]. Gradient-based saliency maps have been shown to often 
be overly sensitive to edges in natural images [46], and this issue is further exacerbated 
by the extraordinarily strong edges in our images. We instead opted to use an occlusion-
based method to acquire the initial saliency maps which does not suffer the same limita-
tions [47].

To generate a saliency map using occlusion, we first used our model to get a baseline 
predicted classification score for a given image. Next, we used a black box of varying 
sizes to occlude regions of our image. Finally, we used our model to get a predicted clas-
sification score for the occluded image. The difference between the predicted score of 
the occluded images and the baseline score was assigned to the occluded region of the 
original image to represent the approximate influence that the features in that region 
had on the baseline prediction. We repeated this occlusion iteratively across the image 
until the influence for all regions of the image had been determined. We used square 
black boxes with edge lengths of 20, 25, 30, and 35 pixels to examine different scales of 
feature representation, and each occlusion was performed so that there was a 50% over-
lap with neighboring regions. The final saliency map was determined by taking the aver-
age of all occlusion results for each region of the image.

While saliency maps allow for insight into how the model is influenced by different 
regions of the image, they are at a much lower resolution than the input images. Using 
gradient-based saliency maps for our model would have resulted in maps with a resolu-
tion of 32 × 43 pixels, and even the finest level of detail for our occlusion-based method 
still utilizes regions of 20 × 20 pixels for each step. To better associate the coarse-grained 
saliency maps with the fine details of the input images, we utilized the XRAI post-
processing method. For the this approach, we used the Felzenswalb graph-based seg-
mentation method to separate the image into many overlapping regions [48]. Since the 
segment boundaries often align with edges, such as those formed by the neurites, we 
dilated the generated segments by 5 pixels to better include the finer neurites. We then 
iteratively added each segment to a final attribution map ordered by the average gain in 
attribution for the region of the occlusion-based saliency map covered by the given seg-
ment. After each segment was added to the final map, any area it shared was removed 
from neighboring segments. This process was repeated until there were no segments 
remaining that covered at least a minimum of 400 pixels. Any regions of the final sali-
ency map that were not covered by an added segment from the XRAI process were cov-
ered by the same region of the occlusion-only saliency map (Additional file 1: Fig. S1).

Two things that should be noted when interpreting saliency maps are that (1) saliency 
maps represent how the input image regions influence the model’s decision and (2) sali-
ency maps show the relative influence of regions of an input image on the model’s deci-
sion. This first point means that physical components of the neurite morphology may 
not be represented in the saliency map if they were not influential in the model’s deci-
sion. Similarly, empty space in the image may be represented in the saliency map if it is 
an important feature for the model’s decisions. Empty space near a cell body may indi-
cate a lack of branching and thus may be an important part of the model’s decision. The 
second point also means that saliency maps do not have a consistent scale across sam-
ples. Meaning to enable side-by-side comparison, each saliency map needs to be rescaled 
to a range from 0 to 1 before the map is presented for visual examination. This is done 
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by dividing by the greatest absolute value present in the given map. While this is nec-
essary to enable comparison, a single influential feature may end up suppressing other 
features in the saliency map, or conversely a lack of influential features may end up exag-
gerating the impact of other features. Saliency maps are powerful tools for evaluating 
relative importance of features and trends in how a CNN uses images to make decisions, 
but determining an absolute importance score for features in the input image is still an 
open question. Thus, for their optimal interpretation they should be complemented with 
other methods assessing CNN image analysis performance as well as their suggestions 
taken into account alongside the known morphology differences being compared.

Assessing relationship between NeuriteNet and tracing data

In this work we also compare the relationship between the NeuriteNet scoring and neu-
rite tracing data sets using two different approaches. First, the relationship between the 
Predicted Pattern Score generated by NeuriteNet and the individual tracing data metrics 
were assessed. Second, we employed a machine learning regression approach to investi-
gate how well the all variables derived from the tracing data in aggregate can explain the 
“Predicted Pattern Score” generated by NeuriteNet for a given image using Scikit-learn 
[43]. The approach was similar to the classifying the neurons by their tracing data in that 
the same scaling and fivefold cross-validation was employed. For this approach, however, 
a Ridge regression model (as opposed to a Ridge classification model) was used to fit a 
model seeking to quantify the relationship between all metrics derived from the tracing 
the data to the “Predicted Pattern Score” generated by NeuriteNet for each image. An 
explained variance score (Scikit-learn) was calculated for each cv-group as a measure 
of how well the tracing data correlate with, explain the variation in, and can be used to 
determine the Predicted Pattern Score. The explained variance score for each of the 5 
cv-groups was averaged in this assessment of both NeuriteNet and the Generic CNN.

