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Abstract 

Background:  In the sporadic form of amyotrophic lateral sclerosis (ALS), the patho-
genicity of rare variants in the causative genes characterizing the familial form remains 
largely unknown. To predict the pathogenicity of such variants, in silico analysis is com-
monly used. In some ALS causative genes, the pathogenic variants are concentrated 
in specific regions, and the resulting alterations in protein structure are thought to 
significantly affect pathogenicity. However, existing methods have not taken this issue 
into account. To address this, we have developed a technique termed MOVA (method 
for evaluating the pathogenicity of missense variants using AlphaFold2), which applies 
positional information for structural variants predicted by AlphaFold2. Here we exam-
ined the utility of MOVA for analysis of several causative genes of ALS.

Methods:  We analyzed variants of 12 ALS-related genes (TARDBP, FUS, SETX, TBK1, 
OPTN, SOD1, VCP, SQSTM1, ANG, UBQLN2, DCTN1, and CCNF) and classified them as 
pathogenic or neutral. For each gene, the features of the variants, consisting of their 
positions in the 3D structure predicted by AlphaFold2, pLDDT score, and BLOSUM62 
were trained into a random forest and evaluated by the stratified fivefold cross valida-
tion method. We compared how accurately MOVA predicted mutant pathogenicity 
with other in silico prediction methods and evaluated the prediction accuracy at TAR-
DBP and FUS hotspots. We also examined which of the MOVA features had the greatest 
impact on pathogenicity discrimination.

Results:  MOVA yielded useful results (AUC ≥ 0.70) for TARDBP, FUS, SOD1, VCP, and 
UBQLN2 of 12 ALS causative genes. In addition, when comparing the prediction accu-
racy with other in silico prediction methods, MOVA obtained the best results among 
those compared for TARDBP, VCP, UBQLN2, and CCNF. MOVA demonstrated superior 
predictive accuracy for the pathogenicity of mutations at hotspots of TARDBP and FUS. 
Moreover, higher accuracy was achieved by combining MOVA with REVEL or CADD. 
Among the features of MOVA, the x, y, and z coordinates performed the best and were 
highly correlated with MOVA.
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Conclusions:  MOVA is useful for predicting the virulence of rare variants in which 
they are concentrated at specific structural sites, and for use in combination with other 
prediction methods.

Keywords:  MOVA, Missense variant, Prediction tool, Amyotrophic lateral sclerosis, 
AlphaFold2

Introduction
Rare variants in the causative genes of familial amyotrophic lateral sclerosis (FALS) are 
found in 10–30% of cases of sporadic ALS (SALS) [5, 7]. However, the pathological sig-
nificance of such variants occurring only in SALS is largely unknown. The pathogenicity 
of these rare variants must be validated using cultured cells, animal models, and samples 
obtained from patients. However, this type of validation is generally difficult to perform. 
Instead, in silico analytical methods can be used to predict pathogenicity [1, 8, 9, 15, 18].

In silico analysis focuses primarily on evolutionary conservation of gene and amino 
acid similarity; the most commonly used algorithm is PolyPhen-2, which is a machine 
learning approach employing eight variables based on nucleotide sequences and vari-
ables predicted from known three-dimensional (3D) structures [1]. REVEL and CADD 
are methods that integrate several in silico analysis methods, including PolyPhen-2 [9, 
15]. EVE, a machine-learned method utilizing evolutionary conservation of sequences, 
has also been reported to predict the pathogenicity of rare variants without supervised 
data [8]. Neither method alone is recommended for identifying pathogenicity. Guide-
lines for genetic diagnosis from the American College of Medical Genetics and Genom-
ics (ACMG) and the Association for Molecular Pathology (AMP) recommend that these 
analytical methods should be used only when multiple methods predict that the variant 
is deleterious [16]. Therefore, development of a new in silico approach from a new per-
spective would be desirable.

