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Abstract 

Background:  Longitudinal data on key cancer outcomes for clinical research, such 
as response to treatment and disease progression, are not captured in standard cancer 
registry reporting. Manual extraction of such outcomes from unstructured electronic 
health records is a slow, resource-intensive process. Natural language processing (NLP) 
methods can accelerate outcome annotation, but they require substantial labeled 
data. Transfer learning based on language modeling, particularly using the Trans-
former architecture, has achieved improvements in NLP performance. However, there 
has been no systematic evaluation of NLP model training strategies on the extraction 
of cancer outcomes from unstructured text.

Results:  We evaluated the performance of nine NLP models at the two tasks of iden-
tifying cancer response and cancer progression within imaging reports at a single 
academic center among patients with non-small cell lung cancer. We trained the clas-
sification models under different conditions, including training sample size, classifica-
tion architecture, and language model pre-training. The training involved a labeled 
dataset of 14,218 imaging reports for 1112 patients with lung cancer. A subset of mod-
els was based on a pre-trained language model, DFCI-ImagingBERT, created by fur-
ther pre-training a BERT-based model using an unlabeled dataset of 662,579 reports 
from 27,483 patients with cancer from our center. A classifier based on our DFCI-
ImagingBERT, trained on more than 200 patients, achieved the best results in most 
experiments; however, these results were marginally better than simpler “bag of words” 
or convolutional neural network models.

Conclusion:  When developing AI models to extract outcomes from imaging reports 
for clinical cancer research, if computational resources are plentiful but labeled training 
data are limited, large language models can be used for zero- or few-shot learning 
to achieve reasonable performance. When computational resources are more limited 
but labeled training data are readily available, even simple machine learning architec-
tures can achieve good performance for such tasks.
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Background
Precision oncology, defined as tailoring cancer treatment to the individual clinical and 
molecular characteristics of patients and their tumors [1], is an increasingly impor-
tant goal in cancer medicine. This strategy requires linking tumor molecular data [2] 
to data on patient outcomes to ask research questions about the association between 
tumor characteristics and treatment effectiveness. Despite the increasing sophistication 
of molecular and bioinformatic techniques for genomic data collection, the ascertain-
ment of corresponding clinical outcomes from patients who undergo molecular testing 
has remained a critical barrier to precision cancer research. Outside of therapeutic clini-
cal trials, key clinical outcomes necessary to address major open questions in precision 
oncology, such as which biomarkers predict cancer response (improvement) and pro-
gression (worsening), are generally recorded only in the free text documents generated 
by radiologists and oncologists as they provide routine clinical care.

Clinical cancer outcomes other than overall survival are not generally captured in 
standard cancer registry workflows; historically, abstraction of such outcomes from 
the electronic health record (EHR) has therefore required resource-intensive man-
ual annotation. If this abstraction has occurred at all, it has generally been performed 
within individual research groups in the absence of data standards, yielding datasets 
of questionable generalizability. To address this gap, our research group developed 
the ‘PRISSMM’ framework for EHR review. PRISSMM is a structured rubric for man-
ual annotation of each pathology, radiology/imaging, and medical oncologist report 
to ascertain cancer features and outcomes; each imaging report is reviewed in its own 
right to determine whether it describes cancer response, progression, or neither [3]. 
This annotation process also effectively yields document labels that can be used to train 
machine learning-based natural language processing (NLP) models to recapitulate these 
manual annotations. We previously detailed the PRISSMM annotation directives for 
ascertaining cancer outcomes and demonstrated the feasibility of using PRISSMM labels 
to train NLP models that can identify cancer outcomes within imaging reports [3, 4] and 
medical oncologist notes [4, 5].