Concept vectors

To model the sensitivity of NeuriteNet to our tracing data metrics, we computed the 
Regression Concept Vectors (RCVs) and Bidirectional Relevance Scores (Br) for our 
models [49]. As NeuriteNet is a deep learning model operating on image inputs, the 
exact features encoded by the internal architecture of NeuriteNet exist in a high-dimen-
sional space that proves inscrutable to human interpretation. The RCVs bridge this gap 
by modeling the relationship between these high dimensional features and our tracing 
data metrics in a low-dimensional space. By analyzing how changes in the RCVs relate to 
changes in the model predictions, we can compute the Br Scores, which show the mag-
nitude and direction of our model’s sensitivity to these concept vectors and thus the rep-
resentation of our tracing data metrics in the input images. We generated Br Scores for 
each of the 5 cv models of NeuriteNet for the six measurements from the tracing data: 
Total Length, Branch Length Variation, Number of Branches, Branching Density, Align-
ment Index, and Alignment Variation. As with the previous methods, the tracing data 
were first normalized using a quantile transformation. Then the Spearman rank coef-
ficient, ρ, was calculated to show the correlation between each measured concept (the 6 
different tracing metrics) and the Predicted Pattern Score as pre-processing.
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For each image with tracing data, we separately collected the output activation maps 
from the last convolution layer of our model. In CNN models, the activation maps are 
the output values coming from a single specific layer and represent the features being 
passed forward by that part of the model. Each activation map is generated by a single 
3 × 3 kernel in the convolution layer, so each point in the map represents the strength of 
the presence of the feature encoded by each kernel. We applied a global maximum pool-
ing operation to these maps to generate vectors representing the single point of strong-
est activation for each of the maps. We then fit a least squares linear regression model 
using the activation vectors from each sample as inputs and the concept measures from 
the same sample as target outputs. By normalizing the coefficients of the optimized lin-
ear model, we were able to find the direction of the strongest increase of the concept 
measures in the space of these activation vectors, giving us the RCV.

Using our computed RCVs, we then calculated Br Scores for our model, which are 
defined as the sensitivity of our model relative to the concept vectors of each measure 
[49]. To do this, we first took the partial derivative of the outputs of the model with 
respect to the activations of the same convolution layer that we used to find our RCVs. 
This partial derivative is also known as the “gradient” of the model. We used linear pro-
jection to map these gradients onto our RCV, giving us the sensitivity score representing 
how sensitive NeuriteNet was to the measured concepts when classifying the given sam-
ple. The magnitude of the sensitivity score gives us the rate of change of the model out-
put relative to the concept measures, and the sign gives us the direction of the change. 
We repeated this process to find the sensitivity score for each sample in our dataset. 
Using the entire set of sensitivity scores, we computed the coefficient of variation, which 
is defined as the ratio of the standard deviation to the mean of the dispersion of our sen-
sitivities. Then for each concept, the Br Score was generated by taking the ratio between 
the R2 score of the model our concept direction was drawn from and coefficient of varia-
tion of our sensitivity scores.

Results
Replated DRGNs grown on topographically micropatterned substrates exhibit distinct 

morphology

While there are studies showing that DRGNs align to and grow in response to biophysi-
cal cues [37, 50, 51], to our knowledge, it has not been established how rDRGNs, which 
have a distinct growth morphology and behavior compared to “naïve” DRGNs, respond 
to biophysical growth cues [40, 52]. Thus, we first assessed rDRGN morphology and neu-
rite alignment to the micropatterned substrate (Fig. 1). Neurites from rDRGNs grown on 
unpatterned substrates extend in random orientations (Fig. 1A), exemplified by a median 
Alignment Index of 1.47 (Fig.  1E), while neurites of rDRGNs grown on 4  µm ampli-
tude topographical micropatterns align in the direction of the micropattern (Fig.  1B), 
illustrated by a median Alignment Index of 1.24 (Fig.  1E). This demonstrates that the 
rDRGNs do respond to these cues [35, 37], and furthermore the Alignment Index meas-
urement is a robust and reproducible difference which will be useful in studying the rela-
tionship between the tracing data and the classification scoring of NeuriteNet.

We also compared 5 other measurements generated from the tracing data, where the 
expected findings were less clear. Interestingly, rDRGNs grown on the topographical 
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micropatterns exhibited significant differences in 3 of the other measurements. Replated 
DRGNs exhibit less branching when grown on the micropatterned substrate, both in 
terms of Number of Branches (median of 8 ± 1.15 branches per neuron compared to 
12 ± 1.03) (Fig.  1C) as well as Branching Density (median of 1.20 ± 0.09 branches per 
1 compared to 1.55 ± 0.09) (Fig.  1D). Additionally, on the micropatterned substrate, 
rDRGNs exhibit a smaller Alignment Variation (median of 0.63 ± 0.06 compared to 
0.98 ± 0.07) (Fig.  1F), meaning the individual arbors of each rDRGN on an unpat-
terned substrate grow in more random orientations relative to each other. We found no 

Fig. 1  DRGNs grown on topographical micropatterns have robust differences in neurite morphology. A, B 
Representative images of rDRGNs grown on unpatterned (A) and topographically micropatterned substrates 
(B). C Number of Branches per DRGN is decreased in neurons grown on patterned substrates. D Branching 
Density (Neurite branches per 100 µm length) is decreased in neurons grown on patterned substrates (E) 
Alignment Index (Total neurite length divided by length in horizontal direction) shows rDRGNs align well to 
micropatterned substrates. F Alignment Variation (Variance in Alignment Index measurement of each branch 
from a single neuron) shows less variation in DRGNs grown on micropatterned substrates. n = 120 and 121 
neurons for each comparison. Mann–Whitney test shows smaller values for the Patterned condition for each 
comparison (p < 0.01). Scale bar = 50 µm
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difference in rDRGN Total Length or Branch Length Variation between substrate groups 
(Additional file 2: Fig. S2).