One factor not often considered in existing in silico analysis methods is the location 
of the variant and the 3D structure of the associated region [18]. In the ALS-associated 
genes TARDBP and FUS, mutations are concentrated in a particular region [3, 12]. 
These regions are also structurally characteristic and are assumed to undergo facilitated 
aggregation. If positional information and pathogenicity related to the structure of these 
regions can be taken into account, more accurate estimation of pathogenicity might 
be possible. Indeed, the ACMG guidelines recommend that even if a variant is located 
in a mutational hotspot or in an important functional domain, it is a factor that would 
support the pathogenicity of the variant [16]. Therefore, the accuracy of pathogenicity 
prediction would be improved by taking into account positional information about the 
variants. However, it has been difficult to utilize this factor because of the limited num-
ber of proteins whose 3D structures have been clarified [18].

Recently, AlphaFold2 was developed as a method for prediction of protein 3D struc-
tures in silico with high accuracy [10]. This method can predict the structure of a protein 
even in the absence of a similar protein whose structure is already known [17]. There-
fore, addition of structural information using AlphaFold2 would be expected to improve 
the accuracy of pathogenicity prediction. In fact, AlphScore has been shown to pre-
dict the pathogenicity of rare variants using this factor [18], and when combined with 
REVEL, CADD, and DEOGEN2, it improved the accuracy of each program [18]. These 
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results suggest that structural information from AlphaFold2 would be useful for patho-
genicity prediction.

Here we developed an approach termed MOVA (a method for evaluating the patho-
genicity of missense variants using AlphaFold2), which applies positional information 
for variants based on the 3D structure predicted by AlphaFold2, and machine-learns the 
pathogenicity of variants for each gene. We investigated the usefulness of MOVA for 
predicting the pathogenicity of rare ALS-causative gene variants.

Materials and methods
Gene set

We counted the types of ALS-causing mutations in known ALS-causing genes using 
HGMD Professional 2022.4, and the top 12 genes with the most types of causative muta-
tions, SOD1, TARDBP, FUS, VCP, SETX, TBK1, SQSTM1, ANG, OPTN, UBQLN2, 
DCTN1, and CCNF were included in the analysis (Additional file 1: Table S1). Mutation 
of the ALS causative gene C9orf72 was excluded from this analysis because of a repeat 
extension mutation.

Data set

Variants of each gene listed in gnomAD v.3.1.2 or HGMD Professional 2022.4 were 
included in the analysis. Pathogenic variants (positive variants) were defined as vari-
ant class ‘DM’ with reported phenotypes including amyotrophic lateral sclerosis, fron-
totemporal dementia, or motor neuron disease in HGMD Professional 2022.4. Neutral 
variants (negative variants) were defined as variants recognized in gnomAD v.3.1.2 
excluding variants defined as a class ‘DM’ or ‘DM?’ in HGMD Professional 2022.4.

CADD, PolyPhen‑2, EVE, REVEL and AlphScore

We evaluated the accuracy with which CADD, PolyPhen-2, EVE, REVEL, and AlphScore 
were able to discriminate between positive and negative variants in the existing datasets. 
PolyPhen-2 used HumDiv as the classifier model. Sensitivity (true-positive rate) versus 
1-specificity (false-positive rate) at each threshold was plotted as a ROC curve, and the 
AUC was calculated. The specificity and sensitivity at each threshold were calculated 
using the prediction function of the ROCR package in R version 4.2.2, and the ROC 
curve plot and AUC were calculated using the performance function.

