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Abstract 

Background:  Over the past several decades, metrics have been defined to assess 
the quality of various types of models and to compare their performance depending 
on their capacity to explain the variance found in real-life data. However, available vali‑
dation methods are mostly designed for statistical regressions rather than for mecha‑
nistic models. To our knowledge, in the latter case, there are no consensus standards, 
for instance for the validation of predictions against real-world data given the variability 
and uncertainty of the data. In this work, we focus on the prediction of time-to-event 
curves using as an application example a mechanistic model of non-small cell lung 
cancer. We designed four empirical methods to assess both model performance 
and reliability of predictions: two methods based on bootstrapped versions of para‑
metric statistical tests: log-rank and combined weighted log-ranks (MaxCombo); 
and two methods based on bootstrapped prediction intervals, referred to here as raw 
coverage and the juncture metric. We also introduced the notion of observation 
time uncertainty to take into consideration the real life delay between the moment 
when an event happens, and the moment when it is observed and reported.

Results:  We highlight the advantages and disadvantages of these methods accord‑
ing to their application context. We have shown that the context of use of the model 
has an impact on the model validation process. Thanks to the use of several validation 
metrics we have highlighted the limit of the model to predict the evolution of the dis‑
ease in the whole population of mutations at the same time, and that it was more 
efficient with specific predictions in the target mutation populations. The choice 
and use of a single metric could have led to an erroneous validation of the model 
and its context of use.

Conclusions:  With this work, we stress the importance of making judicious choices 
for a metric, and how using a combination of metrics could be more relevant, 
with the objective of validating a given model and its predictions within a specific con‑
text of use. We also show how the reliability of the results depends both on the metric 
and on the statistical comparisons, and that the conditions of application and the type 
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of available information need to be taken into account to choose the best validation 
strategy.

Keywords:  Empirical, Bootstrap, Log-rank, Confidence interval, Prediction interval, 
Coverage, Joncture, Mechanistic model, Knowledge based model, Validation, 
EGFR + lung adenocarcinoma

Introduction
Mechanistic models and by extension knowledge-based models provide a mathematical 
representation of biological phenomena, and by extension physiological and pathophysi-
ological mechanisms. Based upon knowledge in the literature describing components of 
biology which are integrated using fundamental laws of nature such as physical and bio-
chemical principles, these models allow representation and analysis of complex dynamic 
behavior of variables seen in biology and clinical trials [1, 2]. During the past decade, 
mechanistic models have been progressively integrated into the pharmaceutical research 
and development industry workflow to provide valuable decision support in addition to 
conventional in vitro and in vivo approaches [3, 4].

An essential benefit of mechanistic models, when compared to statistical models or 
machine learning approaches, is that the model equations and associated parameters 
have a direct physical or biological meaning. Indeed, statistical models are based on the 
correlation found between variables while mechanistic ones model causality. This facili-
tates the overall comprehension of the process and the scientific interpretation of model 
results [5]. Moreover, mechanistic modeling can predict biological or physical behaviors 
that have not yet been reported by currently available in vivo or in vitro experiments [6, 
7].

However, because of their complexity, and because this approach is more driven by 
knowledge, which can be considered as consolidated data, and less so by analysis of a 
small number of raw data from a very limited trial dataset, their credibility is often ques-
tioned compared to historical approaches, particularly their capacity to fully reproduce 
real-world data [8, 9]. For this reason, while the adoption of mechanistic modeling is 
in use at most major pharmaceutical/biotechnological companies, and its application is 
accelerating, trust in the relevance of such approaches for predicting novel phenomena 
is still a work-in-progress [10–12] but much work has been done and these models are 
currently used for decision-analytic (“GO/NOGO”) and process improvement (e.g. trial 
optimization) purposes. For example, models have been used to motivate the change of 
an “Approvable” to an”Approved” FDA decision for an oral anti-infective. They also have 
been used to successfully show, quantitatively and correctly, that the mechanism that 
a novel asthma therapy candidate was based upon was incorrect and that the therapy 
wouldn’t work. In another example, Pfizer found that a novel diabetes therapy would not 
reduce HbA1c sufficiently with respect to existing therapies. In the asthma and diabetes 
cases, the programs were terminated and in both cases competitors did a trial which 
aligned closely with the model predictions. The oral drug example was estimated to have 
saved $100million. The asthma and diabetes examples both saved about $30  M trial 
costs, according to the company that did the modeling (and in the asthma case, accord-
ing to the company that spent $30 million on the needless trial). This is why every major 
pharma company has a Quantitative Systems Pharmacology (QSP) group or at least QSP 



Page 3 of 21Jacob et al. BMC Bioinformatics          (2023) 24:331 	

initiatives with service providers. We did not include these examples as there are many 
articles and cases in the QSP field.

Such mechanistic models can be of crucial importance [13–15] when it comes to help-
ing and optimizing drug development. Indeed, because the models leverage large bio-
logical and medical knowledge for their structure and parameter values, only a limited 
amount of additional data is required to build an informed model that can be used to 
explore multiple settings (e.g. doses, regimens, patients characteristics) and choose the 
ones likely to work in clinical setting. As a consequence, it reduces (i) the ethical cost by 
limiting the number of patients exposed to a treatment setting that would not be effi-
cient for them, as well as (ii) time and financial cost by limiting the number of trials and 
medical staff needed to gather preliminary data. Also, mechanistic models are adapt-
able to changes due to their modular nature: for instance, the addition of new candidate 
treatment to compare with golden standards of care.

