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Abstract 

Background:  There is a pressing need for improved methods to identify effective ther-
apeutics for diseases. Many computational approaches have been developed to repur-
pose existing drugs to meet this need. However, these tools often output long lists 
of candidate drugs that are difficult to interpret, and individual drug candidates may 
suffer from unknown off-target effects. We reasoned that an approach which aggre-
gates information from multiple drugs that share a common mechanism of action 
(MOA) would increase on-target signal compared to evaluating drugs on an individual 
basis. In this study, we present drug mechanism enrichment analysis (DMEA), an adap-
tation of gene set enrichment analysis (GSEA), which groups drugs with shared MOAs 
to improve the prioritization of drug repurposing candidates.

Results:  First, we tested DMEA on simulated data and showed that it can sensitively 
and robustly identify an enriched drug MOA. Next, we used DMEA on three types 
of rank-ordered drug lists: (1) perturbagen signatures based on gene expression data, 
(2) drug sensitivity scores based on high-throughput cancer cell line screening, and (3) 
molecular classification scores of intrinsic and acquired drug resistance. In each case, 
DMEA detected the expected MOA as well as other relevant MOAs. Furthermore, 
the rankings of MOAs generated by DMEA were better than the original single-drug 
rankings in all tested data sets. Finally, in a drug discovery experiment, we identified 
potential senescence-inducing and senolytic drug MOAs for primary human mam-
mary epithelial cells and then experimentally validated the senolytic effects of EGFR 
inhibitors.

Conclusions:  DMEA is a versatile bioinformatic tool that can improve the prioritiza-
tion of candidates for drug repurposing. By grouping drugs with a shared MOA, DMEA 
increases on-target signal and reduces off-target effects compared to analysis of indi-
vidual drugs. DMEA is publicly available as both a web application and an R package 
at https://​belin​dabga​rana.​github.​io/​DMEA.
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Background
Identifying effective therapeutics for diseases remains a pressing challenge. Recent 
efforts in large-scale ‘omic profiling [1–4], pharmacological and genetic loss-of-func-
tion screening [5–7], and drug perturbation profiling [8] have generated a wealth of 
molecular data characterizing large numbers of cell lines and their responses to per-
turbations. Many computational approaches have been developed to leverage these 
molecular data for drug sensitivity predictions and/or drug repurposing [9–26], and 
these efforts have successfully identified drugs for a wide variety of diseases, includ-
ing HIV [14], osteoporosis [27], diabetes [28], and cancer [29–31]. Despite these suc-
cesses, many patients remain ineligible for targeted therapies, including over 80% 
of cancer patients [32]. Furthermore, only about half of eligible cancer patients are 
responsive to targeted therapy, emphasizing the need for improved drug discovery 
and repurposing methods.

One common drawback of many drug repurposing tools is that they output a long list 
of candidate drugs with limited information about how the top candidates are related. 
For example, the gene2drug algorithm [13] returns a ranked list of > 1300 drugs without 
any information about molecular targets or pathways of these drugs. This complicates 
efforts to prioritize drugs on the list for validation  because researchers must consider 
many drugs targeting different molecular pathways with the caveat that some targeted 
therapies may not actually inhibit their intended target [33]. Therefore, given a list of 
candidate drugs, we reasoned that grouping drugs with similar mechanisms of action 
(MOAs) into a “set” and then statistically evaluating the enrichment of the drug set in 
the list would increase on-target signal and reduce off-target effects compared to evalu-
ating drugs on an individual basis. Here, MOA refers to both the biological pathway tar-
geted and the direction of action of each drug (e.g., “EGFR inhibitor”). Our approach, 
called drug mechanism enrichment analysis (DMEA), is an adaptation of the popular 
gene set enrichment analysis (GSEA) algorithm [34] in which drugs, rather than genes, 
are grouped into sets based on annotated MOAs. Each drug set is then statistically eval-
uated against a background of all other drug sets. If multiple drugs which share a com-
mon MOA are all highly ranked candidates, then this indicates that the identified MOA 
is more likely to be a true on-target sensitivity.

Notable alternatives to our approach for analyzing enriched MOAs in drug lists 
include the Connectivity Map (CMap) L1000 Query [8], DrugEnrichr [35–37], Drug-
monizome [38], DrugPattern [39], and drug set enrichment analysis (DSEA) [18]. 
However, these tools have several key limitations (Fig. 1) including that they: (1) can 
only query preselected public data sets (e.g., CMap’s L1000 transcriptional database); 
(2) have limited statistical rigor (e.g., lack of p values with CMap; lack of multiple 
hypothesis correction with DSEA; lack of permutation-based metrics with DrugEn-
richr, Drugmonizome, and DrugPattern); (3) accept only one type of unranked input 
list (i.e., gene symbols for CMap L1000 Query; drug names for DrugEnrichr, Drug-
monizome, DrugPattern, and DSEA); and (4) do not generate plots of MOA-specific 
results. In addition, we note that DSEA queries gene sets (e.g., gene ontology terms 
like “cellular protein localization”) rather than drug MOAs (e.g., “HDAC inhibi-
tor”). To address these shortcomings, we sought to make DMEA compatible with any 
data  set or drug repurposing algorithm, maintain the statistical rigor of GSEA, and 
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generate plots of both the overall results (i.e., volcano plot of all MOA normalized 
enrichment scores) and MOA-specific results (i.e., mountain plots).

Furthermore, to address a lack of web-accessible tools to predict selectively toxic 
drugs based on an input gene signature, we included a feature to pair DMEA with 
a simple molecular classification method (i.e., weighted gene voting, WGV [40]; see 
Methods). Although the CMap L1000 Query also accepts input gene symbols to 
rank drug MOA [8], it is limited to use of the CMap L1000 expression database and 
cannot accept more than 150 input gene symbols or consider gene ranks. Similar to 
the CMap L1000 Query, the gene2drug web tool also ranks individual drugs based 
on gene inputs using a gene set-based analysis of the original CMap gene expression 
database (e.g., gene ontology terms) without considering input gene ranks [13]. In 
addition to sharing these limitations of the CMap L1000 Query, gene2drug does not 
evaluate drugs in terms of MOA. On the other hand, the CMap PRISM Query does 
rank drugs based on selective toxicity, but it only accepts cell line names as input fea-
tures, restricting its applicability to cell lines present in the CMap database, and does 
not evaluate drug MOA. In contrast, DMEA can accept an input gene signature with 
any number of ranked genes and requires their directionality to evaluate drug MOA 
based on selective toxicity.

Fig. 1  DMEA is more flexible and statistically rigorous than other approaches to evaluate drug MOA. The 
Venn diagram compares our method, DMEA, with the Connectivity Map (CMap) L1000 query of gene 
expression signatures [8] and the DrugEnrichr [35–37] and Drugmonizome methods [38]
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In summary, DMEA can help researchers better prioritize potential drug treatments 
by aggregating results across many drugs which share MOAs to identify global trends. 
By quantifying the coordinated enrichment of drugs annotated with the same MOA and 
normalizing scores across a large background of drug MOAs, DMEA can improve on-
target prioritization of candidates for drug repurposing. DMEA is publicly available as a 
web application or an R package at https://​belin​dabga​rana.​github.​io/​DMEA.

