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Abstract 

Background:  Here we present scSNPdemux, a sample demultiplexing pipeline 
for single-cell RNA sequencing data using natural genetic variations in humans. The 
pipeline requires alignment files from Cell Ranger (10× Genomics), a population SNP 
database and genotyped single nucleotide polymorphisms (SNPs) per sample. The tool 
works on sparse genotyping data in VCF format for sample identification.

Results:  The pipeline was tested on both single-cell and single-nuclei based RNA 
sequencing datasets and showed superior demultiplexing performance over the lipid-
based CellPlex and Multi-seq sample multiplexing technique which incurs additional 
single cell library preparation steps. Specifically, our pipeline demonstrated supe‑
rior sensitivity and specificity in cell-identity assignment over CellPlex, especially 
on immune cell types with low RNA content.

Conclusions:  We designed a streamlined pipeline for single-cell sample demultiplex‑
ing, aiming to overcome common problems in multiplexing samples using single cell 
libraries which might affect data quality and can be costly.

Keywords:  Single-cell, Sample pooling, Sample demultiplexing, Single nucleotide 
polymorphisms

Introduction
Single cell sequencing is a powerful method for studying tissue heterogeneity and bio-
logical replicates are analysed to gain statistical power for such experiments. A major 
hurdle of expanding the number of samples in experiments is the cost of single-cell 
library preparation. Pooling multiple specimens is one way to reduce costs. Wet-lab sam-
ple multiplexing techniques, such as lipid-based [1] or hashtag antibody-based methods 
were developed to pool multiple specimens into one library. Meanwhile, attempts were 
made to extract genotype information from 5′ or 3′ single cell RNA sequencing data. For 
example, cellsnp-lite allows users to extract germline single nucleotide polymorphism 
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(SNP) information from individuals sequenced by 10× Genomics protocols [2]. There-
fore single-cell sequencing provides SNP information that permits in-silico sample sepa-
ration when multiplexed libraries are prepared from different individuals [3]. However, 
SNP-based approaches do not support the demultiplexing of multiple specimens from 
the same individual due to the shared SNP information. The use of in-silico demultiplex-
ing approaches over costly wet-lab procedures have raised interest in the scientific com-
munity, but questions remained on its performance [4]. Meanwhile, input processing of 
each step required for SNP demultiplexing could be time consuming and error prone.

Here, we present a streamlined pipeline that takes outputs of Cell Ranger from 
10× Genomics and genotyping data from either SNP arrays or high-throughput 
sequencing to retrieve the correct identity of single cells. Our pipeline provides high 
sensitivity and doublets removal functionality in one command. We observed superior 
sample demultiplexing performance of scSNPdemux compared to CellPlex by apply-
ing it on two datasets, breast cancer and non-small cell lung cancer (NSCLC) samples, 
respectively. Compared to Multi-seq the assignment was consistent for demultiplexed 
cells while scSNPdemux enabled more than doubling the number of demultiplexed cells. 
The SNP-based demultiplexing approach allows improved detection of doublets within 
multiplexed datasets, making estimation of doublet populations and characterization 
possible and thereby leading to improved data quality.

Implementation
In short, scSNPdemux is an R package that combines multiple tools to identify informa-
tive SNPs on single cell level, to demultiplex the mixture to assign individual cells to 
samples, and to call potential doublets. Identities of cells are informed by SNP contents 
per cell-barcode, where cellsnp-lite calls SNPs separately on each barcode. Cellsnp-lite 
was selected for extracting SNP information (base specific read depths) because of its 
speed and memory efficiency [2]. Cell barcodes derived from the same individual are 
thereby identified by their genetic distance inferred by a collection of SNPs. Cells defined 
by a unique cell barcode that show multiple SNP genotypes from different individuals 
and therefore are thought to have originated from individuals with different germlines 
are reported as “doublets”. This doublet detection and the hash based CellPlex approach 
however are limited to cell doublets originating from more than one individual.