For example, the model we present in this article focuses on EGFR-mutant lung ade-
nocarcinoma and can be useful to create a synthetic control arm with a historical stand-
ard of care. This would allow to enroll real-world patients in the investigational arm, and 
thus maximize the benefit they can have from the treatment. Also, should a new treat-
ment be added in the model, it would allow the in silico analysis of the patient subpopu-
lations that would best benefit from the investigational treatment.

Even if the links between the variables of interest in these models are reported and jus-
tified in the literature, the range, the distribution and the correlation of their parameter 
values are difficult to evaluate. To overcome this problem, calibration is now a standard 
step in mechanistic model construction. Calibration can be defined as the search for a 
set of model parameter values that allows the model to reproduce a predefined set of 
behaviors and dynamics, observed in real life [13]. However, how can we ensure that a 
model calibrated on several relevant datasets is good enough to be considered as vali-
dated and credible for its intended use?

Indeed, as with statistical models, mechanistic models have to be validated in order to 
confirm that their predictions are reliable and accurate. To avoid tautological bias and 
improve model credibility, this step requires data that has not been previously used for 
other purposes, such as model calibration [16, 17].

Model validation is a very topical issue, and is of interest to regulatory agencies. 
Indeed, the ASME V&V 40 Subcommittee on Verification and Validation (ASME V&V 
40) in Computational Modeling of Medical Devices developed a risk-informed credibil-
ity assessment framework including a quantitative validation phase [10], and the Euro-
pean Medicines Agency (EMA) has drafted a specific guidance on the reporting of PBPK 
models including the evaluation of the predictive performance of the drug model [18]. 
According to these guidelines, the context of use (CoU) of a model must also be defined, 
which defines the specific role and scope of the model in addressing the questions of 
interest [19].

The validation on retrospective data requires careful choice of appropriate metrics 
that take into account the nature of the measurements and the existing variability and 
bias [20–22]. In the case of mechanistic models, the outputs are variable dynamics over 
time which are, most frequently, related to discrete reported observational or experi-
mental values. Such experimental measures show an inherent variability due to the type 
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of instruments that were used, as well as its resolution or sensitivity level, the quality of 
the sample, the applied protocol, human variability in reporting results and variability 
between samples [23–26], that also needs to be considered in the establishment of a vali-
dation strategy. In a situation of time-to-event (TTE) data, an additional difficulty can 
arise. Indeed, the TTE reported in real life corresponds to the moment when the event 
is detected by the observer, and not to the moment when it really happened. These two 
moments can be separated by a potentially significant period of time depending on the 
frequency of observations. Moreover, the model’s purpose is to predict the exact time 
until the occurrence of the event, and not the time to the observation of the event. This 
concept also has to be taken into consideration during the validation process.

Another goal of the validation process is also to guarantee that the model is not over-
fitted, which can happen if it was calibrated using datasets with limited variability. Addi-
tionally, the validation should as well assure that the variability of predictions of the 
model is not excessively wide. The latter can be assessed by evaluating the prediction 
intervals, that is to say, the range within which future observations should fall. There-
fore, an adequate validation strategy should prevent both overfitting and underfitting as 
designing a model with the appropriate complexity requires achieving a balance between 
bias and variance, as well as a control of overfitting. Otherwise, if the prediction interval 
is too wide, the model’s outputs will lack precision and therefore the model’s credibility 
and usefulness will be low [27].

In order to demonstrate how the validation approach is applied, a case study including 
TTE oncological data will be described.

In summary, in this article we address the following challenge: how to properly man-
age the validation process when faced with a multi-condition situation, namely:

•	 Discrepancy in the size of the data to be compared: indeed, on the one hand, a mech-
anistic model may produce a very large amount of data. On the other hand, we wish 
to challenge the model outputs with a limited experimental validation dataset. Issues 
such as excess of statistical power, discrepancy in variability and uncertainty quantifi-
cation will likely arise.

•	 Hypotheses for the application of statistical tests are not always verified producing a 
lack of statistical power.

•	 The uncertainty linked to the occurrence of events during clinical studies: the obser-
vation time uncertainty (further detailed in the “Methods” section), that is not han-
dled by one deterministic model.

In this article, we focus on quantitative validation, a step of the overall validation pro-
cess recommended by the regulatory guidelines (ASME V&V 40 [28] and EMA [18]). 
We introduce multiple methods suited to validate deterministic non-linear mechanistic 
models including feedback loops, producing a TTE type of outcome. Importantly, these 
validation approaches consider both the model uncertainties and the variability of vali-
dation data.