NeuriteNet efficaciously classifies images of neurons grown on patterned substrates 

from unpatterned substrates

Epifluorescence images of the rDRGN cultures were obtained and subjected to min-
imal manipulation prior to training on NeuriteNet (Fig.  2A, B). The unpatterned and 
patterned groups corresponded to 1421 and 1183 image of rDRGNs, respectively. Neu-
riteNet was trained using 80% of the images and then tested on the remaining 20%. Fol-
lowing repetition with fivefold cross validation, we determined that NeuriteNet classifies 
the images by substrate group with an accuracy of 95% and Kappa statistic with 95% 
confidence interval (CI) of 0.880—0.914 (Fig. 2G, H).

We compared this classification result to two other methods of screening these neu-
rons into treatment groups. First, we used a generic CNN. This generic model uses the 
exact same architecture as NeuriteNet but lacks the side-branches that allow NeuriteNet 
to simultaneously use features from multiple levels of spatial resolution. We refer to this 
as the “generic” model since the remaining structure of alternative strided and non-
strided convolutions is a standard architecture that has been applied to many basic clas-
sification tasks. This model classified the images of neurons with an accuracy of 83% and 
Kappa statistic with 95% CI of 0.639—0.696, significantly underperformed NeuriteNet 
(Fig. 2G). The second comparison we used was training a classification model to predict 
treatment group using only the neurite tracing data as input. Similarly, this approach 
yields accuracy better than chance (81% accuracy and Kappa statistic with 95% CI of 
0.510–0.610) (Fig. 2G), but not with the same fidelity of NeuriteNet, the CNN we devel-
oped for this purpose.

After seeing its superior classification, we then assessed what drives NeuriteNet’s clas-
sification and scoring by evaluating its relation to the quantified differences in neuron 
morphology using multiple methods (Fig. 1). First, we generated saliency map overlays 
to provide insight into what regions of the image or features of the neuron NeuriteNet 
learned to associate with each group and qualitatively studied individual correctly clas-
sified images with Predicted Pattern Scores near to 0 or 1. The regions and features 
that NeuriteNet associates in each image to a particular group are color-coded (green 
suggests Unpatterned and red Patterned), with the intensity of the color indicating the 

Fig. 2  NeuriteNet effectively classifies images corresponding to DRGNs grown on unpatterned and 
topographically micropatterned substrates. A, B Representative images of rDRGNs grown on unpatterned (A) 
and topographically micropatterned substrates (B). C, D Same images as in A, B that were correctly classified 
as Unpatterned (C) or Patterned (D). The intensity of the color indicates the relative importance of that area. 
Green and red indicate areas that were used by NeuriteNet to suggest the image belonged to Unpatterned 
and Patterned groups, respectively. E, F The representative images of rDRGNs (A, B) with their saliency 
map overlayed (C, D). G Comparison of performance of 3 machine learning classification approaches. The 
percentage of total images or traces (n = 2604, 2604, 241) classified correctly as belonging to pattern and 
unpatterned groups is shown along with kappa statistic. H Fractional distribution of Predicted Pattern Scores. 
Color represents the actual group (pattern or unpatterned) to which the image corresponds. NeuriteNet 
classifies an image as “Patterned” if the Predicted Pattern Score is greater than 0.5 and to “Unpatterned” if less 
than 0.5. NeuriteNet classified vast majority of images correctly (the small red bar at Predicted Pattern Score 
of 0.4 (appears brown as it is overlaying the green) represents a miniscule fraction of patterned images falsely 
classified as unpatterned). Scale bar = 100 µm

(See figure on next page.)
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strength of the association. Assessing these overlays suggests that NeuriteNet focuses 
on similar morphological differences we see quantified by the tracing data. Importantly, 
the approach used for these saliency maps overlay did not seek to highlight specific neu-
ron features, but to broadly assess the relative importance of regions of the image in the 
classification scoring (Additional file 1: Fig. S1). For our dataset, in images of rDRGNs 
from the Pattern group the map highlights regions associated with horizontally aligned 

Fig. 2  (See legend on previous page.)
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neurite segments in red (Fig. 2D, F). Thus, suggesting that NeuriteNet associates mor-
phology related to Alignment Index with the Pattern group. While looking for similar 
tendencies in maps from neurons from the Unpatterned group, we see neurites with 
gradual curves or vertically aligned segments highlighted strongly green (Fig.  2C, E). 
These factors represent random neurite growth trajectories expected of neurons on sub-
strates lacking any patterned growth cues.