Methods
Drug mechanism enrichment analysis (DMEA)

DMEA tests whether drugs known to share a MOA are enriched in a rank-ordered drug 
list. DMEA can be applied to any rank-ordered list of drugs with annotations for at least 
two MOAs. For a drug MOA to be evaluated, at least six drugs (or the minimum number 
of drugs per MOA set by the user) must be annotated with that MOA and each drug 
must be ranked by a nonzero numeric value. DMEA uses the same algorithm as GSEA 
[34] but applies it to sets of drugs, rather than genes, to identify drug MOAs which are 
overrepresented at either end of the input rank-ordered drug list (further detail below). 
If a drug MOA is positively enriched, then drugs annotated with that MOA are over-
represented at the top of the list. Conversely, if a drug MOA is negatively enriched, then 
drugs which share that MOA annotation are overrepresented at the bottom of the list.

Specifically, for each MOA, DMEA calculates an enrichment score (ES) as the maxi-
mum deviation from zero of a running-sum, weighted Kolmogorov–Smirnov-like sta-
tistic. The p value is estimated using an empirical permutation test wherein drugs are 
randomly assigned MOA labels in 1000 independent permutations to calculate a distri-
bution of null enrichment scores (ES_null); the p value is then calculated as the percent-
age of same-signed ES_null equal to or greater than the ES divided by the percentage 
of same-signed ES_null. The normalized enrichment score (NES) is then calculated by 
dividing the ES by the mean of the same-signed portion of the ES_null distribution. 
Finally, the q-value or false discovery rate (FDR) is calculated as the percentage of same-
signed NES in the null distribution (i.e., NES_null) with NES equal or greater to the 
observed NES divided by the percentage of same-signed NES equal or greater. We use 
a significance threshold of p < 0.05 and FDR < 0.25 by default per the recommendation 
for GSEA, but this FDR cutoff can be customized by the user. Given a rank-ordered drug 
list, DMEA generates (1) enrichment results for all tested drug MOAs; (2) a volcano plot 
summarizing the NES and − log10(p value) for all tested drug MOAs; and (3) mountain 
plot(s) for individual drug MOA(s) which pass the given FDR cutoff (Fig. 2).

Simulation study of DMEA

To evaluate the sensitivity of DMEA, we first simulated a rank-ordered drug list by 
randomly assigning values from a normal distribution (μ = 0, σ = 0.5) for 1351 drugs 
with MOA annotations in the PRISM drug screen. Next, a number of drugs, X, were 
randomly sampled as a synthetic drug set and their rank values were selected from a 
shifted normal distribution (μ = Y, σ = 0.5); the size of the synthetic drug set, X, was 
varied from 5 to 50 drugs, and the perturbation value Y was varied from − 1 to + 1. 
This rank-ordered drug list was then analyzed by DMEA to determine the enrich-
ment of the synthetic drug set relative to the known drug MOA sets provided by the 

https://belindabgarana.github.io/DMEA
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PRISM drug screen. For each pair of X and Y values, the simulation was repeated 50 
times to assess reproducibility (i.e., the ability of DMEA to consistently detect a true 
difference between the synthetic drug set and the background drug sets determined 
by MOA annotations from PRISM).

CMap L1000 query

The Connectivity Map (CMap) web portal (https://​clue.​io) [8] allows users to query 
the L1000 gene expression database using 10 to 150 input up- and down-regulated 
gene IDs. The output is a normalized connectivity score which indicates the similar-
ity between the query and differentially expressed gene sets induced by drug treat-
ments. A positive score indicates similarity between the query and the perturbagen 
signature, whereas a negative score indicates dissimilarity. Specifically, we used the 
“query.gct” file from the zip file output by the CMap L1000 Query (found within 
their “arfs/TAG” folder), including the MOA annotations provided in the file. Since 
this file includes results for all cell lines in the L1000 database as well as information 
for quality control, we removed any scores indicated to be low quality and averaged 
scores across cell lines for each drug with MOA annotations. Here, we used example 
data sets from the CMap web portal, including: (1) GSE32547, HUVEC cells treated 
with the HMGCR inhibitor pitavastatin (1 μM, 4 h) or DMSO [41]; (2) GSE35230, 
A375 melanoma clones treated with the MEK inhibitor GSK212 (30  nM, 24  h) or 
DMSO [42]; (3) GSE14003, JEKO1 cells treated with the proteasome inhibitor bort-
ezomib (10 h) or untreated [43]; (4) GSE28896, human CD34+ cells treated with the 
glucocorticoid agonist dexamethasone (24  h) or untreated [44]; and (5) GSE33643, 
A2058 cells treated with the PI3K/MTOR inhibitor BEZ235 (3 doses at 24  h) or 
DMSO [45]. We also used the up- and down-regulated biomarkers from a prot-
eomic signature of senescence in primary human mammary epithelial cells (HMECs) 
[46]. To compare DMEA’s results to CMap’s MOA enrichment results, we used the 
“gsea_result.gct” file found within the “gsea/TAG/arfs/NORM_CS” folder. We com-
pared the results for chemical perturbagens combined across all cell lines, specifi-
cally “cell_iname = − 666” with pert_type = “TRT_CP”, for either set_type = PCL” or 
“set_type = “MOA_CLASS”.

Fig. 2  Overview of drug mechanism enrichment analysis. DMEA is an adaptation of GSEA which analyzes 
a rank-ordered drug list to identify drug MOAs that are overrepresented at either end of the input drug 
list. Given a rank-ordered drug list where drugs have been annotated with known MOAs, DMEA runs an 
enrichment analysis for each individual MOA. After calculating p values and FDR q-values, DMEA outputs (1) 
enrichment results for all tested drug MOAs; (2) a volcano plot summarizing the NES and − log10(p value) for 
all tested drug MOAs; and (3) mountain plot(s) for individual drug MOA(s) which pass the FDR cutoff

https://clue.io
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CMap PRISM query

The Connectivity Map (CMap) web portal (https://​clue.​io) [8] also allows users to query 
PRISM viability data [5] for 3 to 489 input cell line IDs classified as having “UP” or 
“DOWN” phenotypes. The query outputs a normalized connectivity score ranking the 
drugs based on their toxicity towards the “UP” versus “DOWN” cell lines. A positive 
score indicates toxicity towards “UP” cell lines, whereas a negative score indicates toxic-
ity towards “DOWN” cell lines or lack of toxicity towards “UP” cell lines. In particular, 
we used the “ncs.gct” file from the zip file output by the CMap PRISM Query, includ-
ing the MOA annotations provided in the file. Again, we only considered drugs with 
MOA annotations. Here, we used examples provided by the CMap web portal includ-
ing: (1) cell lines with the EGFR activating mutation p.E746_A750del (i.e., “UP” cell 
lines: NCIH1650, PC14, and HCC827); (2) cell lines with high expression of PDGFRA 
(i.e., “UP” cell lines: 42MGBA, A204, A2780, G292CLONEA141B1, G402, GB1, HS618T, 
KNS42, LMSU, MG63, MON, NCIH1703, SBC5, SKNAS, SNU685, SW579, U118MG, 
U251MG, and YH13); and (3) cell lines sensitive to the HMGCR inhibitor lovastatin (i.e., 
“UP” cell lines: HUH28, SNU1079, MG63, LOXIMVI, MDAMB231, SF295, SNU1105, 
YKG1, ACHN, HCT15, SNU423, SNU886, CALU1, HCC4006, HCC44, HCC827, 
NCIH1915, NCIH661, NCIH838, PC14, RERFLCMS, SQ1, SW1573, KYSE150, A2780, 
COV434, JHOM1, MCAS, KP3, SW1990, MSTO211H, YD15, HS944T, MDAMB435S, 
MELJUSO, A204, HT1080, RH30, LMSU, FTC238, YD8, 5637, and AGS).