We first present the methodology behind each one of those approaches, including the 
pre-processing of the dataset. Then, to answer the question of interest, we design four 
empirical methods to assess the model’s performance and the reliability of predictions: 
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two methods based on bootstrapped versions of parametric statistical tests (log-rank and 
combined weighted log-ranks—MaxCombo) and two methods based on bootstrapped 
prediction intervals (that we named raw coverage and juncture metric). We also intro-
duce the notion of observation time uncertainty (OTU) to take into consideration the 
delay between the moment when an event actually occurs, and the moment when it is 
witnessed and reported. Indeed in clinical routine, the time until an event of interest is 
not known precisely and instead, only is known to fall into a particular interval between 
two visits where the event could be reported by a clinician [29, 30].

We then present an application on a clinical example. We finally discuss our results, 
highlight the advantages and disadvantages of these methods according to the applica-
tion context, compare the performances and conclude.

Methods
The statistical approaches, which are described hereafter, are combined with two addi-
tional mathematical concepts in order to better match the actual clinical context of this 
application example. Thus we first introduce the bootstrap and OTU concepts and then 
proceed with the actual statistical validation approaches.

Bootstrap

In the context of modeling and simulation, one is not theoretically limited by the num-
ber of simulated statistical units (patients). This can be an advantage but also a drawback 
when using inferential statistics. Indeed, under the assumption of the same variance of 
the data, the statistical power will increase with the size of the sample [31]. This can lead 
to a misinterpretation of the results if the test is statistically significant, concluding that 
there is a clinically relevant difference between compared groups when there is none 
[32]. In order to control this statistical power, to avoid tests from being overly sensitive 
to negligible differences between groups, and to take into account the model uncertainty 
and the variance of the sampling in the simulation results, a bootstrapped version of the 
statistical tests is recommended [33–35]. By using a bootstrapped approach, the statisti-
cal tests are not applied to the entire population but to smaller samples (defined as being 
equal to the size of an ongoing clinical study (to mimic this study) or calculated a priori 
via the usual sample size calculation methods), therefore preventing the tests from being 
excessively sensitive because of an excess of statistical power [36]. Repeating the calcula-
tions by bootstrapping makes it possible to empirically determine the distribution of the 
statistic which stabilizes around its value after a certain number of iterations according 
to the central limit theorem [37].

The output of the bootstrapped-testing approach is a ratio of significant or non-sig-
nificant tests at a defined alpha risk (set to 5% in our case) out of the total number of 
performed tests [38–41]. The ratio of significant tests in a context of bootstrapped test-
ing can be linked to the empirical statistical power of the test [42]. This ratio is then 
compared to a given threshold. For the sake of homogeneity with the two interval based 
approaches which will be introduced in the following sections, we will focus on the ratio 
of non-significant tests, meaning that the higher the ratio, the better the model predic-
tions (no rejection of the null hypothesis). We chose to set the value of this threshold 
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at 80%, as this value is conceptually the mirror of the currently accepted value for the 
power of a comparison when one wants to reject the null hypothesis [43].

To determine how many iterations are required, preliminary tests are performed to 
see how long it takes for the ratio of non-significant tests to become stable (cf. Fig. S1 
in Additional file 1).

Observation time uncertainty

The mechanistic models considered here are deterministic. Because we have access by 
design to the model outputs at all time points, the exact time at which a simulated event 
takes place can be determined. This model output is named the predicted-time-to-event 
(PTTE). In real patients, the true TTE can only be bounded between the time of two 
observations. We do not know the “exact” time-to-event. Therefore, an unknown dif-
ference between the PTTE and the reported time-to-event (RTTE) exists, bounded by 
the time between two observations (Fig. 1). This time frame is what will be called the 
OTU, and depends on the delay between two observations. In other words, the actual 
TTE could have occurred in a time period ranging from the reported RTTE to the RTTE 
minus the time elapsed since the previous observation period. Nevertheless, one should 
keep in mind that we should not expect the model to cover this entire period since there 
is no evidence that the whole area reflects the real time at which the event occurred. A 
visual representation of the OTU is presented below.

The two concepts introduced above (bootstrap and observation time uncertainty) will 
be used in combination with the following validation approaches. Their description as 
well as their advantages and limits will be described.

Raw coverage

In order to perform both a quantitative and a visual validation of the computational 
model based on the validation dataset, a raw data coverage validation is performed. 
This approach consists of computing the percentage of the observed curve covered 
by the prediction interval of the model. In the context of simulation, there is no limit 
to the number of times one can run the same model, changing a few numbers of 
parameters and getting a new endpoint value. As a consequence, one can perform a 
large number of model runs so that there are more available model endpoints values 
than the number of endpoints values reported within the real population. Therefore, 
the definition of the prediction interval computed using bootstrapping has been 