While applying NLP to clinical documents can dramatically accelerate outcome ascer-
tainment, training these models from randomly initialized weights remains resource-
intensive, requiring thousands of manually annotated documents. Modern advances in 
NLP could reduce this data labeling burden. Semi-supervised learning techniques based 
on language modeling, or using components of a sentence or document to predict the 
remainder of the text, have become cornerstones of NLP [6]. The Universal Language 
Model Fine-Tuning technique demonstrated that by first training a language model on a 
large general text corpus and then further pre-training it on in-domain text, it is possible 
to fine-tune useful text classifiers using far fewer labeled examples than might otherwise 
be required [7]. Simultaneously, the Transformer architecture [8] and many of its deriva-
tives, such as Bidirectional Encoder Representations from Transformers (BERT) [9] 
and BERT versions fine-tuned on clinical text [10] have facilitated training of high-per-
forming, large language models. These architectures have often been designed around 
processing relatively short segments of text, but methods for applying them to longer 
documents, including the Transformer-XL [11], Reformer [12], and Longformer [13] 
architectures, have also been developed. Transformer-based models have been applied 
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to radiology reports and found to outperform simpler methods at certain general medi-
cal annotation tasks [14–17]. These models also facilitate the emerging paradigm of 
zero-shot Learning, in which a scaled-up, pretrained language model is primed for NLP 
tasks via conditional language generation. It has been successful in general domain NLP 
[18] for different tasks. Specifically for question-answering tasks, the Text-to-Text Trans-
fer Transformer [19] with instruction finetuning [20] has yielded impressive results for 
reasonable model sizes. To our knowledge, preceding investigations have not yielded 
competitive performance on biomedical NLP tasks while utilizing general LLMs [21]. 
The practical utility of these architectures for ascertaining cancer outcomes in clinical 
research settings using limited quantities of labeled EHR text is unknown.

In this study, we evaluated the performance of various NLP architectures at capturing 
cancer response and progression from imaging reports for a cohort of patients with lung 
cancer. Candidate architectures included simple ‘bag of words’ linear models and convo-
lutional neural networks [22], as well as Transformer architectures with language model 
pretraining. We varied the size of the training dataset for each architecture to evaluate 
the association of architecture with the quantity of labeled data required to train high-
performing models.

Results
We first examined the impact of model architecture, number of parameters, language 
model domain adaptation, and classification head structure on the performance of 
BERT-based models for ascertaining cancer response/improvement or progression/
worsening from imaging reports. With no domain adaptation, a frozen language model, 
and a CNN classification head, the BERT-base model yielded AUROC of 0.93 for cap-
turing response/improvement and 0.92 for cancer progression/worsening, outperform-
ing BERT-tiny, BERT-mini, BERT-med, and a Longformer architecture (Fig. 1, Table 1). 
The metrics of AUPRC, accuracy, precision, recall, MCC, and F1 scores are provided in 
Table 1 and shown in Additional file 1: Figs. 1–2. Additional model characteristics are 
provided in Table 2. 

After domain adaptation on imaging reports from our institution (N = 662,579 reports 
from 27,483 patients with multiple types of cancer) was performed beginning with a 
BERT-base model, the resulting language model (DFCI-ImagingBERT) was frozen and 
fine-tuned with a CNN classification head, yielding better performance than BERT-base, 
with AUROCs of 0.94 for ascertaining response/improvement and 0.95 for progression/
worsening. Models based on ClinicalBERT yielded slightly lower performance compared 
to DFCI-ImagingBERT, with an AUROC of 0.93for both response and progression out-
comes (Fig. 2, Table 1). AUPRC, accuracy, precision, recall, F1, and MCC scores for these 
models are shown in Additional file 1: Figs. 3–4.

We also evaluated the impact of varying classification head architectures for DFCI-
ImagingBERT, including a CNN; a linear layer based on the classification token vector; 
and an RNN (bidirectional gated recurrent unit) [23] architecture on model performance 
as a function of training set size (Fig.  3, Additional file  1: Fig.  5). When the language 
model layers were frozen, the CNN head was associated with the best performance at 
the largest training set size, yielding the performance metrics described above. The RNN 
head yielded AUROCs of 0.78 for response/improvement and 0.85 for progression/
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worsening; the linear head yielded AUROCs of 0.72 for response/improvement and 
0.84 for progression/worsening. With the language model unfrozen, given the full train-
ing set, the linear head yielded AUROCs of 0.92 and 0.94, and the CNN was best with 
AUROCs of 0.93 and 0.95 for response and progression outcomes respectively. The lin-
ear head, however, yielded better performance at smaller training set sizes (Fig. 3).