Weighted gene voting (WGV)

To calculate a molecular classification score for cell lines based on external molecu-
lar signatures, we used weighted gene voting (WGV) [40]. The WGV score is the dot 
product between an external gene signature of interest and normalized RNAseq expres-
sion values for 327 adherent cancer cell lines from the Cancer Cell Line Encyclopedia 
(CCLE, version 19Q4) [3]. In other words, the WGV score for each cell line is the sum 
across all genes available in both the input gene signature and CCLE RNAseq data set, 
where each gene’s value is the product between their gene signature ranking and CCLE 
RNAseq normalized expression value. This WGV score ranks each cell line based on the 
similarity of its gene expression to that of the input gene signature, such that cell lines 
with expression more similar to the positive phenotype of the gene signature are more 
positively ranked and cell lines with expression more similar to the negative phenotype 
of the gene signature are more negatively ranked. In this study, we analyzed four inde-
pendent transcriptomic signatures, three derived from data sets for intrinsic resistance 
to EGFR inhibitors and one derived from a data  set for acquired resistance to a RAF 
inhibitor. For each transcriptomic data set, we used the R package limma [47] to perform 
an eBayes statistical analysis for differential expression comparing sensitive and resistant 
samples. Then, the top 500 genes based on |log2(fold-change)| with q-value < 0.05 were 
used for WGV (with the log2(fold-change) being the gene “weight” or rank value).

For gene signatures of EGFR inhibitor sensitivity, we used data sets GSE12790 [48], 
GSE31625 [49], and Coldren et  al. [50]. In GSE12790, transcriptomic profiles were 
provided for breast cancer cell lines classified as either sensitive (EC50 < 1 µM: HDQ-
P1, CAL85-1, and HCC1806) or resistant to erlotinib (EC50 > 10  µM: CAL-51, CAL-
120, MDA-MB-231, BT-20, HCC1569, EFM-192A, HCC1954, MDA-MB-453, BT474, 

https://clue.io
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HCC1428, T47D, ZR-75-1, KPL-1, BT-483, MDA-MB-415, HCC1500, CAMA-1, and 
MCF7). For GSE31625, we used 17 transcriptomic profiles from 3 non-small cell lung 
cancer cell lines sensitive (H1650, H3255, and PC-9) and 12 profiles of 2 cell lines resist-
ant to erlotinib (A549 and UKY-29). Finally, based on classifications from Coldren 
et al., we used CCLE RNAseq profiles of 5 non-small cell lung cancer cell lines sensitive 
(NCIH1650, HCC95, NCIH1975, NCIH1648, and NCIH2126) and 7 cell lines resistant 
to gefitinib (NCIH520, NCIH460, NCIH1299, HCC44, A549, NCIH1703, and HCC15). 
For a gene signature of RAF inhibitor sensitivity, we used data set GSE66539 with paired 
biopsy samples of melanoma from 3 patients before vemurafenib treatment and after 
emergence of resistance to vemurafenib [51].

DMEA using WGV molecular classification scores

To identify drug MOAs with selective toxicity towards cells represented by an input gene 
signature, DMEA can be used in combination with a molecular classification method 
such as WGV, correlations, and large public databases for gene expression and drug 
screens. To do this, we accessed the Cancer Cell Line Encyclopedia version 19Q4 for 
RNAseq data and calculated WGV scores for 327 adherent cancer cell lines using exter-
nal molecular signatures. To avoid overfitting, we did not include WGV scores from any 
cell lines that had been used to generate the external molecular signature. Next, we cal-
culated the Pearson correlation between the WGV scores and PRISM drug sensitivity 
scores (i.e., area under the curve (AUC) values for cell viability as a function of drug 
concentration) for each drug [5] using data from the most recent PRISM screen available 
(e.g., HTS002, MTS005, MTS006, and MTS010). Lastly, drugs were ranked by the Pear-
son correlation coefficient, and the rank-ordered drug list was analyzed by DMEA using 
the MOA annotations provided in the PRISM data set.

Simulation study of DMEA using WGV molecular classification scores

For 200 synthetic cell lines, we sampled drug sensitivity scores for 1351 drugs with MOA 
annotations in the PRISM drug screen from a bimodal mixture of two normal distribu-
tions (μ1 = 0.83, σ1 = 0.08 and μ2 = 1.31, σ2 = 0.08) with the lower distribution containing 
72% of all drugs. This distribution was chosen to reflect the distribution of the PRISM 
drug sensitivity data (i.e., AUC) [5]. Additionally, we simulated gene expression for each 
cell line by sampling from a normal distribution with a mean (μ) of 0 and standard devia-
tion (σ) of 0.5. This distribution was chosen to reflect the distribution of the normalized 
CCLE RNAseq data [3].

To introduce a synthetic association between gene expression and drug sensitivity, we 
randomly sampled a synthetic gene set of 25 genes and a synthetic drug set of 10 drugs. 
Next, expression values for the synthetic gene set and sensitivity scores for the synthetic 
drug set were each sampled from a shifted distribution, where the magnitude of the shift 
for each synthetic cell line is determined by a perturbation value ranging from 0 (no per-
turbation) to 0.1. For example, for a perturbation value of 0.1, the mean gene expres-
sion for the 25 perturbed genes in cell line 1 was μ = − 0.1, and the mean sequentially 
increased by 0.001 for cell lines 2–200; similarly, the mean drug sensitivity of cell line 1 
to the 10 perturbed drugs was shifted by − 0.1, and this shift value sequentially increased 
by 0.001 for cell lines 2–200. This created a gradient of perturbations in the 200 cell 
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lines, meaning cell line 1 had the largest negative perturbation and cell line 200 had the 
largest positive perturbation. Then, we calculated WGV scores for each cell line by tak-
ing the dot product of the expression values of the synthetic gene set and the difference 
in average gene expression between the top and bottom 10 percent of cell lines (i.e., gene 
weights from cell lines 181–200 which had the highest mean expression versus cell lines 
1–20 which had the lowest mean expression). Afterwards, we calculated the Pearson 
correlation between the WGV and drug sensitivity scores for each of the 1351 drugs in 
the synthetic data set. Finally, drugs were ranked by their Pearson correlation coefficient 
and DMEA was performed to measure the enrichment of the synthetic drug set relative 
to the background drug sets which were determined by the MOA annotations in the 
PRISM drug screen. To assess reproducibility, this entire process was repeated 50 times.

DrugEnrichr and Drugmonizome

To benchmark DMEA against DrugEnrichr and Drugmonizome, we input the top 50 
or 100 drugs from each analysis detailed above into DrugEnrichr and Drugmonizome. 
Though DMEA evaluates the full list of ranked drugs from each analysis, DrugEnrichr 
and Drugmonizome are designed to accept just one input drug set, so we chose to use 
the top 50 or 100 drugs as input drug sets to match the orders of magnitude of the exam-
ple inputs provided on their websites. The top drugs were positively ranked in analyses 
of drug rank lists from the CMap Query tools or negatively ranked in analyses where 
drugs were ranked based on Pearson correlations between their PRISM drug sensitiv-
ity scores (i.e., AUC) and CCLE WGV scores. We recorded their rankings of MOA sets 
from the PRISM drug repurposing hub based on each tool’s default ranking when view-
ing their results in tabulated form on the web.