The tracing data are correlated with and partially explain the variation in the Predicted 

Pattern Score assigned to the images by NeuriteNet

A second approach to assess what dictates NeuriteNet’s scoring is determining if the 
quantified metrics correlate with or can predict the model’s scoring. We undertook two 
methods to evaluate this: (1) assessing the individual trends between each tracing data 
metric and the Predicted Pattern Score, and (2) fitting a regression model seeking to 
explain the variation in the model’s scoring using all of the neurite tracing metrics. First, 
using only test set results, we see that the Alignment Index of an individual neuron clus-
ters with that rDRGN’s Predicted Pattern Score (Fig. 3A). Meaning that rDRGNs which 
align well to the pattern tend to also be classified more strongly to the Pattern condi-
tion as well as those with more random orientations of growth to Unpatterned. Though 
much weaker, this trend also exists for the other 3 significant differences in the neurite 
tracing data (Alignment Deviation, # of Branches, and Branching Density) and Predicted 
Pattern Score (Additional file 3: Fig. S3). Of note, the correlation analysis in Additional 
file  1: Fig. S3. represents the data used for the concept vector analysis. Only rDRGNs 
that were 1 neuron fully contained in 1 image were used to obtain these data to mini-
mize noise and conflating factors as well as. Similarly, the score reported is an ensemble 

Fig. 3  NeuriteNet scoring by pattern is partially explained by neurite tracing data and clusters with 
Alignment Index. A Scatter plot of replated DRGN plotted by their Predicted Pattern Score and rank 
normalized Alignment Index. Of note, for these approaches all DRGNs with tracing data were used. The 
scatter plot shows strong clustering between the Predicted Pattern Score and Alignment Index with Score 
increasing with Index decreasing. B Comparison of how well the two-machine learning approaches are 
explained by the tracing data via a ridge regression model of the tracing data seeking to explain the variance 
of the Predicted Pattern Score. This shows that NeuriteNet classification scoring is partially explained by the 
tracing data
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Predicted Pattern Score of all 5 cv-group models on each image so that the data used for 
the Br Score analysis represent a holistic and average picture of how the models inter-
pret the rDRGNs.

A more complex approach to relate the results from the model to the neurite tracing 
data is utilizing fivefold cross-validation of a regression model to fit all of these tracing 
data measurements to the Predicted Pattern Score. In this approach, we see that when 
a regression model is trained to predict the Predicted Pattern Score using all measure-
ments from the tracing data, we see that 39.6% of the variation seen in the Predicted 
Pattern Score can be explained using the tracing data (Fig. 3B). Thus, suggesting that all 
together the tracing data can explain a substantial portion, but not the majority, of the 
variation seen in the scoring. Furthermore, the tracing data were unable to explain as 
much of the variation in the Generic CNN (33.3%). Thus, suggesting that NeuriteNet’s 
analysis was more closely related to the tracing data.

Br Scores demonstrate NeuriteNet classification is sensitive to tracing data

In addition to the saliency maps, which identify the relative importance of each spa-
tial region of the image, we applied an additional method to NeuriteNet to quantify the 
influence of the tracing data on the classification predictions using Concept Vectors. 
Since the patterns of activation are inherently prone to noise, the data were constrained 
to minimize the noise. First, the images and tracing data utilized for this approach 
consisted of a random sample of neurons which were fully contained in single images. 
Second, to prevent features which are irrelevant from hindering the analysis, we only 
considered the quantified morphological measurements that had at least a weak correla-
tion for the given classification prediction (|ρ|> 0.2) (Additional file 4: Fig. S4). This deci-
sion was made since if a concept is not correlated with a given classification prediction, 
then it is unlikely to represent any relevant information for that comparison.

Concept vectors to generate Br Scores were generated as a third approach to assess 
the relationship between NeuriteNet and the tracing data (Fig. 4). The magnitude of a Br 

Fig. 4  Br Score demonstrates that NeuriteNet is sensitive to changes in alignment measurements. Br Scores 
relating tracing data to Predicted Pattern Score calculated by NeuriteNet split by cv-group. Of note, bars 
with cross-hatched pattern represent data that would be removed with correlation-based thresholding 
approaches (data with coefficient ρ <|0.2| in Additional file 3: Fig. S3A) All cv-groups for both Alignment Index 
and Alignment Variation show consistent activation in the direction of patterned condition
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Score increases if the model’s activations have a strong relationship with a given concept 
and the model shows a consistent level of sensitivity to that concept across the different 
images. In this, Alignment Index and Alignment Variation show consistent moderate to 
strong negative Br Scores for Patterned classification in all five of our validation mod-
els. Thus, indicating that there is a direct relationship between the measured Alignment 
Index and the features in the image learned by NeuriteNet to predict whether a neur-
ite was grown on the Patterned substrate. Since the Br Scores are all negative, greater 
expression of features related to smaller Alignment Index and Alignment Variation in 
the input images will cause the model to be more likely to classify the image into the 
Patterned substrate condition. Importantly for the other four measurements, the data 
within the threshold described above (|ρ|< 0.2) should be excluded from interpretation 
and are represented by crosshatched bars on the graph (Fig. 4). Additionally, the incon-
sistent direction and strength of the Br Scores corresponding to the other four metrics 
suggest that there is no or minimal relationship between the features of an image Neur-
iteNet learns to associate with a condition and these length and branching data.

Br Scores were calculated in a non-biased manner for each of the 5 cross-validation 
models for each of the output predictions: Genotype, Sex, and Pattern (Additional file 4: 
Fig. S4). No clear relationship was appreciated for the Genotype or Sex analysis.