We therefore selected DFCI-ImagingBERT as the BERT-based model to compare 
against the simple term frequency-inverse document frequency (TF-IDF) and CNN 
neural network architectures. The performance of each of these architectures as a func-
tion of training set size is depicted in Fig. 4. For the response/improvement outcome, 
DFCI-ImagingBERT with a frozen language model and CNN classification head yielded 
the best performance, with an AUROC of 0.94 after training on the full training data-
set; DFCI-ImagingBERT with an unfrozen language model and linear head yielded an 
AUROC of 0.93; the simple CNN model yielded an AUROC of 0.94; and the TF-IDF 
model yielded an AUROC of 0.93. For the progression/worsening outcome, DFCI-
ImagingBERT (either with a frozen language model and CNN head or an unfrozen lan-
guage model and linear head) yielded the best performance, with an AUROC of 0.95; 
followed by the CNN, with an AUROC of 0.93; and the TF-IDF model, with an AUROC 
of 0.92. The largest gains in model performance were achieved when the training set size 

Fig. 1  Impact of BERT model architecture on performance. Performance of Transformer-based architectures 
(with the language model frozen) for the document classification tasks of identifying cancer progression/
worsening and response/improvement. In this figure, all architectures were fine-tuned directly on the 
classification tasks, using a convolutional neural network head, without language model pre-training. For 
boxplots in the right column, the middle line represents the median, the lower and upper hinges correspond 
to the 1st and 3rd quartiles, and the whisker corresponds to the minimum or maximum values no further 
than 1.5 times the inter-quartile range from the hinge. Data beyond the whiskers are outlying points, plotted 
individually in the scatter plots
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Table 1  Performance of Transformer-based architectures compared to baseline models

Progression

Accuracy Precision AUROC
[95% CI]

F1 AUPRC Recall MCC

BERT-Base 0.88
[0.87, 0.90]

0.71
[0.66, 0.76]

0.92
[0.91, 0.94]

0.72
[0.68, 0.76]

0.76
[0.72, 0.81]

0.74
[0.69, 0.79]

0.65
[0.60, 0.70]

BERT-Med 0.88
[0.86, 0.89]

0.69
[0.64, 0.73]

0.92
[0.91, 0.94]

0.73
[0.69, 0.76]

0.75
[0.69, 0.80]

0.77
[0.72, 0.81]

0.65
[0.60, 0.69]

BERT-Mini 0.85
[0.83, 0.87]

0.61
[0.56, 0.66]

0.89
[0.88, 0.91]

0.68
[0.64, 0.72]

0.68
[0.62, 0.73]

0.77
[0.72, 0.81]

0.59
[0.54, 0.63]

BERT-Tiny 0.80
[0.78, 0.82]

0.51
[0.46, 0.56]

0.84
[0.82, 0.86]

0.56
[0.52, 0.61]

0.56
[0.50, 0.63]

0.63
[0.58, 0.68]

0.43
[0.38, 0.49]

Longformer 0.86
[0.84, 0.87]

0.70
[0.63, 0.75]

0.89
[0.87, 0.91]

0.62
[0.57, 0.67]

0.70
[0.65, 0.75]

0.55
[0.50, 0.61]

0.54
[0.48, 0.59]

Clinical BERT 0.88
[0.86, 0.89]

0.69
[0.64, 0.74]

0.93
[0.91, 0.94]

0.72
[0.68, 0.75]

0.77
[0.72, 0.82]

0.75
[0.70, 0.80]

0.64
[0.59, 0.69]

DFCI-Imag-
ingBERT (BERT 
frozen, CNN 
head)

0.90
[0.89, 0.92]

0.75
[0.70, 0.79]

0.95
[0.94, 0.96]

0.78
[0.74, 0.81]

0.84
[0.80, 0.87]

0.81
[0.77, 0.85]

0.72
[0.68, 0.76]

DFCI-Imag-
ingBERT (BERT 
unfrozen, 
linear head)

0.90
[0.89, 0.92]

0.74
[0.69, 0.79]

0.95
[0.94, 0.96]

0.78
[0.74, 0.81]

0.85
[0.81, 0.89]

0.81
[0.77, 0.85]

0.71
[0.67, 0.76]

CNN 0.89
[0.87, 0.90]

0.72
[0.66, 0.76]

0.93
[0.92, 0.95]

0.74
[0.70, 0.78]

0.81
[0.77, 0.85]

0.77
[0.72, 0.82]

0.67
[0.62, 0.72]