Fig. 1  Representation of the observation time uncertainty. If an event happens between observation 1 
and observation 2, it will only be reported at the time of observation 2. The observation time uncertainty 
corresponds to the time between two observations. To note, even though the TTE can theoretically 
happen any time between two observations, it is unknown whether this is true in a real life context. TTE: 
time-to-event, RTTE: reported time-to-event
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adapted. At each iteration, a sample of simulated endpoints of the same size as the 
size of the real life population is taken from the set of simulated endpoints, and a 
Kaplan–Meier (KM) time to progression curve is estimated. This step is repeated 
n times. For each of these samples, based on the estimated Kaplan–Meier curve, 
an interpolation of the survival probability is then performed, for each of the times 
when an event is recorded in the entire simulated population. The distribution of the 
probability of being event-free is then computed for each time point, and based on 
the data collected from all samples, the empirical 2.5% and 97.5% quantiles are then 
calculated, the latter will serve as boundaries for the prediction interval. The level of 
coverage of the observed curve with the prediction interval of the simulated curve 
is then computed: for each time point, a check is performed to see if the observed 
curve is within the prediction interval—value is set to “True”—or not—value is set 
to “False” -. The percentage of “True” values is then computed. If the ratio is greater 
than a predetermined threshold, then, the model is considered to be validated. We 
estimated that a coverage value of at least 80%, meaning that no less than 80% of the 
observed survival curve is included in the prediction interval, is acceptable to con-
sider the model as validated.

The choice of the right threshold is a critical process which involves biomodelers 
and biostatisticians, and has to answer certain criteria: (i) it has to be high enough to 
be restrictive, therefore demonstrating the model’s predictive capability, not exces-
sively high so that (ii) it does not force the model to be overfitted on the validation 
dataset, (iii) it can be attained given the constraints of the validation process (e.g.: 
the quality of the available validation dataset), (vi) the threshold should be connected 
to well established statistical concepts when possible (with test-based approaches), 
and/or justified by clinical or biological considerations. In the case of interval based 
approaches such as the raw coverage, or the juncture metric which will be intro-
duced in the next section, the validation threshold has been defined while having in 
mind that it can be difficult for a model to accurately predict a time-to-event vari-
able at the very beginning and the very end of the observation period, also consider-
ing the fact that in those periods, model predictions have a usually narrow associated 
prediction interval, therefore justifying a threshold of 80% (the remaining 20% cor-
responding to the early and late periods of the observation window).

The raw coverage approach has the advantage of using the raw observed data with-
out any prior transformation, considering that the real events occurred exactly at the 
moment of the reported event. In addition to the computed metric, the raw coverage 
allows one to easily perform a graphical check of the model’s ability to reproduce 
the observed results (see Fig. 2 for an example of this approach applied to synthetic 
data).

The fact of considering that the event happened exactly at the time of the observa-
tion can also be considered as a limitation, as this is very unlikely. Indeed, the real 
event most certainly occurred sometime in between observation periods. Another 
point of concern is that the value of the raw coverage strongly relies on the width 
of the prediction interval. Indeed, the wider the interval, the more chances for the 
observed curve to be included in it. This means that if the model produces a lot of 
variability, then the raw coverage value will most certainly be very high.
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Juncture

The juncture approach is similar to the raw coverage in the way that it is both a math-
ematical and a visual validation method. It differs from the latter by the fact that it 
takes into account the OTU in the form of an interval and therefore does not rely 
on the assumption that the event occurred exactly at the time it was reported. This 
approach aims to evaluate if there is a reason to think that, for each given time point, 
the model simulations have no chance to get along with the reported data.

We name the observation variability interval the bound between the originally 
reported survival curve, and a curve where all events are shifted by a delay equivalent 
to one OTU. Thus each event factually occurring within this interval would be clini-
cally reported on the corresponding survival curve.

The juncture approach measures the proportion of time over the entire observation 
period where the clinical evaluation interval and the 95% prediction interval overlap 
even if it is only partially. More precisely, at each time point where observed data is 
available, a check is performed to see if the two intervals contain common values. 
Should the condition be met, it means that the model is able to accurately explain the 
reported data based on the available information. Otherwise, it would mean that the 
model is unable to describe the reported data behavior.

The juncture approach metric corresponds to the ratio of time points where this 
condition is met, over the total number of time points. If the ratio is greater than 
a predetermined threshold, then, the model is considered to be validated (see Fig. 3 
based on generated synthetic data for illustrative purposes).

Similarly to the raw coverage, it is easy to identify the periods of time during the 
observation period where the simulation outputs successfully reproduce the observed 
data.

One of the limits of the metric associated with this approach is that it is strongly 
dependent on the width of both intervals, that is to say on the variability initially 

Fig. 2  Representation of the raw coverage. The purpose of this example is to illustrate the raw coverage 
metric based on generated synthetic data. In the time interval of 0 to 10 months, the synthetic reference 
curve is covered by the prediction interval from t = 0 to t = 3.6 months, then between t = 7.95 and 
t = 10 months. This gives a raw coverage of ((3.6–0) + (10–7.95))/(10–0) = 56.5%
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included in the computational model, which can come from the data used to calibrate 
it, as well as on the size of the OTU. Indeed, the larger the time in between observa-
tions, the wider the interval, and vice versa. Moreover, with the juncture approach, 
even a slight overlap of the two intervals is enough to be considered satisfactory, at 
a given time point. This means that overall, even if a small fraction of the observed 
data is covered by the simulated outputs over the entire observation period, then the 
entire prediction will be considered as validated, even if the latter is shifted up or 
down compared to the observations. As for the raw coverage, the juncture approach 
does not rely on a statistical test, with a p-value as an output, but instead on an arbi-
trary value between 0 and 100%. In a similar fashion, a value above 80% is considered 
to be acceptable to judge the model predictions as validated.