Cell culture

HMEC cells were purchased from Thermo Scientific and cultured in M87A medium 
(50% MM4 medium and 50% MCDB170 supplemented with 5  ng/ml EGF, 300  ng/ml 
hydrocortisone, 7.5 µg/ml insulin, 35 µg/ml BPE, 2.5 µg/ml transferrin, 5 µM isoprotere-
nol, 50 µM ethanolamine, 50 µM o-phosphoethanolamine, 0.25% FBS, 5 nM triiodothy-
ronine, 0.5 nM estradiol, 0.5 ng/ml cholera toxin, 0.1 nM oxytocin, 1% anti-anti, and no 
AlbuMax) in atmospheric oxygen. Glucose and glutamine-free DMEM was purchased 
from Corning (90-113-PB), Ham’s F12 was purchased from US Biological (N8542-12), 
and MCD170 medium was purchased from Caisson Labs (MBL04). Glucose and glu-
tamine were added to the media at the appropriate concentration for each media type. 
At each passage, cells were lifted with TrypLE at 80–90% confluency and seeded at a 
density of 2.3 × 103/cm2.

Cell viability experiments

Proliferating HMECs (PD ~ 12) were seeded at a concentration of 2.1 × 103/cm2 or 
9.5 × 103/cm2 for DMSO and triapine treatment, respectively. The following day, cells 
were treated with DMSO (vehicle control) or 2 µM triapine for 3 days. The cells were 
counted and then treated with either DMSO (vehicle control), dacomitinib, AZD8931, 
or navitoclax at 100 nM or 500 nM for 3 days. Cell viability and live cell number were 
measured with trypan blue assay using a TC20 automated cell counter (Bio-Rad). 
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Chemical inhibitors were from Sigma (triapine) or MedChemExpress (dacomitinib, 
AZD8931, and navitoclax).

Implementation
DMEA: web application

Using our web application, researchers can either input a drug rank list or gene signature 
to identify enriched drug MOA without any programming knowledge required. With 
both input types, the outputs contain: (1) the processed input (after any averaging across 
duplicate input features if applicable), (2) MOA annotations used (either provided by the 
user or the default PRISM drug annotations provided on our GitHub repository (MOA_​
gmt_​file_​n6_​no_​speci​al_​chars.​gmt), (3) the results of our DMEA analysis, (4) any drug 
sets which were removed because they were not represented by at least 6 drugs or the 
minimum set by the user, (5) any unannotated drugs which could not be matched into 
drug sets, (6) a volcano plot with an overview of the normalized enrichment scores and 
− log10(p values) for all evaluated drug MOA with significant enrichments highlighted 
in red, and (7) mountain plots for each significantly enriched drug MOA so that users 
can visually confirm that most of the drugs for these MOA were ranked as strong can-
didates. All the analyses of non-simulated data sets in this study can easily be replicated 
as examples from a drop-down menu on our web application. These example inputs are 
available on our GitHub repository (Examp​les) and described below as well as on our 
website’s “How to Use” page (https://​belin​dabga​rana.​github.​io/​DMEA/​howto​use.​html), 
which also includes a video tutorial.

Drug rank lists

The input drug rank list can either be a CSV file with headers or direct output from a 
CMap Query tool (GCT file). If inputting a drug rank list as a  CSV file, the user can 
either provide MOA annotations in the third column separated by the “|” character in 
each row or rely on our default MOA annotations derived from the PRISM drug screen 
database; the first column must contain drug names and the second column must con-
tain signed (i.e., nonzero) drug ranks. If there are multiple ranks provided for each drug, 
the user must select the checkbox option to average results across drugs. In the advanced 
settings, there is also an option to convert drug synonyms if no MOA annotations are 
provided, which is enabled by default. For transparency, the  CSV file used to convert 
drug synonyms is uploaded on our GitHub repository (PRISM_​drug_​synon​yms.​csv) 
and contains PRISM drug names, PubChem CIDs, and synonyms found on PubChem 
(https://​pubch​em.​ncbi.​nlm.​nih.​gov). The conversion of drug synonyms feature allows 
more input drugs to be matched into PRISM drug sets and even allows input of unique 
PubChem CIDs as drug names to avoid issues with different naming systems. Drugs 
which are not matched into drug sets (i.e., unannotated drugs) even after drug synonym 
conversion is performed are still considered as background drugs in our analysis and 
also output as a CSV file to allow users to repeat the analysis after either converting their 
drug names manually (e.g., with unique PubChem CIDs using the PubChem search tool 
at https://​pubch​em.​ncbi.​nlm.​nih.​gov/) or adding any known MOA annotations for these 
drugs. If a CMap L1000 drug rank list is input, the positively enriched drug MOA may 
induce similar expression to the “UP” phenotype genes and vice-versa. If a CMap PRISM 

https://github.com/BelindaBGarana/DMEA/blob/shiny-app/Inputs/MOA_gmt_file_n6_no_special_chars.gmt
https://github.com/BelindaBGarana/DMEA/blob/shiny-app/Inputs/MOA_gmt_file_n6_no_special_chars.gmt
https://github.com/BelindaBGarana/DMEA/tree/shiny-app/Examples
https://belindabgarana.github.io/DMEA/howtouse.html
https://github.com/BelindaBGarana/DMEA/blob/shiny-app/Inputs/PRISM_drug_synonyms.csv
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov/
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drug rank list is input, then the positively enriched drug MOA may be selectively toxic to 
the “UP” phenotype cell lines and vice-versa. If a custom drug rank list is input, then the 
positively enriched drug MOA are overrepresented at the top of the input drug rank list 
and vice-versa.

Gene signatures

The input gene signature should be formatted as a CSV file with headers where the gene 
symbols are in the first column and the gene ranks are in the second column. If there 
are multiple ranks provided for each gene, the user must select the checkbox option to 
average results across genes. In the advanced settings, there is an option to use either 
HUGO Gene Nomenclature Committee (HGNC)-approved gene symbols to analyze 
your input gene signature [52] or gene symbols used in the CCLE 19Q4 release. Our 
software also outputs a CSV file containing any genes which were not matched to the 
CCLE 19Q4 data set so that users can repeat their analysis after either using the HGNC 
multi-symbol checker web tool (https://​www.​genen​ames.​org/​tools/​multi-​symbol-​check​
er/) to convert their gene symbols to approved symbols or searching for the CCLE 19Q4 
versions of their gene symbols in the CSV file on our GitHub repository which includes 
approved symbols, aliases, previous symbols, and HGNC IDs for each gene symbol from 
the CCLE 19Q4 release (CCLE_​gene_​symbo​ls_​20230​404.​csv). Using the input gene sig-
nature, DMEA runs weighted gene voting (WGV) to rank 372 adherent cancer cell lines 
in the CCLE 19Q4 RNAseq data set based on their expression of the gene signature and 
then correlates their WGV scores with their drug sensitivity scores (i.e., AUC) across 
1351 drugs with MOA annotations in the PRISM drug screen. For transparency in this 
process, our software outputs the WGV scores, correlation results, and scatter plots with 
the correlations for each drug in addition to the other outputs mentioned above. With 
this analysis, negatively enriched drug MOA may be selectively toxic to samples with 
higher expression of positively ranked genes in the input gene signature and vice-versa.