TF-IDF 0.88
[0.86, 0.89]

0.72
[0.67, 0.77]

0.92
[0.90, 0.93]

0.69
[0.64, 0.73]

0.75
[0.71, 0.80]

0.66
[0.61, 0.71]

0.61
[0.56, 0.66]

Flan-T5-XXL 
(zero-shot)

0.89
[0.87, 0.90]

0.77
[0.72, 0.82]

0.92
[0.91, 0.94]

0.71
[0.66, 0.75]

0.77
[0.72, 0.81]

0.65
[0.60, 0.71]

0.64
[0.59, 0.69]

Response

Accuracy Precision AUROC
[95% CI]

F1 AUPRC Recall MCC

BERT-Base 0.93
[0.92, 0.95]

0.80
[0.74, 0.85]

0.93
[0.90, 0.95]

0.73
[0.68, 0.78]

0.78
[0.73, 0.83]

0.67
[0.61, 0.74]

0.70
[0.64, 0.75]

BERT-Med 0.93
[0.92, 0.94]

0.75
[0.69, 0.81]

0.92
[0.90, 0.95]

0.71
[0.66, 0.76]

0.78
[0.72, 0.83]

0.68
[0.62, 0.74]

0.67
[0.62, 0.73]

BERT-Mini 0.92
[0.91, 0.94]

0.72
[0.65, 0.78]

0.90
[0.88, 0.93]

0.71
[0.66, 0.76]

0.74
[0.67, 0.79]

0.71
[0.65, 0.77]

0.67
[0.61, 0.72]

BERT-Tiny 0.89
[0.88, 0.91]

0.59
[0.53, 0.66]

0.86
[0.83, 0.89]

0.61
[0.55, 0.67]

0.63
[0.57, 0.70]

0.63
[0.57, 0.70]

0.55
[0.49, 0.61]

Longformer 0.92
[0.90, 0.93]

0.80
[0.72, 0.87]

0.89
[0.86, 0.91]

0.61
[0.54, 0.67]

0.71
[0.64, 0.77]

0.49
[0.42, 0.56]

0.59
[0.52, 0.65]

Clinical BERT 0.93
[0.92, 0.94]

0.77
[0.70, 0.83]

0.93
[0.90, 0.95]

0.72
[0.66, 0.77]

0.77
[0.70, 0.83]

0.67
[0.61, 0.74]

0.68
[0.62, 0.73]

DFCI-
ImagingBERT 
(BERT frozen, 
CNN head)

0.94
[0.93, 0.95]

0.83
[0.77, 0.89]

0.94
[0.93, 0.96]

0.76
[0.71, 0.80]

0.81
[0.76, 0.86]

0.69
[0.63, 0.76]

0.73
[0.67, 0.78]

DFCI-
ImagingBERT 
(BERT unfro-
zen, linear 
head)

0.94
[0.93, 0.95]

0.84
[0.77, 0.89]

0.93
[0.91, 0.95]

0.73
[0.68, 0.78]

0.80
[0.75, 0.85]

0.65
[0.59, 0.72]

0.71
[0.65, 0.76]

CNN 0.93
[0.92, 0.94]

0.92
[0.86, 0.97]

0.94
[0.92, 0.96]

0.67
[0.60, 0.72]

0.82
[0.77, 0.87]

0.52
[0.45, 0.59]

0.66
[0.60, 0.72]

TF-IDF 0.93
[0.91, 0.94]

0.81
[0.74, 0.87]

0.93
[0.91, 0.95]

0.68
[0.63, 0.73]

0.75
[0.69, 0.81]

0.59
[0.53, 0.66]

0.65
[0.59, 0.71]

Flan-T5-XXL 
(zero-shot)

0.92
[0.90, 0.93]

0.69
[0.63, 0.76]

0.90
[0.87, 0.93]

0.69
[0.64, 0.74]

0.69
[0.61, 0.75]

0.68
[0.61, 0.75]

0.64
[0.58, 0.70]
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increased from reports for 50 patients up to reports for 300 patients, with diminishing 
returns as training set size increased further thereafter. For the progression outcome, 
DFCI-ImagingBERT with an unfrozen language model and linear classification head 
performed best on samples of patients smaller than 300; for the response outcome, the 
TF-IDF model performed best on such samples (Fig. 4).