Repeating these approaches using a separate data set further supports that NeuriteNet’s 

scoring is driven by/correlated with measurable, quantifiable differences in morphology

We validated the previous results by demonstrating similar findings with another data-
set. For this we utilized a data set of images with neurite length measurements where 
neurite length is the distinguishing metric between treatment groups (Additional file 5: 
Fig. S5). Thus, we explored if NeuriteNet can screen images for differences in neurite 
length.

Before describing the data, a brief description on the biology of replating neurons and 
the role of Nocodazole in this assay is needed. It is theorized that there are two distinct 
mechanisms that are both required to allow for the regrowth of DRGN neurites after 
replating [40, 52]. First, is the transcription-dependent component that is encoded in the 
neurons during the 3 days in culture prior to replating and second is the transcription-
independent, microtubule-dependent component which drives the growth in the 1 day 
after replating. Evidence for this is that if DRGNs are treated with 5,6-dichlorobenzimi-
dazole riboside (DBR), a reversible inhibitor of RNA polymerase II and of transcription, 
in the 3 days prior to replating, growth after replating is inhibited. However, if you treat 
with the same drug, DBR, in the 24 h after replating there is no such inhibition of neu-
rite growth [40]. Another finding supporting this is that if treated with Nocodazole, an 
inhibitor of microtubule polymerization, in the 3 days before to replating, the rDRGNs 
grow similar to untreated rDRGNs after replating (Before). However, since this drug 
blocks the microtubule-dependent component, if Nocodazole is added to the culture 
media for 24 h after replating, neurite growth is strongly inhibited (After) [40]. Thus, for 
our data set, rDRGNs treated with Nocodazole before replating have significantly longer 
neurites than those treated with the same drug after replating [39] (Additional file 5: Fig. 
S5). These two treatments will be referred to as simply Before and After in this work.
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The data set consists of 91 and 87 images of Before and After rDRGNs, respectively 
(Fig. 5A, B). Of note, this sample size is much smaller than the previous dataset (Fig. 2). 
The respective median rDRGN axon lengths were 663.8 µm and 378.6 µm [39] (Addi-
tional file 5: Fig. S5). Similar to the previous data set, training and testing using the three 
approaches was conducted using fivefold cross validation, and in this, NeuriteNet clas-
sified the images by treatment group with an accuracy of 80% (95% CI of Kappa Statistic 
0.432–0.641) (Fig. 5G). As with the prior data set, this classification accuracy was com-
pared to two other methods of screening these neurons into treatment groups. Similarly, 
NeuriteNet classified these images more accurately than the Generic CNN, 66% (95% CI 
of Kappa Statistic 0.187–0.464), and predicted treatment group using the neurite length 
data, 74% (95% CI of Kappa Statistic 0.337—0.562) (Fig. 5G).

Additionally, this result was validated by (1) assessing saliency map overlays of images 
from this comparison and (2) assessing the correlation of classification scoring with 
the neurite length measurements. Interestingly, the saliency maps for this classifica-
tion comparison suggest a mixed picture. The map overlays for the Before treated neu-
rons tend to highlight long elongating segments in blue (Fig. 5C, E), which is consistent 
with this treatment group being characterized by longer neurite length. However, the 
maps for the After group tend to highlight non-specific regions of the image in Orange 
(suggesting those regions as indicative of After). Additionally, in maps where the image 
is correctly classified to the After condition, the regions occupied by the neurites are 
somewhat overlayed in blue (Fig. 5D, F), thus even though the image as a whole is clas-
sified to After, those particular regions are more associated with Before to NeuriteNet.

While the results are mixed for these saliency maps, the After saliency maps are con-
sistent with the classification results and the challenge presented to the model with this 
classification task. There are three points that aid in the interpretation of the saliency 
maps for this comparison. First, it is important to note that the number of images uti-
lized is less than 10% the total of the prior comparison (178 vs. 2604). Thus, NeuriteNet 
had much fewer images to learn the morphological trends from. Second, if we look at 
the histograms of classification scoring (Fig.  5H), we can see that the model classifies 
a large portion of the Before images strongly (a large proportion receive a score near 
1). Conversely, this is not the case with the After images as much less are scored near 
0 and actually a large proportion are around 0.3 to 0.7. This indicates that the Neurite 
does not strongly associate a lot of the After treated neurons to either condition. Third, 

(See figure on next page.)
Fig. 5  NeuriteNet effectively classifies images of DRGNs with difference in longest neurite. A, B 
Representative images of rDRGNs treated with Nocodazole Before (A) and After replating (B). C, D Same 
images as in A, B that were correctly classified as Before C or After D. The intensity of the color indicates the 
relative importance of that area. Blue and orange indicate areas that were used by NeuriteNet to suggest 
the image belonged to Before and After groups, respectively. E, F The representative images of rDRGNs 
(A, B) with their saliency map overlayed (C, D. G Comparison of performance of different classification 
approaches. The percentage of total images or traces (n = 178, 178, 255) classified correctly as belonging to 
Before or After treatment groups is shown along with kappa statistic. H Fractional distribution of Predicted 
Treatment Score. Color represents the actual group (after or before) to which the image corresponds. Of note, 
NeuriteNet classifies an image as “After” if the Predicted Treatment Score is less than 0.5 and to “Before” if more 
than 0.5. NeuriteNet classified most images correctly (the small orange bar at Predicted Treatment Score of 
0.85 (appears brown as it is overlaying the blue) represents a small fraction of After images falsely classified 
as Before). I Scatter plot of rDRGN plotted by their length score and length using data normalized with a 
quantile transformation. Linear regression shows a modest correlation with the Predicted Treatment Score 
and length measurement (ρ = 0.39). Scale bar = 100 µm
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it is important to consider the morphological difference being studied. Here, the promi-
nent difference in the treatment groups is the length of neurite growth. Thus, non-spe-
cific overlays with orange labeling in the background of the image may be the “correct” 