MOVA: a method for determining variant pathogenicity using AlphaFold2

To construct MOVA, we used supervised machine learning with labeled examples 
attributed to positive or negative variants, and trained and examined each gene indi-
vidually. The average x, y and z coordinates for each atom and the pLDDT (predicted 
local distance difference test) score at the site of the mutant amino acid residue of 
the protein in the pdb file of the Alphafold2 database [19], and “the likelihood of an 
event in which the reference amino acid at the site of amino acid change remains the 
same—the likelihood of an event in which the reference amino acid is replaced by 
the alternative amino acid, as evaluated by BLOSUM62” were used as features. They 
were trained with random forest, Support Vector Machine (SVM) or XGBoost and 
evaluated using the stratified fivefold cross validation method [4, 6, 11]. These steps 
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were repeated five more times to reduce the variation from one execution to the next. 
Finally, we considered the method with the highest mean AUC for the 12 target genes 
among the three methods (Fig. 1A). The random forest model was constructed using 
the randomForest function from the randomForest package of the statistical software 
R version 4.2.2, the SVM model was constructed using the ksvm function from the 
kernlab package, and the XGBoost model was constructed using the xgb.train func-
tion from the xgboost package. Parameters for random forest and SVM were left 
at the default settings of the randomForest function and ksvm function, XGBoost 
parameters were set to objective = “binary:logistic”, booster = “gbtree”, nrounds = 100, 
and all other parameters were left at their default settings.

Comparison of MOVA with the models based on each of MOVA’s features

We compared the usefulness of MOVA to models that use each of the features that 
constitute MOVA. The average x, y, and z coordinates of each atom at the site of the 
mutated amino acid residue of the wild-type protein in the AlphaFold2 database were 
used as the feature values, trained in a random forest, and evaluated using a stratified 
fivefold cross-validation method. To reduce variation from one execution to the next, 
they were repeated five more times and compared to MOVA. Similarly, the average 
of pLDDT scores alone, ΔBLOSUM62 alone, and the average of pLDDT scores and 
ΔBLOSUM62 excluding x, y, and z coordinates as features were trained using the ran-
dom forest method, evaluated using the stratified fivefold cross-validation method, 
and their usefulness was compared with MOVA.

Fig. 1  Work flowchart for MOVA. The x, y, z coordinates, and the plddt score for the amino acid residues at 
the substitution sites in the protein in the pdb file of the Alphafold2 database, and the ΔBLOSUM62 of the 
substituted amino acid residue, were used as parameters for random forest, XGBoost, or support vector 
machine (SVM) training (A). The sample group was randomly divided into five subsets as avoiding bias in 
objective variables. With one subset as the test cases and the rest as the training cases, we built the model. 
The predictions were calculated and validated using the test data. The models were iteratively built so that all 
five subsets were test cases. (B). The model was generated 30 times with all variants in the dataset as training 
data. The probability of each possible variant of the gene being pathogenic was predicted, and the average 
of the predictions was used as the MOVA value (C)
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The simple approach based on distance from known pathogenic variants

We used the stratified fivefold cross-validation method to evaluate whether patho-
genicity could be predicted by the distance between the target variant and a known 
pathogenic variant. Following the stratified fivefold cross-validation method, we 
divided the training and test data and calculated the distance in 3D position cal-
culated by AlphaFold2 for a variant of test data for each pathogenic variant of the 
training data. The minimum distance was taken as the ’distance to known pathogenic 
variants.’ The stratified fivefold cross-validation method was repeated five more times 
to reduce the variation from run to run. The AUC was used to evaluate whether the 
positive or negative variant could be distinguished from the ‘distance from known 
pathogenic variants’ for the test cases. The ROC curve plot and AUC were calculated 
using the cvAUC function of the cvAUC package in R, version 4.2.2.

MOVA model evaluation

In this analysis, the model was evaluated using the stratified fivefold cross-validation 
method because of the bias in the number of pathogenic mutations and neutral poly-
morphisms in the data set (Fig. 1B). The sample group was randomly divided into five 
subsets as avoiding bias in objective variables. We made it one-fold to build the model 
with one subset as test data and the rest as training data. Five folds were repeated so 
that all five subsets were the test data. We repeated this process five more times to 
reduce the variability from one execution to the next. Predicted values were calcu-
lated using the prediction function of the randomForest package in R version 4.2.2, 
with the average being the 5F-MV value:fivefold MOVA value. Plotting of ROC curves 
and calculation of the AUC were performed using the cvAUC function of the cvAUC 
package. The specificity and sensitivity at each threshold for each fold were calculated 
using the prediction function of the ROCR package. The cutoff value was set to the 
mean of the Youden index (the point at which sensitivity + specificity − 1 is the maxi-
mum value).