Bootstrapped log‑rank test

The log-rank is a well known and widely used test to compare survival curves [41, 44]. 
Its statistic is based on the computation of the difference between the observed and 
expected number of events in one of the groups at each observed event time. These 
differences are then added up to get an overall summary across all-time points where 
there is an event. The log-rank does not rely on the proportional hazards assump-
tion, that is to say the risk associated with the event of interest remains proportional 
in both compared groups over the course of the follow-up period. It is a valid test of 
the null hypothesis of equality of survival functions. Nevertheless, if the proportional 
hazards assumption is not met, the log-rank test will be less powerful and therefore 
less capable to detect a difference between the two compared groups. [45, 46].

Log-rank’s assumptions are the following: the degree of censoring should not be 
related to the outcome, and the events should have really happened at the reported 
time.

Fig. 3  Representation of the juncture metric. The purpose of this example is to illustrate the "juncture" metric 
based on generated synthetic data. In the time interval of 0 to 10 months the synthetic reference interval 
overlaps, at least partially with the prediction interval from t = 0 to t = 5 months, then between 6.8 and 
10 months. This results in a juncture of ((5–0) + (10–6.8))/(10–0) = 82%
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The log-rank test is integrated into a bootstrapped approach, and is tested first on 
the raw experimental data. It is then tested again with an OTU sampled from a uni-
form distribution U(-OTU, 0) being assigned to each real patient, at each iteration.

A given number of bootstrap iterations are performed and the ratio of significant 
tests at a given alpha risk level is assessed. If this proportion does not exceed a certain 
predetermined threshold, the model is considered to be validated. As described in the 
“Bootstrap” section, a threshold of 80% has been chosen as the minimal value to be 
reached in order to consider the model’s predictions as validated with this method.

At each iteration proportional hazards assumption is checked, for exploratory pur-
poses [47, 48].

The advantage of the log-rank based validation approach is that it relies on a statis-
tical test frequently used to assess differences between two samples when it comes to 
TTE data, making its results easy to understand. The proposition to combine the log-
rank test with a bootstrap approach, with a sampling of a number of model runs com-
parable to the number of real patients, prevents it from being excessively sensitive to 
differences between groups because of an excess of statistical power induced by a very 
large number of statistical units.

However, because the statistical power of the log-rank test is affected by the pro-
portional hazards assumption, its results might not be considered reliable for sam-
ples where the assumption is not met [45]. This implies that if the number of samples 
where the proportional hazards assumption is not met is high, the ratio of significant 
tests can be biased. A method more suited for the situations where the proportional 
hazard hypothesis is not met is introduced in the next section.

In the case where the OTU is not taken into account, the TTE curve based on the 
sample taken from the simulated data is directly compared to the raw observed data, 
implying that the reported (RTTE) and the real TTE are equal, which can be consid-
ered as a strong assumption.

Bootstrapped weighted log‑rank tests combination

Several statistical methods have been developed to better manage the risk of type 1 
error and to optimize statistical power in a situation where the proportional hazard 
assumption is not met [45, 46, 49, 50]. One of these methods is the use of a com-
bination of weighted log-rank tests, called the MaxCombo approach [51, 52]. This 
approach consists in the use of the Flemming-Harrington family of weights (FH(ρ, γ), 
ρ, γ ≥ 0). The combination of weights that is used is the following:

–	 FH(0,0) corresponding to a regular non-weighted log-rank
–	 FH(1,0) for a log-rank putting more weight on early differences
–	 FH(1,1) where weights are put on mid-observation differences
–	 FH(0,1) where late differences are given more weight

Similarly to the log-rank, this approach is also bootstrapped. At each iteration of 
the bootstrap, all four tests are performed, and the one with the highest z-score, that 
is to say, the test with the weights showing the largest difference between KM curves, 
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is selected. Given the fact that four tests are performed at once, a Bonferroni correc-
tion is applied to the p-value of this test.

The weighted log-rank combination approach is a more robust version of the standard 
log-rank based one, usable even in the situation where the two compared survival curves 
cross, implying the proportional hazards assumption is not met. By drawing sub-sam-
ples, from the very large simulated population, of the same size as the observed popula-
tion (a reasonable sample size), we control the occurrence of excessive statistical power 
related to large samples, preventing the test from being overly sensitive to neglectable 
differences between the two groups.

As out of the four tests performed at each iteration, it is the one with the highest 
z-score that is selected, this approach tends to find more differences than a standard 
log-rank because more weight is put on the time period where the distance between 
KM curves is at its maximum. For this reason, the validation acceptance threshold has 
to be defined accordingly, and should eventually be set lower when compared to other 
approaches. Similarly to the bootstrapped log-rank test, this approach is launched twice, 
first without the OTU, and a second time with a random OTU assigned to real patients 
at each iteration.

The advantages and limits of the 4 validation methods as well as their variants with 
OTU are summarized in the Table 1 below.

Application example: validation of a mechanistic model of lung adenocarcinoma 

under gefitinib treatment

The methods that were presented in the previous section were assessed and tested on 
a knowledge-based mechanistic model of the tumor evolution of patients with lung 
adenocarcinoma.