Finally, we evaluated the performance of the Flan-T5-XXL text to text model for zero-
shot learning for these tasks, with no weight updates and limited prompt engineering 
and hyperparameter tuning. This model achieved AUROC of 0.92 for the progression/
worsening task and AUROC of 0.90 for the response/improvement task.

Table 1  (continued)
Performance of Transformer-based architectures compared to baseline models for the document classification tasks of 
identifying cancer progression/worsening and response/improvement. Additional model characteristics are provided in 
Table 2. Precision, Recall, and F1 measures are calculated using the model output score threshold that maximizes the F1 
score in the training set. The best AUROC for each outcome is in bold face, as are the AUROC’s for any model that are not 
statistically significantly different from the best AUROC for each outcome

Fig. 2  Impact of BERT model language model tuning on performance. Association between language 
model pre-training and ultimate classification model performance. BERT-base represents a BERT model 
without language model pre-training on clinical text; clinical BERT-base represents a BERT-base model, 
fine-tuned on intensive care unit EHR data; DFCI-ImagingBERT represents a BERT-base model, with its 
language model further pre-trained on in-domain imaging reports from our institution. Figure depicts results 
with language models that were frozen for downstream classification task. For boxplots in the right column, 
the middle line represents the median, the lower and upper hinges correspond to the 1st and 3rd quartiles, 
and the whisker corresponds to the minimum or maximum values no further than 1.5 times the inter-quartile 
range from the hinge. Data beyond the whiskers are outlying points, plotted individually in the scatter plots
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Discussion
Natural language processing has the potential to substantially accelerate precision oncol-
ogy research by enabling observational clinical outcomes to be linked to molecular can-
cer data for downstream analysis, increasing the sample size of clinico-genomic datasets 
several times over [4]. This process allows outcomes to be ascertained on a timepoint-
specific basis, facilitating analysis for research questions that may focus on different por-
tions of the disease trajectory. NLP could also inform cancer care delivery by processing 
EHR data to identify patients who have specific disease states at individual moments in 
time, and who could therefore benefit from interventions such as clinical trial enroll-
ment or palliative care services.

Transformer-based models have become standard for general NLP tasks given their 
potential to yield improved performance, potentially while relying upon less labeled 
data to train supervised learning models. We found that a BERT model with domain 
adaptation on text from our institution performed better than simpler TF-IDF and 
CNN models for text classification, but the simple models still yielded AUROCs > 0.9, 
such that depending on end use case and computational resources, complex models 
may not always be needed if training data are readily available. On the other hand, 
we found that the Flan-T5-XXL architecture with a small amount of prompt engi-
neering yielded good zero-shot performance with no domain adaptation pretraining 

Fig. 3  Impact of classification head on performance (DFCI-ImagingBERT). Associations among classification 
head, training dataset size, and model performance for progression/worsening (left) and response/
improvement (right) for the DFCI-ImagingBERT architecture. CNN = convolutional neural network; 
RNN = recurrent neural network. Linear = fully connected layer applied to the BERT [CLS] token for each 
document
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or fine-tuning on labeled data, demonstrating the potential utility of large language 
models in this space when computational resources are readily available.

There are several potential explanations for the similar performance observed 
between a Transformer architecture and simpler models for this clinical text classi-
fication task, particularly for the response/improvement outcome. One possibility is 
that the outcomes are distinctly keyword-sensitive, such that a few words within long 
documents may define outcomes with relatively less dependence on other context 
from the document. Clinical imaging reports are also substantially longer than typi-
cal sequence lengths for standard Transformer models; this may dilute the benefits 
derived from contextual token embedding by language models in other contexts. Still, 
we also evaluated the Longformer, which is a Transformer specifically designed for 
longer documents, and we did not observe improved performance for downstream 
classification tasks compared with a BERT architecture.