Combination with other missense prediction scores

MOVA was combined with REVEL or CADD using logistic regression as implemented 
in the R-function glm with the option family = binomial in R version 4.2.2 and evaluated 
using the stratified fivefold cross validation method. The combination of AlphScore with 
REVEL or CADD was used directly from https://​zenodo.​org/​record/​62881​39#.​Ym0Ir​
9rP23A.

Generation of the final MOVA model

The predicted value of the probability of each variant being pathogenic was calculated by 
MOVA, and this was used as the MOVA value. The model was fitted using all the vari-
ants in the dataset as training data. Since machine learning can change values from each 
trial, the model was generated in a prediction trial of 30 times and the average of these 
predictions was used as the MOVA value (Fig. 1C). The value was set to 0 if the allele 
was the same as the reference. MOVA values range from 0 to 1, with 1 having the highest 

https://zenodo.org/record/6288139#.Ym0Ir9rP23A
https://zenodo.org/record/6288139#.Ym0Ir9rP23A
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probability of being pathogenic. These analyses were performed using the statistical soft-
ware R version 4.2.2 (Additional files 2–13: Tables S2–S13).

Spearman’s rank correlation coefficient

Spearman’s rank correlation coefficient was performed to observe the relationship 
between the AUC of MOVA and the number of variants in the dataset. In addition, the 
correlation between the AUC of MOVA and the AUC of each feature-specific analysis 
was also evaluated using Spearman’s rank correlation coefficient. The analysis was per-
formed using the statistical software R version 4.2.2.

Results
Figure  1 shows how MOVA was set up. We assumed that the location of the protein 
mutation affects pathogenicity and incorporated mainly those that conform to positional 
information as features. Among the features used, (1) the x, y, and z coordinates of the 
mutated amino acid residue in the 3D structure of the wild-type protein predicted by 
AlphaFold2 are the location information. (2) The pLDDT score was incorporated as a 
reliability score for location prediction. (3) BLOSUM62, which is also used in known 
pathogenicity prediction algorithms, was used to evaluate the evolutionary conservation 
of amino acids. In the present study, we did not use other protein structure-specific fea-
tures because we emphasized compliance with protein location information. These data 
were used for training for each gene employing the random forest or SVM or XGBoost 
method. After the study, AUCs were calculated using a stratified fivefold cross-valida-
tion method to compare the three methods (Additional file 14: Table S14). In this study, 
an AUC of 0.70 or higher was considered a useful result [2].

There were 5 genes (TARDBP, FUS, SOD1, VCP, UBQLN2) out of 12 genes with 
AUC ≥ 0.70 in both random forest, XGBoost, and SVM. The mean AUC was 0.655 for 
the random forest, 0.645 for XGBoost, and 0.648 for SVM. We chose to continue the 
analysis with the random forest with the highest mean AUC.

Table 1  Performance of MOVA for the 12 ALS causative genes

AUC​ area under the curve

Gene AUC​ Cutoff Positive variant Negative 
variant

TARDBP 0.772 0.63 55 34

FUS 0.841 0.429 54 153

SETX 0.678 0.0434 40 939

TBK1 0.513 0.153 35 153

OPTN 0.501 0.192 21 173

SOD1 0.786 0.861 181 13

VCP 0.847 0.509 53 67

SQSTM1 0.473 0.123 29 182

ANG 0.464 0.407 23 43

UBQLN2 0.769 0.279 19 118

DCTN1 0.524 0.124 18 390

CCNF 0.696 0.046 16 297
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The cutoff values and AUCs for each gene in MOVA, as well as the number of path-
ogenic mutations and neutral polymorphisms used in the study, are summarized in 
Table 1. For the other in silico prediction methods, AUCs were calculated from the 