This model, named the In Silico Epidermal growth factor receptor Lung Adenocarci-
noma (ISELA), evaluates tumor growth and progression in patients harboring a muta-
tion on the Epidermal Growth Factor Receptor (EGFR), and relies on a mechanistic 
representation of the lung adenocarcinoma (LUAD) evolution from specific EGFR muta-
tions to clinical outcome [53]. It includes shrinkage in response to the administration of 
a first generation tyrosine kinase (TKI) drug called gefitinib. This model was calibrated 
with publicly available data [54–59], and details regarding the calibration of tumor 
growth are given in a paper published by Palgen et al. [60]. It should be noted that this 
model is not designed to predict mortality from any cause, but rather developed to pre-
dict time to tumor progression (TTP), which was deduced from progression-free and 
overall survival curves.

In this application context, we focus on the TTP clinical endpoint and will apply our 
validation strategy to ensure the ISELA model’s accuracy on a dataset that was not previ-
ously used in the calibration process: the one extracted from Maemondo et al. and not 
previously used for calibration purposes [61]. This study compares the effect of gefitinib 
versus chemotherapy on NSCLC (of which 90.4% are LUAD) with mutated EGFR. The 
trial described in the article, and called NEJ002, took place in Japan and gefitinib was 
used as the first-line treatment. About 90% of the analyzed population had stage IIIb or 
IV cancers. In this study, gefitinib (250 mg/d) was orally administered once daily, until 
disease progression, development of intolerable toxic effects, or withdrawal of consent. 
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The progression-free survival (PFS) and the overall survival (OS) curves were manually 
extracted for patients treated with gefitinib.

Pre‑processing of the datasets

A gap was identified between the model output and the dataset related endpoint. While 
the model represents TTP, which is a clinical endpoint that censors out the patients that 
die, the dataset extracted from Maemondo et al. focuses on PFS and OS. In both clinical 
endpoints, a patient’s death prior to disease progression is therefore an event and is not 
censored out.

To be able to compare the model TTP to the experimental dataset, the endpoint dis-
ease progression was derived from clinical PFS and OS: we manually extracted the KM 
curves of PFS and OS and their corresponding censored events, and deduced the list of 
PFS and OS TTEs.

Table 1  Summary of the characteristics of the validation methods (OTU: Observation Time 
Uncertainty, TTE: Time-To-Event)

Method Advantages Limits

Raw coverage Based on the reported and non pre-
processed data
A graphical check can easily be 
performed to assess the quality of 
the coverage

Does not take into account the OTU
Strongly dependent on the width of 
the predicted interval
Does not rely on a statistical test

Juncture Takes into consideration the OTU
A graphical check can easily be 
performed to see how well the 
observed and predicted intervals 
overlap

Strongly dependent on the width 
of both observed and predicted 
intervals
A minimal overlap between the two 
intervals is enough to consider the 
predictions as validated for a given 
time point
Does not rely on a statistical test

Bootstrapped log-rank (without 
OTU)

Based on a statistical test frequently 
used in a TTE context
Combined with a bootstrap 
approach to avoid an excess of 
statistical power

Does not take into account the OTU
Credibility of the result if the propor‑
tional hazards assumption is not met

Bootstrapped log-rank (with OTU) Based on a statistical test frequently 
used in a TTE context
Combined with a bootstrap 
approach to avoid an excess of 
statistical power
Takes into consideration the OTU

Credibility of the result if the propor‑
tional hazards assumption is not met

Bootstrapped combination of 
weighted log-ranks (without OTU)

Based on an improved version of 
the log-rank test, more robust in 
case of non-proportional hazards
Combined with a bootstrap 
approach to avoid an excess of 
statistical power

Does not take into account the OTU
Can be overly sensitive to minor dif‑
ferences because of its design

Bootstrapped combination of 
weighted log-ranks (with OTU)

Based on an improved version of 
the log-rank test, more robust in 
case of non-proportional hazards
Combined with a bootstrap 
approach to avoid an excess of 
statistical power
Same as above
Takes into consideration the OTU

Can be overly sensitive to minor dif‑
ferences because of its design
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Under the assumption that patients who died before disease progression are charac-
terized by the same time to event in the PFS and OS sets, we are able to filter out PFS 
events that correspond to patients’ death. Indeed, by removing from the PFS values 
all TTEs that are equal in PFS and OS datasets with a small tolerance due to manual 
extraction uncertainty, one is left with the TTEs where events are disease progression 
only. The reduced dataset was named NEJ002 TTP. We consider as equal any PFS and 
OS values that differ from maximum 2 days.

The NEJ002 TTP dataset is composed of 74 patients, corresponding to 68% of the 
original dataset, a percentage which seems plausible, considering that the remaining 
32% correspond to either censoring, or dead patients. Nevertheless, the exact num-
ber was not reported in Maemondo et al.. Among the removed data points, 24 cor-
respond to censored events and 10 to death preceding disease progression. Removal 
of those data points leads to a shift of the curve towards the left. It should be noted 
nonetheless that the overall linear slope is unchanged (Fig. 4).