Strengths of this analysis include its derivation from a previously described labeled 
dataset of cancer outcomes linked to imaging reports; labels in this dataset have been 
shown to be clinically relevant and associated with overall survival [4]. Our results pro-
vide practical guidance to researchers who may seek to gather just the necessary volume 

Fig. 4  Comparing DFCI-ImagingBERT model performance to baseline models. Model performance as 
a function of architecture and training dataset size for identifying progression/worsening (top row) and 
response/improvement (bottom row). For boxplots in the right column, the middle line represents the 
median, the lower and upper hinges correspond to the 1st and 3rd quartiles, and the whisker corresponds 
to the minimum or maximum values no further than 1.5 times the inter-quartile range from the hinge. 
Data beyond the whiskers are outlying points, plotted individually in the scatter plots. TF-IDF: term 
frequency-inverse document frequency. CNN: convolutional neural network
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of labeled clinical data in order to train NLP models to perform cancer outcome extrac-
tion. We found that, as expected, model performance improves with greater training 
set size, but that the marginal improvement once the training set reached 300 patients 
(~ 3000 imaging reports) was relatively small.

Limitations include the single-institution nature of the data, as well as limited hyper-
parameter tuning. Transformers are notoriously challenging to train, requiring special-
ized learning rate schedules and initialization strategies for optimization [24]. Given the 
computational complexity of domain adaptation and classification fine-tuning for Trans-
former models, it was not feasible to perform automated (e.g., grid search) hyperparam-
eter tuning for this analysis. It is possible that any of our models might have performed 

Table 2  Model characteristics

TF-IDF Term Frequency-Inverse Document Frequency, CNN convolutional neural network, BERT Bidirectional Encoder 
Representations from Transformers [9], RoBERTa, Robustly optimized BERT approach [40], MIMIC Medical Information Mart 
for Intensive Care, DFCI Dana-Farber Cancer Institute

Model Architecture # of 
parameters 
Trainable/
Total

Pre-trained 
or contextual 
token 
embeddings?

Language 
model pre-
trained in 
domain?

Language 
model 
frozen for 
classification 
training?

Final 
classification 
training layer/
strategy 
tested

TF-IDF Bag of words 
logistic 
regression 
with elastic 
net regulari-
zation

40 K No N/A N/A N/A

CNN One-
dimensional 
convolu-
tional neural 
network with 
global max-
pooling

7 M No N/A N/A N/A

BERT-base BERT 766 K/110 M Yes No Yes CNN head

BERT-med BERT 521 K/42 M Yes No Yes CNN head

BERT-mini BERT 275 K/11 M Yes No Yes CNN head

BERT-tiny BERT 152 K/4.5 M Yes No Yes CNN head

Longformer 
[13]

RoBERTa with 
local context 
and global 
attention

766 K/128 M Yes No Yes CNN head

ClinicalBERT 
[10]

BERT 766 K/110 M Yes Partial 
(trained on 
MIMIC-III ICU 
data) [39]

Yes CNN head

DFCI-
ImagingBERT, 
frozen

BERT 766 K/110 M Yes Yes (trained 
on DFCI 
imaging 
reports)

Yes CNN head

DFCI-
ImagingBERT, 
unfrozen

BERT 110 M Yes Yes (trained 
on DFCI 
imaging 
reports)

No Linear head

Flan-T5 XXL Text to Text 
Transfer 
Transformer

11 B Yes No N/A (zero-shot 
learning only)

1−the 
predicted 
probability of 
the word “no”
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better with additional tuning, and that Transformers might yield more improvements 
on different EHR data tasks. Many variants of healthcare-relevant language models exist 
[10, 25]; we chose one trained on electronic health records text, rather than academic 
publications, as a basis for evaluation. This precludes sharing the DFCI-ImagingBERT 
model weights beyond our institution to evaluate external generalizability. However, our 
goal in this analysis is to provide practical guidance for small teams seeking to extract 
cancer outcomes at academic medical centers, which may have computational resources 
comparable to those in our study, not to train models for external application. NLP mod-
els trained on institutional protected health information may carry at least some risk 
of exposing that information to adversarial attacks [26], and further research into best 
practices for generalizable cross-institution NLP healthcare modeling is needed.

Conclusion
We conducted a systematic evaluation of NLP models for extracting clinical cancer 
outcomes from EHR data. A BERT model with domain adaptation and supervised fine-
tuning for classification yielded the best performance across tasks and metrics, though 
simpler models demonstrated good performance given large quantities of training data. 
Zero-shot learning based on modern large language models also demonstrated good 
performance on some metrics. The reported quantitative results suggest that when 
developing AI models to extract outcomes from imaging reports for clinical cancer 
research, if computational resources are plentiful but labeled training data are limited, 
large language models can be used for zero- or few-shot learning to achieve reasonable 
performance. When computational resources are more limited but labeled training data 
are readily available, even simple machine learning architectures can achieve good per-
formance for such tasks.