Table 2  Performance of MOVA and the existing methods

gene MOVA PolyPhen-2 CADD REVEL EVE AlphScore

TARDBP 0.772 0.583 0.555 0.742 0.571 0.448

FUS 0.841 0.541 0.694 0.878 – 0.652

SETX 0.678 0.692 0.675 0.682 0.649 0.577

TBK1 0.513 0.721 0.748 0.785 – 0.603

OPTN 0.501 0.686 0.693 0.804 0.72 0.589

SOD1 0.786 0.774 0.737 0.805 0.8 0.771

VCP 0.847 0.753 0.692 0.759 0.403 0.654

SQSTM1 0.473 0.661 0.541 0.775 0.504 0.548

ANG 0.464 0.593 0.555 0.721 0.554 0.443

UBQLN2 0.769 0.47 0.464 0.722 0.562 0.527

DCTN1 0.524 0.558 0.577 0.617 0.709 0.553

CCNF 0.696 0.533 0.615 0.581 0.619 0.578

Average 0.655 0.63 0.629 0.739 0.609 0.579

Fig. 2  We used receiver operating characteristic (ROC) curve analysis to determine whether MOVA (red 
line), CADD (blue line), PolyPhen-2 (orange line), EVE (gray line), REVEL (black line), or AlphScore (green line) 
classified variants for TARDBP, FUS, SETX, TBK1, OPTN, SOD1, VCP, SQSTM1, ANG, UBQLN2, DCTN1, and CCNF as 
positive or negative. For MOVA, the stratified fivefold cross-validation was repeated 5 times, so the cvAUC 
function of the cvAUC package was used to draw the average of the ROC curves for 25 times
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pre-computed predictions and compared with MOVA trained in the random forest 
(Table 2, Fig. 2).

MOVA showed AUC ≥ 0.70 for 5 of 12 genes (TARDBP, FUS, SOD1, VCP, 
UBQLN2). Three of the 12 genes (TBK1, SOD1, and VCP) in PolyPhen-2, two of the 
12 genes (TBK1, SOD1) in CADD, nine of the 12 genes (TARDBP, FUS, TBK1, OPTN, 
SOD1, VCP, SQSTM1, ANG, and UBQLN2) in REVEL, and one of the 12 genes 
(SOD1) in AlphScore showed an AUC ≥ 0.70. In EVE, 3 (OPTN, SOD1, DCTN1) of 
the 10 genes (TARDBP, SETX, OPTN, SOD1, VCP, SQSTM1, ANG, UBQLN2, DCTN1, 
CCNF) listed in the database (https://​evemo​del.​org/) showed an AUC of ≥ 0.70. SETX 
and CCNF did not show an AUC of ≥ 0.70 for any of the methods. Six genes (FUS, 
TBK1, OPTN, SOD1, SQSTM1, and ANG) showed the best AUC with REVEL, and 
four genes (TARDBP, VCP, UBQLN2, and CCNF) showed the best AUC with MOVA. 
PolyPhen-2 showed the highest AUC for SETX and EVE for DCTN1. The mean AUC 
for the 12 genes for each method was highest for REVEL at 0.739, followed by MOVA 
at 0.655, PolyPhen-2 at 0.630, CADD at 0.629, EVE at 0.609, and AlphScore at 0.579 
(Table 2).

Next, we examined whether the addition of ’distance to known pathogenic variants,’ 
which is positional information about the protein 3D structure, could improve the accu-
racy of MOVA pathogenicity prediction. In the analysis with only ‘distance to known 
pathogenic variants’ as a feature, four of the 12 genes (TARDBP, FUS, SOD1, and VCP) 
showed AUCs ≥ 0.70, and the mean AUC for the 12 genes was 0.656, showing similar 
usefulness to MOVA (Additional file 15: Table S15). However, adding ’distance to known 
pathogenic variants’ as one of the features of MOVA did not improve the number of 
genes with AUC ≥ 0.70, 4 out of 12 genes (TARDBP, FUS, VCP, UBQLN2), and the mean 
AUC of the 12 genes was 0.629, with no improvement (Additional file 15: Table S15).