ScSNPdemux input requires a BAM file of single cell RNA sequencing reads aligned 
by Cell Ranger, a gene expression count matrix from Cell Ranger, population SNP infor-
mation (e.g. 1000 genomes phase 3) and genotyped SNPs from the multiplexed samples 
in VCF format, which are mapped to human genome reference GRCh38. The SNP gen-
otype information for the multiplexed samples can be prepared from high-throughput 
DNA sequencing or SNP arrays. Initially, SNPs are called from the aligned reads on 
sites with population frequency of > 5% within the 1000 genomes phase 3 dataset using 
cellsnp-lite. To include more information for improved sample demultiplexing, sample 
genotypes are merged from the outputs of cellsnp-lite and the input genotypes using 
bcftools [5]. By combining these SNP genotypes, we maximize the sensitivity of the 
demultiplexing tool vireo [3], especially when the amount of SNPs identified by the gen-
otyping array is scarce.
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As a result, the pipeline reports the most likely sample identity, or whether the cell 
barcode could be linked to a cell doublet (as tab-delimited file). The output file can thus 
be loaded into a Seurat object as metadata, or assigned to the sample identity field for 
any downstream analysis.

The demultiplexing workflow is available on github (https://​github.​com/​wkljo​hn/​
scSNP​demux). To benchmark the performance of our pipeline, we retrieved a dataset 
of 7 NSCLC from 10× Genomics which are multiplexed by 10× CellPlex library (40 k 
Mixture of NSCLC DTCs from 7 donors, 3’ HT v3.1, (https://​www.​10xge​nomics.​com/​
resou​rces/​datas​ets/​40-k-​mixtu​re-​of-​nsclc-​dt-​cs-​from-7-​donors-​3-​ht-v-​3-1-​3-1-​high-6-​
1-0). InferCNV [6] was used to call copy number changes. By assuming all cancer cells in 
these datasets have copy number aberrations, we were able to define cancer cell clusters 
when more than 8 long segments of genomic regions spanning more than 10  Mb are 
observed on 80% of cells.

Results
We first applied scSNPdemux (Fig.  1a) to demultiplex the 40  k Mixture of NSCLC 
DTCs (see above) from 7 donors. ScSNPdemux assigned sample identities to 19,186 
of 21,071 cells and flagged 1822 cells as doublets using SNPs genotyped per cell bar-
codes. Comparing to the CellPlex lipid-based sample demultiplexing, scSNPdemux was 
able to assign the sample identity to additional 19.1% of the cells (4021 of 21,071 cells) 
(Fig. 1b,c).

Fig. 1  a Description of the scSNPdemux workflow. b A barplot summarizing the number of assigned cells 
independently by CellPlex and scSNPdemux. c The sensitivity and specificity estimation by copy number 
defined tumour clusters, assuming tumour cells from different patients share a similar copy number profile 
and form distinct clusters on transcriptome level. d The comparison between CellPlex and scSNPdemux by 
overlaying the demultiplexed cell labels onto the UMAP. e Comparison of demultiplexing a mixture of Jurkat, 
HEK293 and HMEC cells by Multi-seq and scSNPdemux. T-SNE map showing three cell types and barplots 
presenting the fraction of cells assigned. (1) Huang and Huang [2], (2) Huang et al. [3]
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To assess the accuracy and performance of the two demultiplexing methods, we ana-
lysed the cell identity allocation per expression-based tumour cell clusters. Tumour-cell 
clusters were identified by a high degree of copy number changes in contrast to copy 
number neutral profiles found in normal cells. Tumour cells from different patients typi-
cally form independent clusters and the assumption was verified by the homogeneous 
copy number profiles observed in each tumour cluster (Additional file 1: Fig. S1). This 
characteristic was employed to assess the accuracy of the two sample demultiplexing 
methods. The comparison revealed scSNPdemux outperforms CellPlex in both sensitiv-
ity (86% vs. 71%) and specificity (99% vs. 95%) (Fig. 1c). The presence of copy number 
variations in the tumour cells might impact the demultiplexing process. However, scS-
NPdemux demonstrated a higher number of assigned cells compared to CellPlex across 
all cell types, we do not anticipate an overestimation of specificity (see Additional file 1: 
Table S1 for number of assigned cells and identified duplicates across celltypes).