Fig. 5  (See legend on previous page.)
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labeling of a well-trained model to detect shorter neurites in the After group. Taking 
these points into account, the saliency maps for the After condition (Fig.  5D, F) rep-
resent NeuriteNet correctly associating areas lacking elongated neurite growth to the 
After treatment, while regions where a neurite is present to Before. However, the seem-
ingly non-specific regions suggestive of the After condition outweigh the regions sugges-
tive of Before and thus the example shown was classified correctly as After.

Then in terms of comparing the scoring results to the length data, we see a modest 
correlation between these two values (ρ = 0.39) (Fig. 5I). This indicates a trend that Pre-
dicted Treatment Score tends to be greater in images of neurons with longer neurites. 
Lastly, for this data set, we were unable utilize the Br Score approach since only the long-
est neurite data were available to us. This one metric does not represent a sufficient vari-
ety of measures to adequately study the quantitative relationship between patterns of 
activation within the model and how neuron morphologycontributes to these patterns.

Discussion
NeuriteNet’s classification is related to, explained by, and is sensitive to changes 

in the tracing data

This work represents a novel pursuit to thoroughly associate the findings from CNN 
image analysis to neuron tracing data. In this study we demonstrate how NeuriteNet’s 
analysis is sensitive to and focuses on quantified morphological metrics in its analysis 
of neurite growth patterns. First, in an experimental system studying neurite guidance 
on topographically micropatterned substrates, replated DRGNs (rDRGNs) have distinct 
morphology relative to those on non-patterned substrates (Fig. 1). NeuriteNet detects 
this morphological difference, classifies the groups more accurately than other classifica-
tion approaches, and reports a score between 0 and 1 (Predicted Pattern Score) related 
to this classification (Fig. 2G).

Multiple approaches validated NeuriteNet’s findings, including: (1) saliency map over-
lays highlighting regions associated with horizontally aligned neurite segments in the 
pattern group and gradually curved or vertically aligned segments in the unpatterned 
group (Fig. 2C, D), (2) Alignment Index and Predicted Pattern Score clustering (Fig. 3A), 
(3) the tracing data explaining a substantial portion the classification results (Fig. 3B), 
and (4) NeuriteNet classification being sensitive to changes in the Alignment Index 
measurement (Fig. 4). In combination, these data imply that in its image classification 
analysis, NeuriteNet learns features in the images related to quantifiable components of 
neuron morphology that are captured in the tracing data, such as Alignment Index.

To study these findings further, we applied NeuriteNet to another dataset where we 
corroborated the model’s sensitivity for this application. The second dataset studied the 
effect of treatment with nocodazole, an inhibitor of microtubule polymerization, on 
rDRGN growth at selective times during replating to either have no effect on (Before 
replating) or to inhibit (After replating) neurite growth (Additional file  5: Fig. S5). As 
with the dataset assessing neurite morphology on micropatterned substrates, NeuriteNet 
correctly assigns images to Before or After treatment group with accuracy greater than 
other comparable classification approaches (Fig. 5G). The follow up approaches substan-
tiate these classification results with (1) saliency map overlays highlighting long elongat-
ing segments in the Before treated neurons (Fig. 5C) and (2) the length measurements 
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and Predicted Treatment Score (the score related to NeuriteNet’s classification) demon-
strating correlation (Fig. 5I). While the specificity of the maps and the degree of correla-
tion are not as robust as the previous analysis of rDRGNs being classified by substrate, 
this was an expected finding due to the experimental setup. First, the dataset used for 
this had fewer images and only one measurement associated with the image (only 178 
images compared to 2604 in the previous study). This limited the ability of NeuriteNet to 
learn the characteristic features of the neurons from each treatment group and effected 
the degree of correlation we observed. Second, the saliency maps of the After group 
showing non-specific overlays is also an anticipated finding. In addition to the specificity 
being limited by the small sample size, the morphology being compared also complicates 
this saliency map approach. If the only difference in the treatment groups is the length of 
the neurite, non-specific overlays in the background of the images, where there are not 
neurites, would be the expected pattern seen in the After group with shorter neurites. 
Overall, these data imply that NeuriteNet is also able to distinguish differences in neur-
ite length due to drug treatment in its classification.