DMEA: R package

Our R package is available on GitHub to allow many automated DMEA analyses to be 
run in sequence and querying of any database beyond just the CCLE RNAseq 19Q4 
release and the PRISM drug screen. In brief, if analyzing an input drug rank list, users 
can run the “drugSEA” function; if analyzing an input gene signature, users can run the 
“DMEA” function. These functions accept the same inputs except formatted as data 
frames in the R software environment as well as custom MOA annotations and, in the 
case of the DMEA function, also expression and drug sensitivity data frames represent-
ing the same biological samples (e.g., cell lines). The same outputs are available for each 
input type as described above for the web application. Documentation is available on our 
GitHub repository (https://​github.​com/​Belin​daBGa​rana/​DMEA), including a vignette 
and man pages with installation instructions and runnable examples, and also on our 
website’s “How to Use” page (https://​belin​dabga​rana.​github.​io/​DMEA/​howto​use.​html).

https://www.genenames.org/tools/multi-symbol-checker/
https://www.genenames.org/tools/multi-symbol-checker/
https://github.com/BelindaBGarana/DMEA/blob/shinyapp/Inputs/CCLE_gene_symbols_20230404.csv
https://github.com/BelindaBGarana/DMEA
https://belindabgarana.github.io/DMEA/howtouse.html
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Results
DMEA identifies an enriched drug MOA in simulated data

To evaluate the ability of DMEA to identify the enrichment of drug sets, we tested it on a 
normally distributed, synthetic ranked list of 1351 drugs (see Methods). For a randomly 
sampled set of drugs ranging in size from 5 to 50 drugs, we shifted these drugs’ rankings 
by a perturbation value ranging from − 1 to 1. Next, we ran DMEA using the full rank 
list of drugs to assess enrichment of the synthetic drug set. This process was repeated 50 
times for each synthetic drug set size, after which the average normalized enrichment 
score (NES) and the percentage of replicates with significant enrichment of the synthetic 
drug set were visualized as heatmaps (Fig. 3).

As expected, we observed no false discovery except for very small drug sets (i.e., 
when evaluating a set of 5 drugs we observed 2% of replicates were falsely enriched). 
As the magnitude of the perturbation was increased or decreased, the average NES of 
the synthetic drug set increased or decreased, respectively. Likewise, the percentage of 
replicates passing the significance threshold of p < 0.05 and FDR < 0.25 increased as the 
magnitude of the perturbation increased. These results demonstrate that DMEA can 
successfully identify an enriched set of drugs in simulated data.

DMEA identifies similar MOAs based on gene expression connectivity scores

Next, we sought to test whether DMEA could identify enriched drug MOAs in rank-
ordered drug lists generated by the Connectivity Map (CMap), [8] a popular tool for drug 
discovery that contains > 1 million gene expression signatures measured using L1000, 
a reduced representation transcriptomic profiling method. Specifically, we analyzed 
example data sets from the CMap L1000 Query tool to identify perturbagen signatures 
that are similar or dissimilar to an input gene set. First, we used a gene expression sig-
nature from HUVEC cells treated with pitavastatin, an inhibitor of 3-hydroxy-3-meth-
ylglutaryl-CoA reductase (HMGCR) [41], to rank 3,868 drugs based on the similarity of 

Fig. 3  Sensitivity analysis of DMEA using synthetic data. Synthetic rank-ordered drug lists were generated 
with varying perturbations (y-axis) of different drug set sizes (x-axis), then analyzed by DMEA (see Methods). 
For each combination of drug set size and perturbation value, 50 replicates were performed. A Heatmap 
showing the average DMEA NES for the perturbed drug set. B Heatmap showing the percent of DMEA 
replicates with FDR q-value < 0.25 for the perturbed drug set
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their effects on gene expression. Because pitavastatin itself was found in the list of 3,868 
drugs, one might have expected it to be the top-ranked, most similar drug produced by 
this analysis, but in fact it ranked 24th out of 3,868 drugs (Additional file 1: Fig. S1A). In 
contrast, analysis of the rank-ordered list of drugs using DMEA identified the HMGCR 
MOA as the only significant similar MOA (Fig.  4A). This demonstrates that analysis 
of MOAs by DMEA can generate clearer and more statistically significant results than 
analysis of individual drugs in results from the CMap L1000 Query.

Next, we tested a gene expression signature from A375 melanoma cells treated 
with the MEK inhibitor GSK212 [42]. Again, DMEA correctly identified that MEK 
inhibitors were the most similar MOA in the rank-ordered list of drugs (Fig.  4B; 
Additional file  1: Fig. S1A). In this case, comparison to the single-drug rank-
ings was not possible because the L1000 database does not contain the true drug 

Fig. 4  DMEA identifies similar MOAs based on gene expression connectivity scores. Rank-ordered drug lists 
were generated by querying the CMap L1000 gene expression perturbation signatures and then analyzed by 
DMEA. A HUVEC cells treated with the HMGCR inhibitor pitavastatin [41], B A375 melanoma clones treated 
with the MEK inhibitor GSK212 [42], and C JEKO1 cells treated with the proteasome inhibitor bortezomib [43]. 
Volcano plots summarizing the NES and − log10(p value) for all tested drug MOAs and mountain plots of the 
expected MOAs are shown. Red text indicates MOAs with p value < 0.05 and FDR < 0.25. For each mountain 
plot, the inhibitors with the most positive connectivity scores are highlighted
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treatment, GSK212 (Additional file  1: Fig. S1A). Subsequently, we analyzed a gene 
expression signature from JEKO1 mantle cell lymphoma cells treated with the pro-
teasome inhibitor bortezomib [43]. DMEA again accurately found that proteasome 
inhibitors were the most similar MOA (Fig.  4C) and DMEA’s MOA-level ranking 
(#1) was improved upon the single-drug ranking of the true drug treatment, bort-
ezomib (#14/3,868) (Additional file 1: Fig. S1A). Finally, we used DMEA to test data 
sets from human CD34+ cells treated with the glucocorticoid agonist dexametha-
sone [44] and A2058 melanoma cells treated with the PI3K/mTOR inhibitor BEZ235 
[45]. In both cases, DMEA correctly identified the expected MOA as significantly 
enriched (glucocorticoid receptor agonist and PI3K/mTOR inhibitor MOAs, respec-
tively) (Additional file  1: Fig. S2) and DMEA’s MOA-level rankings were improved 
upon CMap’s individual drug rankings of the true drug treatments (Additional file 1: 
Fig. S1A). Taken together, these results show that DMEA can correctly identify 
enriched MOAs in rank-ordered lists of drugs generated by the CMap L1000 Query 
and that the MOA-level rankings of the true drug treatments are improved com-
pared to the single-drug rankings.

Next, we compared DMEA’s MOA-level results to those of the CMap L1000 Query 
(found in an output sub-folder generated by CMap L1000 Query called “gsea/TAG/
arfs/NORM_CS”). Like our DMEA results, CMap’s MOA-level rankings revealed the 
expected MOA as the top-ranked MOA in all cases except for glucocorticoid recep-
tor agonists and PI3K inhibitors which were not found in the L1000 output (Addi-
tional file  1: Fig. S1A). We also compared our DMEA results to the CMap L1000’s 
perturbagen classes (PCLs), which are derived from MOA sets but exclude drugs 
which do not fit the overall trend of the MOA [8]. Again, CMap’s PCL rankings were 
similar to that of DMEA (Additional file 1: Fig. S1A). Thus, DMEA and the CMap 
L1000 generate similar MOA-level rankings. However, in contrast to DMEA, the 
CMap L1000 MOA-based analysis has less statistical rigor (i.e., no p values provided 
by CMap) and does not generate any plots of the overall and MOA-specific results 
(e.g., volcano or mountain plots).