To functionally interpret the cells that were in addition demultiplexed by scSNPde-
mux we performed cell type annotation by the Azimuth algorithm [7] (Additional file 1: 
Fig. S2). Of those cells, 3257 of 4021 were annotated as CD3 expressing T-cells or CD19 
expressing B-cells. ScSNPdemux achieved 91% sensitivity on cells in the T-cell cluster 
(6355 of 6999 cells in the cluster assigned), compared to 62% sensitivity using CellPlex 
(4319 of 6999 cells assigned). Furthermore, our pipeline achieved 92% sensitivity on 
B-cells clusters (3247 of 3521 cells in the cluster assigned), compared to 59% using Cell-
Plex (2060 of 3521 cells in the cluster assigned). The mean read counts for all clusters is 
17,563, T-cell clusters is 5569, and B-cell clusters is 6793. Accordingly, the analysis of 
immune cells that cannot be demultiplexed by CellPlex due to low overall transcriptional 
activity, showed the biggest improvements when applying scSNPdemux (Fig. 1d, Addi-
tional file 1: Figs. S5, S6).

Application on a second dataset of three patients with breast cancer demonstrated that 
scSNPdemux can also be applied to single nucleus RNA sequencing data with genotypes 
profiled by SNP arrays. Here, we were able to accurately resolve the sample identities 
of 9329 cells and identified 1020 cell doublets based on sample genotype information 
extracted from Illumina Oncoarray-500  K, which provides information on a smaller 
number of SNPs. Analysis of demultiplexing results on CNV defined tumour clusters 
revealed a sensitivity and specificity of scSNPdemux of 100% and 99.7%, respectively 
(Additional file 1: Fig. S4). This analysis demonstrated the potent ability of scSNPdemux 
to resolve sample identities using sparse genotyping data.

In addition, we applied scSNPdemux to a lipid-based Multi-seq barcoding data set 
multiplexing three human cell lines Jurkat, HEK293, HMEC [1]. We processed the 
nuclear single RNA sequencing from SRR8890625, SRR8890636 and SRR8890648 with 
Seurat (Seurat_4.9.9.9044) using default settings and compared the assignment to the 
three cell clusters (Fig.  1e, Additional file  1: Fig. S7) by Multi-seq and scSNPdemux. 
Interestingly, when analysing the lipid-based Multi-seq data, we observed that Multi-
seq it failed to assign a significant fraction of the 12,665 cells containing more than 200 
UMI barcodes (57.4%, 7272 cells) compared to scSNPdemux (1.4%, 180 cells) (Fig. 1e). 
Analysing the cells not assigned to any cluster, we showed that especially cells with a 
lower UMI count were missing in the scSNPdemux assignments. In the Multi-seq 
approach, many cells with a high UMI count profile could not be assigned (Additional 
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file 1: Fig. S8). Despite this discrepancy in assignment rates, the overlap of cell assign-
ments to the three clusters between the two approaches was remarkably high (99.85%), 
with only seven out of 4816 cells showing different cluster assignments (Additional file 1: 
Table S3). This indicates a strong overall agreement in the cell assignments, with scSNP-
demux assigning a substantially higher number of cells.

Conclusion
Our pipeline scSNPdemux utilizes natural genetic variations in humans from sparse to 
dense SNP genotyping data for demultiplexing pooled single-cell RNA sequencing data 
at high sensitivity and specificity. Using a set of NSCLC sc data obtained by 10× Genom-
ics, scSNPdemux identified substantially more immune-cells over CellPlex. Our pipeline 
offers better demultiplexing results for cells with low read counts and is therefore espe-
cially helpful when studying the immune cell component using single-cell RNA sequenc-
ing. Our breast cancer dataset also demonstrated that SNP-array data is sufficient for 
accurate patient ID demultiplexing from single nuclei. Comparing the performance with 
Multi-seq also demonstrated and outstanding improvement of cell assignments. Library 
preparation costs can be reduced while having the benefit of an accurate sample demulti-
plexing and doublet detection if samples from different individuals are multiplexed. The 
pipeline is compatible with standard bioinformatics workflows of single cell sequencing 
analysis and provides a cost-effective way to increase the number of biological replicates 
while maintaining high data quality.

Availability and requirements

Project name: scSNPdemux.
Project home page: https://​github.​com/​wkljo​hn/​scSNP​demux.
Operating systems: Linux.
Programming language: Shell script and R.
Other requirements: R 4.0 or higher.
License: GNU General Public License v3.0.
Any restrictions to use by non-academics: license needed for commercial use.
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CNV	� Copy number variation
NSCLC	� Non-small cell lung cancer
RNA	� Ribonucleic acid
SNP	� Single nucleotide polymorphisms
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