Taken together, these data demonstrate that in their analysis CNNs (1) assess quantifi-
able morphological differences in neurite growth, (2) consider distinguishing factors that 
may not be encompassed by traditional neuron morphology analyses, and (3) function 
as flexible and efficient neurite analysis tools. Additionally, this work serves as an outline 
for those studying neuron morphology in terms of how to integrate CNNs in their study 
of neurite growth. For example, this work highlights various methods for how to vali-
date the application of CNN models for assessing neurite growth by using saliency map 
overlays, comparing the scoring behind the classification to tracing data, and Concept 
Vectors (Br Scores). Additionally, this work suggests the CNN architecture best suited 
for similar tasks is one with side branches as NeuriteNet appears effectively suited for 
studying neuron morphology.

NeuriteNet detects differences in neuron morphology not encompassed by the tracing 

data

Our quantitative methods to validate NeuriteNet suggest that our neurite tracing data 
only explain a portion of the variation of the model’s classification scoring results. Spe-
cifically, about half of what is driving the classification decision is unexplained by the 
tracing data in the Patterned versus Unpatterned comparison (Fig. 3, Additional file 3: 
Fig. S3).

The saliency map overlays imply that the model is focusing on regions associated with 
neuron morphology in making this classification (Fig. 2C, D). In particular, while there 
is some non-specific labeling in the saliency maps, the non-specificity is not consistent 
within each treatment group. Thus, as a whole this assessment suggests that regions of 
images unrelated to neuron morphology, which hypothetically tend to correlate between 
groups, are only a minor factor in NeuriteNet’s classification since there is not a clear 
trend in the background of the saliency map. Consequently, to explain the remainder of 
the variation in the model’s scoring, NeuriteNet must be focusing on aspects of neuron 
morphology, that predictably vary in the treatment groups, which are not encompassed 
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by our specific neurite tracing data. There are many morphological metrics that our 
tracing data does not encompass, including, but not limited to (1) the relation of the 
arbors spatially (i.e., to the soma or other neurites), (2) neurite thickness, or (3) micro-
scale curvature of individual neurites. All together these metrics may predictably cor-
relate in the treatment groups here and if so, they would explain more of the variation in 
the model and how NeuriteNet can outperform the tracing data.

Overall, this indicates that when generating its “score”, NeuriteNet thoroughly assesses 
neuron morphology by considering metrics easily evaluated by neurite tracing as well as 
also considers features that may be difficult to quantify and or not traditionally assessed. 
This conclusion motivates similar work to understand what drives CNN models (i.e., 
can neurite thickness differences be reliably detected by a model like NeuriteNet). Addi-
tionally, based on our assessment showing neurite tracing data only partially explains 
the difference between the Patterned and Unpatterned treatment groups, this should 
encourage researchers to incorporate more thorough and broader analyses when study-
ing the morphology of neurite growth.

Replated DRGNs are guided by and branch less on the biophysical micropattern

The results also demonstrate novel biological findings of the effect of micropatterned 
biophysical substrates on neuron morphology. Neurites from rDRGNs are guided by 
biophysical cues and seem to strongly align to the micropatterns consisting of parallel 
ridges and grooves (Fig.  1E). Thus, this implies that the elongating growth phenotype 
displayed by rDRGNs does not override their innate ability to sense and be guided by 
biophysical micropatterned growth cues. Additionally, the results show that rDRGNs 
branch less when grown on these repeating rows of ridges and grooves (Fig.  1C, D). 
Other work has explored using biophysical cues to control neurite branching with analo-
gous findings of branching decreasing on similarly patterned substrates [53, 54]. These 
data imply that the micropatterns not only direct neurite growth; they also limit branch-
ing events. The cellular mechanisms that underlie this reduction in branching remain 
unknown. Thus, both NeuriteNet and biophysical growth cues represent tools to study 
neurite guidance and branching decisions.

Future work using NeuriteNet to study neurite guidance, morphology, and branching

CNNs provide powerful tools for high throughput image analyses as they are much 
faster than other holistic approaches (Sholl [55], neuron tracing [31]), while also being 
sensitive to various morphological differences. In this work, NeuriteNet distinguishes 
and scores neuron morphology by treatment groups more accurately than a “Generic 
CNN” (Additional file 6: Fig. S6). Since the generic CNN has the same architecture of 
NeuriteNet but lacks the side-branches, this suggests that the side-branches in Neur-
iteNet enable a more accurate assessment of neuron morphology. Side branching has 
been shown to be key for optimizing CNNs for other image analyses which require 
multi-scale assessment [56–58]. These previous studies motivated the incorporation of 
side-branches into NeuriteNet as well as support the idea that these branches enable 
NeuriteNet to analyze features from multiple levels of spatial resolution of neuron mor-
phology. Based on the improvements in model accuracy with the incorporation of the 
side-branches, the field would benefit from more research into which components of 
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CNN architecture (such as side-branch structure or number) enable a model to effec-
tively analyze neuron morphology.

An additional aim for those using CNN image analysis models to study images with 
quantified measurements could be to better investigate how saliency maps relate to 
the tracing data in a quantified manner. This endeavor would allow for better feed-
back on the model specificity as well as could enable improved saliency map overlays. 
In the context of studying neuron morphology, one could simply assess the speci-
ficity of the overlayed map’s signal to the location of neuron tracing on an image to 
determine the fidelity of the model to only considering the neuron morphology. Addi-
tionally, more advanced approaches could compare the saliency maps to the specific 
feature of neuron morphology (branch, turn, aligned segment) present at that region 
of the image. This work would provide a platform to further optimize CNN function 
and saliency map development for the study of the morphological parameters of neu-
rite growth.