The statistical validation methods described previously were applied to compare the 
ISELA simulation results to the NEJ002 TTP dataset. For all situations where a boot-
strap approach was used, 5000 iterations were performed (cf. Appendix 1), while for 
approaches based on the log-rank test, the alpha risk level was set at 5%. The time 
between visits being 2 months, the OTU used ranged between -2 and 0 months.

Note that the ISELA model represents the tumor growth from which we can deduce 
the TTP, and only right censoring can be represented by the model.

Fig. 4  Survival curve based on the NEJ002 dataset. Probability of progression-free survival (red curve) and 
tumor non-progression (blue curve) respectively before and after removal of dead and censored patients. 
The dashed line highlights the impact of data-processing on time corresponding to the median probability. 
Median PFS (12.43 months) and TTP (10.17 months) are represented with dotted lines. PFS data manually 
extracted from Maemondo et al., processed and plotted in R
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Results
Results on entire population

According to the initially defined CoU, the validation approaches were applied to the 
data corresponding to the entire population extracted from the Maemendo et al. arti-
cle and based on the NEJ002 trial. The results are shown in Fig. 5 and summarized in 
Table 2.

In this context of use, the results provided by the various validation methods 
vary from 57.96% to 98.14% of validation. Four methods show a metric superior to 
the chosen threshold of acceptance set at 80%, while the two others fail to reach it. 
The raw coverage, and the weighted LR based method without OTU fail to reach the 

Fig. 5  Observed and simulated Kaplan–Meier curves computed on the full dataset. The 95% bootstrapped 
prediction interval of the simulated curve is represented by the green area. (Boot. = Bootstrapped, 
LR = log-rank test, comb. of wt. LR = combination of weighted log-rank tests (MaxCombo))

Table 2  Results of the various validation methods applied to the full dataset. (PH = proportional 
hazards)

The acceptability threshold was set at 80%. Given the way all four metrics are defined, the higher the value, the closer the 
model predictions are to the observed values according to the validation assumptions

Method Metric value (%) Ratio of of samples where 
PH assumption is not met 
(%)

Raw coverage 57.96 NA

Juncture 87.71 NA

Bootstrapped LR (no OTU) 87.68 4.68

Bootstrapped LR (with OTU) 98.14 12.92

Bootstrapped weighted log-rank combo (no OTU) 64.9 4.62

Bootstrapped weighted log-rank combo (with OTU) 87.24 13.28
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validation threshold. The reason for the raw coverage metric to remain below 80% 
can be explained by the fact that between 2 and 6 months, the model underestimates 
the number of events, and then overestimates them between 12 and approximately 
24  months, as shown in Fig.  5. Regarding the weighted LR based approach without 
OTU, it shows that the model’s predictions are not accurate while both bootstrapped 
LR metrics, with and without OTU, as well as the weighted LR with OTU, indicate 
that the model is performing well. This difference can be explained by the fact that 
simulated and observed curves cross, implying that the statistical power of LR tests is 
reduced, resulting in a lower rejection rate of the null hypothesis, and consequently, a 
higher validation metric. The fact that the OTU is taken into consideration also has a 
positive impact.

Refinement of the context of use

According to previous results and the noticeable discrepancies between methods, in 
order to show how data structure and the model’s CoU can have an impact on the 
model validation process we decided to go further through the exploration of the 
data. Indeed, considering the mutational status of the tumor, the data used for valida-
tion consist of a mixture of two populations. Each of these subsets was characterized 
by a specific EGFR mutation: exon 19 deletion (Del19) and L858R on exon 21. Those 
mutations had an impact on the time to progression [62–64], making the simulta-
neous validation on both types of patients not relevant and potentially incorrect. 
Thus, in order to have a more precise assessment of the model’s predictive capability, 
the validation process assessment was stratified according to the mutation status of 

Fig. 6  Observed and simulated Kaplan–Meier curves computed on the Del19 subpopulation. 
The 95% bootstrapped prediction interval of the simulated curve is represented by the green area. 
(Boot. = Bootstrapped, LR = log-rank test, comb. of wt. LR = combination of weighted log-rank tests 
(MaxCombo))
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patients. This was done consistently with the calibration which was performed on a 
set of individual data patients, for which the EGFR mutation was specified.

After applying the validation approaches to the Del19 subset, new metrics were 
computed and summarized in Fig. 6 and Table 3.

As for the Del19 subset, the validation metrics on the L858R subset were computed 
and summarized in Fig. 7 and Table 4.