We also compared our results with those of DrugEnrichr and Drugmonizome 
(Additional file 1: Fig. S1). Since DrugEnrichr and Drugmonizome are only designed 
to evaluate one input drug set, whereas DMEA and the CMap L1000 Query evalu-
ate the full list of drugs, we input the top 50 and 100 positively ranked drug names 
into DrugEnrichr and Drugmonizome. DrugEnrichr and Drugmonizome were only 
able to evaluate the expected drug MOA for three out of five CMap L1000 examples 
(HMGCR inhibitor pitavastatin, mTOR/PI3K inhibitor BEZ235, and glucocorticoid 
receptor agonist dexamethasone). Drugmonizome performed similarly in ranking 
the expected MOA to both DMEA and the CMap L1000 Query tool. DrugEnrichr 
also performed similarly with the mTOR/PI3K inhibitor example but had lower 
rankings for the glucocorticoid receptor agonist and HMGCR inhibitor examples 
(Additional file  1: Fig. S1A). However, it is important to consider that we cannot 
make a fair comparison since DrugEnrichr and Drugmonizome were only evaluating 
drug MOA based on a small fraction of the drug lists compared to DMEA and the 
CMap L1000 Query.
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DMEA identifies selectively toxic MOAs based on cell viability connectivity scores

To evaluate if DMEA can identify enriched MOAs in a different type of rank-ordered 
drug list, we used the CMap PRISM Query tool to query data from the PRISM drug 
repurposing database [5]. Given an input list of cell line names, the CMap PRISM Query 
generates a list of ~1,200 drugs ranked by normalized connectivity scores which repre-
sent the predicted sensitivity of the input cell lines to each drug. The higher the normal-
ized connectivity score, the more toxic the drug is predicted to be for the input cell lines. 
Again, we analyzed example data sets from the CMap PRISM Query tool to test DMEA, 
including: (1) cell lines with the activating EGFR mutation p.E746_A750del (n = 3), (2) 
cell lines with high expression of PDGFRA (n = 19), and (3) cell lines with sensitivity 
to the HMGCR inhibitor lovastatin (n = 43). As hypothesized, DMEA identified EGFR 
inhibitors (Fig.  5A), PDGFR inhibitors (Fig.  5B), and HMGCR inhibitors (Fig.  5C), 

Fig. 5  DMEA identifies selectively toxic MOAs based on cell viability connectivity scores. Rank-ordered 
drug lists were generated by querying the PRISM database with input cell line sets characterized by A the 
activating EGFR mutation p.E746_A750del, B high expression of PDGFRA, and C sensitivity to the HMGCR 
inhibitor lovastatin. Volcano plots summarizing the NES and − log10(p value) for all tested drug MOAs and 
mountain plots of the expected MOAs are shown. Red text indicates MOAs with p value < 0.05 and FDR < 0.25. 
For each mountain plot, the inhibitors with the most positive connectivity scores are highlighted
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respectively, as significantly positively enriched in these rank-ordered drug lists. DMEA 
also improved upon the rank of the true drug sensitivity for the HMGCR inhibitor lov-
astatin (#1 with DMEA’s MOA-level rankings versus #3 in the single-drug rankings); 
DrugEnrichr and Drugmonizome also improved on the rank of the true drug sensitivity, 
though they evaluated fewer drug MOA sets because their analyses only considered the 
top 50 or 100 positively ranked drugs instead of the full list of evaluated drugs (Addi-
tional file 1: Fig. S1B). Altogether, these examples demonstrate that DMEA can identify 
enriched MOA in rank-ordered lists of drugs generated by CMap Query of the PRISM 
drug screen and that the MOA-level ranking of the true drug sensitivity is higher than 
that of the single-drug ranking.

DMEA identifies selectively toxic MOAs based on molecular signatures

To offer a web-accessible method to identify selectively toxic drug MOAs based on an 
input molecular signature (i.e., up- or down-regulated genes that characterize a disease 
or cell type), we paired DMEA with a simple molecular classification method, namely 
weighted gene voting (WGV) [40]. Specifically, we: (1) used WGV to classify adherent 
cancer cell lines in the CCLE database based on similarity to the input gene signature; 
(2) correlated WGV scores with drug sensitivity scores (i.e., AUC) for each of 1351 drugs 
in the PRISM database; and (3) ranked drugs by the correlation coefficient of WGV 
scores and drug AUC values (Additional file 1: Fig. S3; see Methods).

To test this approach, we first performed a simulation study. Specifically, we simu-
lated gene expression and drug sensitivity scores for 200 cell lines by randomly sampling 
values from distributions that reflected the CCLE RNAseq and PRISM drug sensitiv-
ity data. Next, to create a synthetic association between gene expression and drug sen-
sitivity, we perturbed a subset of the gene expression data and drug sensitivity scores. 
We then ran 50 replicates to determine if DMEA could consistently identify enrichment 
of the synthetic drug set in this simulated data. To visualize the results, we plotted the 
average normalized enrichment score (NES) and the percent of replicates which pass 
the significance threshold of FDR < 0.25 as heatmaps (Additional file 1: Fig. S4). Impor-
tantly, when there was no perturbation in drug sensitivity (AUC), the tested drug set was 
never significantly enriched (0% of replicates) regardless of the size of the perturbation 
in RNA expression. This demonstrates that DMEA is not prone to false positive results 
using this WGV-based approach. In addition, increasing the perturbation in either RNA 
expression or drug sensitivity led to increased enrichment scores (i.e., average NES) and 
increased significance (i.e., higher percentage of significant replicates). These results 
illustrate that DMEA can successfully identify associations between gene expression and 
drug sensitivity with high reproducibility in simulated data.

Next, we tested whether DMEA could successfully identify drug MOAs with selective 
toxicity using published transcriptomic signatures of drug resistance. First, we tested 
three different signatures of intrinsic resistance to EGFR inhibitors: (1) non-small cell 
lung cancer (NSCLC) cell lines treated with erlotinib (GSE31625) [49]; (2) breast can-
cer cell lines treated with erlotinib (GSE12790) [48]; and (3) NSCLC cell lines treated 
with gefitinib (Coldren et al.) [50]. Notably, there was little overlap in the genes used for 
WGV (GSE12790 and Coldren et al. share zero genes, GSE12790 and GSE31625 share 
15 genes, and GSE31625 and Coldren et  al. share 19 genes; Fig.  6B). Despite the lack 
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of overlap in input gene signatures, all three DMEA analyses correctly identified EGFR 
inhibitors as the top toxic drug MOA for the EGFR inhibitor-sensitive cancer cell lines 
(Fig. 6A,B, Additional file 1: Fig. S5). Again, DMEA’s MOA-level rankings were improved 