Methods
Cohort

The overall cohort for this analysis consisted of patients with cancer participating in a 
single-institution genomic profiling study [27], and relevant data consisted of imaging 
reports for each patient. Each report was treated as its own unit of analysis, and reports 
were divided, at the patient level, into training (80%), validation (10%), and test (10%) 
datasets.

For language model pre-training on data from our institution, reports for all patients 
in the training set were included. This dataset included 662,579 reports from 27,483 
patients with multiple types of cancer whose tumors were sequenced through our insti-
tutional precision medicine study [27].

For classification model training, the imaging reports for a subset of patients with 
lung cancer were manually annotated to ascertain the presence of cancer response or 
progression in each report using the PRISSMM framework, as previously described 
[3]. Briefly, during manual annotation, human reviewers recorded whether each imag-
ing report indicated any cancer, and if so, whether it was responding/improving, pro-
gressing/worsening, stable (neither improving nor worsening), mixed (with some areas 
improving and some worsening), or indeterminate (if assigning a category was not pos-
sible due to radiologist uncertainty or other factors). For NLP model training, response/



Page 11 of 15Elmarakeby et al. BMC Bioinformatics          (2023) 24:328 	

improvement and progression/worsening were each treated as binary outcomes, such 
that an imaging report indicating no cancer, or indicating stable, mixed, or indetermi-
nate cancer status, was coded as neither improving nor worsening. This process, and 
interrater reliability statistics for manual annotation, have been described previously [3]. 
The classification dataset consisted of 14,218 labeled imaging reports for 1112 patients. 
Among the reports, 1635 (11.5%) indicated cancer response/improvement, and 3522 
(24.8%) indicated cancer progression/worsening.

Models

Our baseline architecture was a simple logistic regression model in which the text of 
each imaging report was vectorized using term frequency-inverse document fre-
quency (TF-IDF) vectorization [28]. This model used elastic net regularization with 
alpha = 0.0001, L1 ratio of 0.15, and was trained with stochastic gradient descent. Other 
architectures included one-dimensional convolutional neural networks (CNNs) [22] 
and Transformer-based [8] networks. For the CNNs, text was tokenized and numerical-
ized using the Tensorflow Keras tokenizer, with a vocabulary size of 20,000. For Trans-
former networks, the Huggingface tokenizer [29] corresponding to each Transformer 
architecture was applied. We first evaluated a convolutional neural network architecture 
(CNN), trained only using our labeled data, as previously described [3], except with only 
one output per model. Next, we evaluated classification heads based on BERT models 
trained on general domain text only, using progressively larger numbers of parameters 
(BERT-tiny, BERT-mini, BERT-med, or BERT-base); as well as a Longformer model. We 
next evaluated BERT models adapted on general medical text (ClinicalBERT) [10], or 
first adapted from general domain BERT-base on in-domain imaging reports from our 
institution (DFCI-ImagingBERT). For BERT models, text was truncated and padded 
to the maximum sequence length of the model (512 tokens) beginning from the end of 
the document. For the CNN model, text was truncated and padded to a length of 1000 
tokens beginning from the end of the document. For the Longformer, text was truncated 
and padded to a length of 1024 tokens from the end of the document. Training and eval-
uation were performed using Pytorch [30] and Tensorflow [31].