When applied to the Del19 subset, the raw coverage approach provided better 
results than on the overall population with approximately 12% more coverage of the 
observed curve. Regarding the juncture method, the value was lower by 7.12% for 
the subset. A decrease was found as well for both the bootstrapped log-rank (-3.66% 
without OTU, -3.88% with OTU) and the bootstrapped combination of weighted 

Table 3  Results of the various validation methods applied to the Del19 subset. (PH = proportional 
hazards)

Method Metric value (%) Ratio of of samples where 
PH assumption is not met 
(%)

Raw coverage 69.98 NA

Juncture 80.59 NA

Bootstrapped LR (no OTU) 84.2 12.34

Bootstrapped LR (with OTU) 94.26 19.24

Bootstrapped weighted log-rank combo (no OTU) 71.1 12.42

Bootstrapped weighted log-rank combo (with OTU) 84.02 19.02

Fig. 7  Observed and simulated Kaplan–Meier curves computed on the L858R subset. The 95% bootstrapped 
prediction interval of the simulated curve is represented by the green area. (Boot. = Bootstrapped, 
LR = log-rank test, comb. of wt. LR = combination of weighted log-rank tests (MaxCombo))



Page 17 of 21Jacob et al. BMC Bioinformatics          (2023) 24:331 	

log-ranks with OTU (-3.22%). The version without the OTU increased by 6.2%. 
The results obtained on the Del19 subset show that there are even more differences 
between the validation data and the simulations than in the previous CoU. The model 
appears to be unable to correctly predict events in this subgroup, despite the better 
results obtained with the raw coverage approach, which indicate that relying on a sin-
gle metric is not enough to properly evaluate the quality of the model’s predictions. 
We note here, as an aside, that mismatches such as this help guide model improve-
ment, allowing us to better understand the disease and treatments effects. Without 
such a model, these discrepancies might not even be noticed.

In the case of the L858R subset, both the raw coverage and juncture methods pro-
duced much better results than on the entire population: 99.62% for both approaches, 
equal to an increase of 29.64% and 19.03%, respectively. With the bootstrapped log-
rank, the results were better without the OTU (+ 13.4%), as well as with the OTU 
taken into account (+ 4.68%). For the bootstrapped combination of weighted log-
ranks, both metrics without and with OTU were better on the subset than on the 
global population (+ 32.24% and + 14.92%, respectively). This demonstrates that all 
validation metrics can show good performances when the CoU is properly chosen. 
Indeed, it appears that the model is well suited to predict the events in the L858R sub-
group, which was not the case for the Del19 subset.

Table 4  Results of the various validation methods applied to the L858R subset. (PH = proportional 
hazards)

Method Metric value (%) Ratio of of samples where 
PH assumption is not met 
(%)

Raw coverage 99.62 NA

Juncture 99.62 NA

Bootstrapped LR (no OTU) 97.6 2.38

Bootstrapped LR (with OTU) 98.94 5.32

Bootstrapped weighted log-rank combo (no OTU) 97.14 2.8

Bootstrapped weighted log-rank combo (with OTU) 98.94 5.7

Table 5  Differences between the results obtained on the initial dataset and the Del19 and L858R 
subsets

Method Difference between 
full dataset and Del19

Difference between 
full dataset and L858R

Difference between 
Del19 and L858R 
datasets

Raw coverage  + 12.02%  + 41.66%  + 29.64%

Juncture − 7.12%  + 11.91%  + 19.03%

Bootstrapped LR (no OTU) − 3.66%  + 9.74%  + 13.4%

Bootstrapped LR (with OTU) − 3.88%  + 0.8%  + 4.68%

Bootstrapped weighted log-rank 
combo (no OTU)

+ 6.2%  + 36.24%  + 32.24%

Bootstrapped weighted log-rank 
combo (with OTU)

− 3.22%  + 11.7%  + 14.92%
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The differences between the metrics obtained on the entire population and on the sub-
sets are summarized in the Table 5 below.

Conclusion
In this article, we introduced different approaches to validate mathematical model pre-
dictions on Time-To-Event data, and gave some insight on how to perform a robust 
validation of a mathematical model by choosing one or multiple methods to correctly 
evaluate the model’s prediction. We have emphasized that the choice of methods and 
metrics is highly impactful and thus it should be made according to the context, availa-
ble validation data, and to its specificities, structure and nature (single curve or interval).

We demonstrated in the application section that a model is meant to be applied to a 
specific context of use (CoU), as otherwise, by performing a validation on an excessively 
broad dataset, the whole process may fail because the model will not be able to correctly 
predict the events for heterogeneous subpopulations. Moreover, the importance of using 
multiple validation methods at once instead of relying on a single one was illustrated by 
the results obtained on a non-adapted CoU (e.g. Del19) where, by looking at only one 
validation metric (raw coverage in this specific case), one could wrongfully conclude that 
the model performed well, or at least better than within the previous CoU, while in fact, 
all the other metrics together demonstrated a worse performance of the model.

Indeed, the strength of the validation process comes from the combination of well 
selected validation metrics, as each one has its own strengths and weaknesses and con-
ditions of application (see Table 1). We highlighted and suggested that simultaneously 
using multiple methods that rely on different statistical concepts can ensure correct 
evaluation of the model’s performance. Nevertheless, we noted that some of the meth-
ods introduced in this article will have more weight than others in a combined approach, 
because some methods are relatively more robust and more prone to detect differences 
between observed and simulated data, for example the MaxCombo approach when the 
assumption of proportional hazard is not met.

It should be noted that during the validation process, it is necessary to avoid tautology, 
principally by using data not used for the construction of the model, and to avoid trying 
to validate the model by arbitrarily changing goals, but to define a priori protocol and 
methods in order to evaluate the model and the context of use properly.
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