Fig. 6  DMEA identifies selectively toxic MOAs based on external gene expression signatures of intrinsic EGFR 
inhibitor resistance and acquired RAF inhibitor resistance, respectively. Using gene expression signatures of 
intrinsic resistance to EGFR inhibition and acquired resistance to RAF inhibition, we calculated WGV molecular 
classification scores for 327 adherent cancer cell lines in the CCLE database. For each signature, the WGV 
scores were correlated with drug sensitivity scores (i.e., AUC) for 1351 drugs from the PRISM database. Drugs 
were then ranked by Pearson correlation coefficient, and DMEA was performed to identify selectively toxic 
MOAs. A DMEA analysis of GSE12790 [48] transcriptomic signature of intrinsic resistance to EGFR inhibitor 
erlotinib, including a volcano plot of NES versus − log10(p value) for MOA evaluated where red text indicates 
MOAs with p value < 0.05 and FDR < 0.25 and a mountain plot showing that DMEA identified the EGFR 
inhibitor MOA as negatively enriched. The most negatively correlated EGFR inhibitors are labeled along with 
their correlation coefficients. B Comparison of three transcriptomic signatures for intrinsic resistance to EGFR 
inhibition analyzed using DMEA, including a Venn diagram showing the number of shared genes among the 
signatures and a dot plot illustrating the consistency of MOA enrichment across DMEA’s analyses. C DMEA 
analysis of GSE66539 [51] transcriptomic signature of acquired resistance to RAF inhibitor vemurafenib, 
including a volcano plot of NES versus − log10(p value) for MOA evaluated where red text indicates MOAs 
with p value < 0.05 and FDR < 0.25 and a mountain plot showing that DMEA identified the RAF inhibitor MOA 
as negatively enriched. The most negatively correlated RAF inhibitors are labeled along with their correlation 
coefficients
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compared to the single-drug rankings (#1 for EGFR inhibitors in all cases versus #16 for 
erlotinib based on GSE31625, #10 for erlotinib based on GSE12790, and #13 for gefitinib 
based on Coldren et  al.); DrugEnrichr and Drugmonizome’s MOA rankings were also 
improved over the individual drug rankings, though they evaluated fewer drug MOA 
sets since they are only designed to accept one input drug set instead of the complete 
drug rank list (Additional file 1: Fig. S1B). In addition, DMEA revealed consistent results 
across all three input gene signatures for drug MOAs identified as potentially toxic for 
EGFR inhibitor-resistant cancer cell lines, including HMGCR and MDM inhibitors 
(Fig. 6B, Additional file 1: Fig. S5). These results support that DMEA can identify selec-
tively toxic drug MOAs given a molecular signature of intrinsic drug resistance and that 
DMEA’s MOA-level rankings improve upon single-drug rankings of toxicity.

Next, we tested whether DMEA could identify selectively toxic drug MOAs given a 
transcriptomic signature of acquired drug resistance. Specifically, we analyzed RNAseq 
data from patient biopsies of BRAF-mutant melanoma before treatment with the BRAF 
inhibitor vemurafenib and after the development of acquired resistance [51]. Again, 
DMEA correctly identified the RAF inhibitor MOA as the top toxic drug MOA for the 
samples collected prior to BRAF inhibitor treatment (Fig. 6C), and the ranking of RAF 
inhibitors at the MOA-level (#1) was improved compared to the ranking of vemurafenib 
alone (#35); this ranking was also improved when inputting the top 50 negatively ranked 
drugs into DrugEnrichr or Drugmonizome (Additional file  1: Fig. S1B). Additionally, 
inhibitors of HDAC, EGFR, CHK, and SYK were identified as possibly beneficial for 
tumors with acquired resistance to RAF inhibition. Conversely, DMEA identified that 
drugs inhibiting MEK, MDM, nerve growth factor receptor, and HMGCR may be toxic 
towards tumors which are sensitive to RAF inhibitors (Fig. 6C). These results demon-
strate that DMEA can amplify on-target signal to identify acquired resistance in tumors 
and other drug MOAs which may be beneficial based on patient biopsies.

DMEA identifies potential senescence‑inducing and senolytic drug MOAs for primary 

human mammary epithelial cells

Lastly, we sought to demonstrate how DMEA can be used as a discovery tool. As an 
example, we analyzed our recently published proteomic signature of replicative senes-
cence, a stress-induced irreversible growth arrest associated with aging, in primary 
human mammary epithelial cells (HMECs) [46]. To highlight the versatility of DMEA 
to either identify similar or selectively toxic drug MOAs, we analyzed the same molecu-
lar signature using either the CMap L1000 Query or our WGV-based approach to rank 
drugs, respectively (Fig. 7A). First, we performed a CMap L1000 Query using the gene 
names for the up- and down-regulated proteins to predict drug MOAs that could induce 
senescence in HMECs. Using the CMap results, DMEA revealed positive enrichment 
for MOAs including proteasome, HDAC, HMGCR, and MDM inhibitors (Fig. 7B), sug-
gesting that treatment with drugs from these MOAs may induce senescence in primary 
HMECs. Among the MOAs with significant negative enrichments were Na/K-ATPase 
inhibitors and matrix metalloprotease inhibitors, suggesting that these drug MOAs 
might antagonize senescence in primary HMECs.

Second, we analyzed the same proteomic signature of senescence with our own WGV-
based method to identify selectively toxic MOAs based on the input molecular signature 
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(Additional file 1: Fig. S3). In contrast to analysis of the CMap L1000 Query which iden-
tified MOAs which induce similar gene expression, this DMEA pipeline instead pre-
dicted drug MOAs that may be toxic to cells with similar gene expression profiles as 
senescent HMEC (i.e., senolytic MOAs). Using this approach, we found that the EGFR 
and MEK inhibitor MOAs were significantly positively enriched in the rank-ordered 
drug list (Fig. 7C). This suggests that compounds from these MOAs may be senolytic in 
HMECs. Among the negatively enriched drug MOAs which may be more toxic to non-
senescent, proliferating HMECs, we found MDM inhibitors, bromodomain inhibitors, 
and other MOAs.

Next, we experimentally tested the hypothesis that EGFR inhibitors exhibit selective 
toxicity against senescent HMECs using the same cells with which we generated the 
proteomic signature of senescence [53]. We treated proliferating and senescent HMECs 
with DMSO (negative control), the EGFR inhibitor dacomitinib, the EGFR inhibitor 
AZD8931, or the known senolytic compound navitoclax (positive control) at 100 and 
500 nM. After 3 days of treatment, dacomitinib, AZD8931, and navitoclax significantly 
reduced the viability of senescent but not proliferating HMECs at both concentrations 
(Fig. 7D). Additionally, all three drugs reduced the total number of viable senescent cells. 
Notably, low concentrations of dacomitinib and navitoclax (100  nM) were selectively 
toxic to senescent cells without affecting the growth rate of non-senescent, proliferating 
HMECs. In contrast, although 100 nM of AZD8931 was selectively toxic to senescent 
HMEC, AZD8931 also reduced the growth rate of proliferating, non-senescent HMECs. 
These experimental results support that the EGFR inhibitors dacomitinib and AZD8931 
are novel senolytic compounds in HMECs, validating a hypothesis generated by DMEA.