Subsequently, we conducted an evaluation of zero-shot learning using the T5 encoder-
decoder model [19] based on the Transformer architecture, and the Flan-T5 model [20], 
which is an instruction-finetuned variant of T5 that has demonstrated good perfor-
mance across various natural language processing tasks. We additionally evaluated OPT 
[32] models up to 30B size, T0 [33] models, and some models pretrained on clinical/
medical domain corpora, namely ClinicalT5 [34], Clinical-T5 [35], and SciFive [36]. All 
of these models yielded only very modest results on our validation cohort, compared to 
Flan-T5 in XXL size, which we chose for our further analysis. We employed T5ForCon-
ditionalGeneration and corresponding tokenizer from the Huggingface transformers 
library [29] with the following input text template: "question: {question} context: {imag-
ing report}”. For the response/improvement task, the corresponding question text was "Is 
there improvement/response/shrinking of cancer (yes/no)?" Similarly, for the progres-
sion/worsening task, the question text was "Is there worsening of cancer (yes/no)?." The 
selection of questions for each task involved a limited amount of manual prompt engi-
neering identifying the questions that exhibited the best performance on the validation 
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set. The T5 model’s utilization of relative positional embeddings enabled us to use full 
input texts without truncation. To determine the classification output, we adopted a spe-
cific approach where we allowed the model to generate an output text and extracted the 
first token logits of the generated text. The probability of the "yes" class was computed 
using softmax(1 − logit of the "no" token). This method demonstrated superior perfor-
mance on the validation set compared with using the logit of the "yes" class directly.

Model training

For BERT model domain adaptation on imaging reports from our institution (DFCI-
ImagingBERT), the base model was BERT-base, pre-trained on general domain text and 
accessed using the Huggingface library. Pre-training was performed over 10 epochs, 
which took 10.5  days on a single machine equipped with an NVIDIA Tesla T4 GPU 
(16 GB GDDR6).

For classification models, separate binary prediction models were trained to identify 
response/improvement and progression/worsening, since these constitute distinct out-
comes that would be used differently for downstream analyses (e.g., calculating response 
rate in a given time period, versus progression-free survival). A binary cross-entropy loss 
function and the Adam optimizer were applied for training for the TF-IDF and CNN 
models, and the AdamW (Adam with weight decay) optimizer [37] was applied for BERT 
and Longformer-based models.

We trained each model using fixed samples of reports from the training set, corre-
sponding to the reports from 10, 30, 50, 70, 100, 200, 300, 500, 700, or 884 patients, to 
evaluate the rate at which performance of each architecture improved using progres-
sively more training examples. For BERT-based models, experiments were also con-
ducted to examine the effect of various classification head architectures, including linear, 
convolutional, and recurrent neural network architectures, on model performance; and 
to evaluate the impact of freezing the weights of the underlying language model when 
fine-tuning for classification. The full text of radiology reports—that is, the findings 
concatenated to the impression—was used for each model. BERT-based models have a 
sequence length limitation of 512 tokens, so for these models, the final 512 tokens of 
each report were used. For the Longformer model, the final 1024 tokens were used. For 
the simple CNN model, a sequence length of 1000 tokens was used. Reports shorter 
than the maximum length were padded to the maximum length. The time needed to 
train a DFCI-ImagingBERT model for a classification task on the full training set was 
2.8 h on a machine equipped with a single NVIDIA T4 GPU. The time needed to train a 
Longformer model for a classification task on the full training set was 5.7 h on the same 
machine. To reflect a real-world scenario in which a small team of academic researchers 
seeks to extract cancer outcomes from EHR data with relatively limited computational 
resources, limited hyperparameter tuning was performed. For the TF-IDF model, differ-
ent regularization approaches (L1, L2, and elastic net regularization) were tried. Hyper-
parameters for each model were tuned based on evaluation in the validation set. Model 
training code is provided at https://​github.​com/​marak​eby/​clini​calNL​P2.

https://github.com/marakeby/clinicalNLP2
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Model evaluation

Classification performance for outcomes (1) cancer response and (2) cancer progression 
was evaluated using the area under the receiver operating characteristic curve (AUROC) 
and the area under the precision-recall curve (AUPRC). Additional metrics including 
accuracy, precision, recall, Matthew correlation coefficient (MCC) [38] and F1 score are 
presented; for all fine-tuned models, the threshold model output for a positive predic-
tion was defined as the best F1 threshold in the training set; for Flan-T5 zero-shot, the 
threshold probability was set to 0.5. After training was complete, models were evaluated 
using data for held-out test set patients, after which no further training was performed. 
Figures were then generated to illustrate the performance of each architecture given 
specific training set sizes. Interquartile ranges for model performance metrics were cal-
culated using a bootstrapping approach (evaluation on repeated random subsets of the 
test set). The AUROC of each model was compared to the AUROC of the best model 
statistically using two-sided alpha of 0.05 based on the bootstrapping; no adjustment for 
multiplicity was performed.
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