In addition to more research into how the model functions, we could also pursue 
expanding the application and outputs of models like NeuriteNet. Avenues of this future 
work include assessing the applicability of NeuriteNet to study other neurons with com-
plex morphology or innervation patterns of tissue sections. We expect that NeuriteNet 
is ideally suited to analyze neurons with morphologies more complex than DRGNs, such 
as hippocampal or Purkinje neurons [59, 60], or neurite growth in vivo, such as innerva-
tion in the dermis or spiral ganglion neuron regeneration in the cochlea [61–63].

Lastly, the ideal output of NeuriteNet would be a quantifiable metric(s) to describe 
neuron morphology akin to what many in this field are accustomed to and prefer, as 
opposed to the score reported by NeuriteNet here (Figs. 2H, 5H, Additional file 6: Fig. 
S6). Therefore, an additional goal is to adapt NeuriteNet to directly predict the desired 
morphological components in its classification. Others in the field have explored similar 
tasks in other applications of CNN image analyses [20, 64, 65].

Conclusion
In effectively classifying and scoring morphological differences in heterogeneous group 
of neurons, NeuriteNet focuses on quantifiable traits of the neuron that represent 
the differences distinguishing those groups. In its analysis, NeuriteNet demonstrates 
greater classification accuracy than neurite tracing data or a CNN lacking side-branch-
ing. Through this work, NeuriteNet also confirms a novel finding that rDRGNs exhibit 
a distinct, aligned morphology with decreased branching when grown on and guided 
by biophysical cues. Additionally, while NeuriteNet’s scoring and patterns of activation 
are sensitive to the quantified neuron tracing data, NeuriteNet also appears to consider 
morphological features not encompassed by our neuron tracing data. Though there are 
some features not explained by the tracing data that NeuriteNet assesses in its analysis, 
importantly our work indicates that NeuriteNet is focuses on and is activated by relevant 
measurements of neuron morphology to generate quantitative scoring that is related to 
neurite growth patterns.
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The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​023-​05444-4.

Additional file 1: Fig S1. Saliency maps are generated using a combination of iterative occlusion and graph-
based image segmentation. Input images are first processed using a Sobel filter. Following this, a rough saliency 
map is generated using iterative occlusion. Independently of the occlusion, the image is divided into component 
pieces using graph-based Felzenswalb segmentation. The rough saliency map and the segmented image are com-
bined using XRAI to generate a saliency map with sensitivity to finer details in the input image.

Additional File 2: Fig S2. DRGNs grown on topographical micropatterns have no difference in total length 
or branch length variation. (A) rDRGNs have no difference in total neurite length when grown on patterned or 
unpatterned substrates. (B) rDRGNs have no difference in the variation in branch lengths when grown on patterned 
or unpatterned substrates.

Additional File 3: Fig S3. Correlation plots of tracing measurements and Pattern Score. Linear regressions 
comparing tracing data and Pattern Scoring using data normalized with a quantile transformation. A. Total Length 
shows no correlation with Predicted Pattern Score (ρ = 0.05). B. Branch Length Variation shows no correlation with 
Predicted Pattern Score (ρ = 0.05). C. Number of Branches shows small correlation with Predicted Pattern Score (ρ 
= 0.14). D. Branching Density shows small correlation with Predicted Pattern Score (ρ = 0.14). E. Alignment Index 
shows strong correlation with Predicted Pattern Score (ρ = 0.53). F. Alignment Variation shows modest correlation 
with Predicted Pattern Score (ρ = 0.30).

  Additional File 4: Fig S4. Assessment of NeuriteNet sorting by all three binary assessments. A. Spearman 
rank coefficient (ρ) comparing the tracing data with the sorting scores for all 3 comparisons of interest by cv-group. 
The threshold lines of ρ > |0.2| represents data that was filtered prior to Br Score calculation to minimize noise. B. Br 
Scores relating tracing data to sorting scores calculated by NeuriteNet split by cv-group. Data with cross-hatched 
pattern represent data that would be removed with thresholding approaches (data with coefficient ρ < |0.2| in Fig 
S3A.)

 Additional File 5: Fig S5. rDRGNs treated with Nocodazole Before replating have longer axons than rDRGNs 
treated After replating. (A) Schematic showing replating process and that DRGNs treated with nocodazole After 
replating have decreased neurite growth comparing to DRGNs treated with nocodazole Before replating. (B)Longest 
axon tracing data shows longer axons in Before than After (n = 103 & 157). Mann-Whitney test p  < 0.001.

 Additional File 6: Fig S6. Comparison of the scoring distribution of NeuriteNet with the Generic CNN for 
both sorting tasks. (A) NeuriteNet sorts rDRGNs on patterned and unpatterned substrates at an accuracy of 95%. 
(D) NeuriteNet sorts rDRGNs treated with Nocodazole Before replating and After replating at an accuracy of 80%. (C) 
Generic CNN sorts rDRGNs on patterned and unpatterned substrates at an accuracy of 83%. (D) Generic CNN sorts 
rDRGNs treated with Nocodazole Before replating and After replating at an accuracy of 66%.
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