Discussion
Here, we introduce drug mechanism enrichment analysis (DMEA), a user-friendly 
bioinformatic method to better prioritize drug candidates for repurposing by group-
ing drugs based on shared MOA. Similar to how GSEA enhances biological interpre-
tation of transcriptomic data [34], DMEA improves drug repurposing by aggregating 
information across many drugs with a common MOA instead of considering each 
drug independently. We have demonstrated the power and sensitivity of DMEA 

(See figure on next page.)
Fig. 7  DMEA identifies potential senescence-inducing and senolytic drug MOAs for primary HMECs. A 
Schematic detailing how the proteomic signature of replicative senescence in primary HMECs [46] was used 
to identify either senescence-inducing or senolytic drug MOAs. B DMEA results for senescence-inducing 
drug MOAs. (Left) Volcano plot of NES versus − log10(p value) for drug MOAs from DMEA. Red text indicates 
MOAs with p value < 0.05 and FDR < 0.25. (Right) Mountain plot showing the positive enrichment of the 
proteasome inhibitor MOA in the rank-ordered drug list of CMap L1000 connectivity scores. The proteasome 
inhibitors with the most positive connectivity scores are highlighted. C DMEA results for senolytic drug 
MOAs. (Left) Volcano plot of NES versus − log10(p value) for drug MOAs from DMEA. Red text indicates MOAs 
with p value < 0.05 and FDR < 0.25. (Right) Mountain plot showing the positive enrichment of the EGFR 
inhibitor MOA in the rank-ordered drug list of correlation coefficients. The EGFR inhibitors with the most 
positive correlation coefficients are highlighted. D The EGFR inhibitors dacomitinib and AZD8931 and the 
senolytic compound navitoclax exhibited senolytic activity in HMECs. Proliferating HMECs (PD ~ 12) were 
treated with DMSO or 2 μM triapine for 3 days to induce proliferating or senescent phenotypes, respectively, 
as in our previous work [53]. Proliferating and senescent HMECs were then treated with DMSO (negative 
control), 100 nM/500 nM dacomitinib, 100 nM / 500 nM AZD8931, or 100 / 500 nM navitoclax for 3 days, after 
which cell viability and live cell number were measured by trypan blue staining. The live cell number was 
normalized to the number of live cells present at the time of drug treatment. * and ** represent p < 0.05 and 
0.01, respectively, compared to the senescent DMSO control calculated by Student’s t-test
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first with simulated data (Fig. 3; Additional file 1: Fig. S4) and then with real exam-
ples including gene expression connectivity scores (Fig. 4), cell viability connectivity 
scores (Fig. 5), and weighted gene voting molecular classification scores (Figs. 6, 7). In 
all cases, DMEA ranked the true drug MOA sensitivity or similarity higher than the 
original ranking of the single-drug agent and performed similarly to or better than 

Fig. 7  (See legend on previous page.)
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existing tools for evaluating drug MOA (Additional file 1: Fig. S1). In addition, DMEA 
improves upon existing tools for analyzing enriched MOA in drug lists in terms of 
flexibility, statistical rigor, and visual outputs (Fig. 1). This demonstrates that DMEA 
helps better prioritize drug treatments by improving the on-target identification of 
candidate drugs.

Importantly, our results demonstrate the ability of DMEA to analyze a variety of 
input rank-ordered drug lists from different drug repurposing algorithms to iden-
tify enrichment of diverse MOAs (e.g., kinase inhibitors, proteasome inhibitors, 
metabolic pathway inhibitors). In these validation cases, DMEA not only identi-
fied the expected drug MOAs (e.g., EGFR inhibitor MOA given a signature of EGFR 
inhibitor resistance) but also MOAs which may exhibit toxicity against tumor cells 
resistant to the input signature of interest. One interesting example is that DMEA 
identified HMGCR inhibitors as potentially toxic to cancer cells with intrinsic resist-
ance to EGFR inhibitors (Fig. 6A,B; Additional file 1: Fig. S5). Indeed, this finding is 
supported by published work demonstrating that HMGCR inhibitors can overcome 
resistance to EGFR inhibitors in NSCLC cells by inhibiting AKT [54, 55]. In addition, 
DMEA also identified that EGFR inhibitor-resistant cells may be sensitive to MDM 
inhibitors (Fig.  6A,B; Additional file  1: Fig. S5), a finding that is supported by pub-
lished work showing that MDM2 mediates resistance to EGFR inhibitors in mouse 
models of NSCLC [56]. Furthermore, our analysis suggested that melanomas sensi-
tive to BRAF inhibitors may also be sensitive to MEK inhibitors (Fig. 6C), an obser-
vation that is supported by clinical trials showing that combination treatment with 
BRAF and MEK inhibitors is more effective than inhibition of BRAF alone in BRAF-
mutant melanoma patients [57]. Finally, for melanomas with acquired resistance to 
RAF inhibitors, DMEA identified CHK inhibitors and SYK inhibitors as potentially 
beneficial. In fact, both CHK1 and SYK kinases have been identified as drug targets 
for melanomas resistant to RAF inhibitors [58, 59]. Collectively, these results sup-
port that DMEA can even identify drug mechanisms beneficial for combination treat-
ments and drug-resistant cancers.

To demonstrate the power of DMEA for biological discovery, we analyzed our 
recently published proteomic signature of replicative senescence in primary HMECs 
[46] (Fig.  7). To illustrate the difference between CMap and DMEA’s interpretation 
of an input gene signature, we used: 1) the CMap L1000 Query followed by DMEA 
to identify similar (e.g., senescence-inducing) drug MOAs and 2) DMEA with WGV 
molecular classification scores to identify selectively toxic (e.g., senolytic) drug 
MOAs. Both senescence-inducing and senolytic compounds have great therapeu-
tic promise in aging [60–64], cancer [65, 66], and other diseases [67]. Among the 
potential senescence-inducing drug MOAs we identified were proteasome, HDAC, 
HMGCR, and MDM inhibitors (Fig.  7B). Indeed, experimental evidence has shown 
that proteasome inhibitors induce senescence in primary fibroblasts [68, 69] and 
that HDAC inhibitors can induce senescence in cancer cells [70–72]. For potential 
senolytic MOAs, we identified EGFR and MEK inhibitors (Fig. 7C) and subsequently 
experimentally validated the senolytic activity of the EGFR inhibitors dacomitinib and 
AZD8931 in a drug-induced model of HMEC senescence (Fig. 7D). To our knowledge, 
this is the first demonstration that EGFR inhibitors can exhibit senolytic activity. 
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Although we did not test whether MEK inhibitors would exhibit senolytic activity in 
primary HMECs, it has been shown in Ras-expressing cells that MEK inhibitors selec-
tively kill senescent cells [73]. Taken together, our results indicate that DMEA is a 
powerful tool for repurposing drug MOAs based on selectivity against or similarity to 
a given molecularly characterized cell state.

Despite the success of our validation examples, we note that DMEA is limited by our 
knowledge of drug MOA. For many targeted therapeutics, the putative MOA may be 
incorrect [33]. Nevertheless, DMEA mitigates the risk of false positives by evaluating 
groups of drugs which share a MOA rather than relying on results from individual drugs 
alone. Thus, even if some drugs are misannotated, DMEA may still correctly identify 
enriched MOAs by aggregating information across multiple drugs, rather than consider-
ing each drug independently. However, improved annotation of drug MOAs and targets, 
potentially through newer approaches including metabolomics [74] and proteomics [75], 
will improve the power of DMEA.

In summary, drug mechanism enrichment analysis (DMEA) improves prioritization 
of drugs for repurposing by grouping drugs that share mechanisms of action (MOAs). 
DMEA can thus be used to further process rank-ordered lists of drugs from drug repur-
posing algorithms to sharpen on-target signal. To provide an easily accessible tool for 
drug repurposing, we also added the option to pair DMEA with WGV molecular clas-
sification as well as public databases of transcriptomic profiles (e.g., L1000, CCLE) and 
drug screens (e.g., PRISM). With this feature, DMEA can interpret an input gene signa-
ture to identify drug mechanisms which exhibit selective toxicity towards cell states (e.g., 
cancer, senescence). Furthermore, our results support that DMEA has potential to aid 
in the discovery of therapeutics for combination treatments or drug-resistant cancers. 
DMEA is publicly available to use either as a web application or an R package at https://​
belin​dabga​rana.​github.​io/​DMEA.
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