In addition, to examine which features of MOVA affect the accuracy of MOVA pre-
dictions, AUC was calculated for each gene by random forest analysis for each feature 
(Additional file 16: Table S16). The genes with AUC ≥ 0.70 were two of 12 genes (TAR-
DBP, FUS) for pLDDT and one of 12 genes (UBQLN2) for BLOSUM62, while four of 
12 genes (TARDBP, FUS, SOD1, VCP) for x, y, z coordinates. The mean AUC for the 12 
genes was the highest for the 3D structure position coordinates: pLDDT 0.597, BLO-
SUM62 0.567, and x, y, z coordinates 0.625. Spearman’s correlation coefficients for the 
AUCs calculated for each and MOVA were pLDDT-MOVA 0.80, BLOSUM62-MOVA 
0.46, and position information-MOVA 0.93, with the highest correlation coefficient 
between 3D structure position information and MOVA. In addition, the features of 
pLDDT and BLOSUM62, excluding location information, were trained and evaluated in 
a random forest and the AUC was calculated (Additional file 16: Table S16). Only two of 
the 12 genes (FUS and SETX) had AUCs ≥ 0.70, and the average AUC for the 12 genes 
was 0.603, which was lower than the 3D structural position information alone.

For TARDBP and FUS, the predicted probability of pathogenicity was compared 
between MOVA and PolyPhen-2 (Fig. 3). MOVA tended to have higher 5F-MV values 
at hotspots. In contrast, no such trend was observed for pph2_prob in Polyphen-2 
(Fig.  3). MOVA values for each mutation in TARDBP, FUS, SETX, TBK1, OPTN, 
SOD1, VCP, SQSTM1, ANG, UBQLN2, DCTN1, and CCNF are shown in Additional 
files 2–13: Tables S2–S13.

https://evemodel.org/
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Finally, we examined whether combining MOVA with CADD or REVEL could 
improve prediction accuracy. In CADD alone, only TBK1 and SOD1 showed AUC ≥ 0.7, 
but in CADD + MOVA, seven genes (TARDBP, FUS, SETX, TBK1, SOD1, VCP, and 
UBQLN2) showed AUC ≥ 0.70 (Table  3, Additional file  17: Fig. S1). The mean AUC 
for the 12 genes was higher for CADD + MOVA (0.690) than for CADD alone (0.629). 

Fig. 3  All variants of TARDBP and FUS in the dataset were divided into positive variants (red) associated with 
ALS and negative variants (light blue) recognized in the general population. For Polyphen-2, pph2_prob 
(classifier probability of the variation being damaging), and MOVA, the 5F-MV value was plotted on the y-axis 
as the predicted value and the residue number was plotted on the x-axis. Both pph2_prob and 5F-MV take 
values between 0 and 1, with 1 having the highest probability of being pathogenic

Table 3  AUC for combination of MOVA and other methods

MOVA CADD REVEL

Only  + MOVA  + AlphScore Only  + MOVA  + AlphScore

TARDBP 0.772 0.555 0.765 0.533 0.742 0.795 0.709

FUS 0.841 0.694 0.837 0.737 0.878 0.903 0.888

SETX 0.678 0.675 0.71 0.659 0.682 0.712 0.682

TBK1 0.513 0.748 0.758 0.743 0.785 0.787 0.79

OPTN 0.501 0.693 0.667 0.703 0.804 0.812 0.797

SOD1 0.786 0.737 0.776 0.774 0.805 0.846 0.818

VCP 0.847 0.692 0.881 0.723 0.759 0.89 0.761

SQSTM1 0.473 0.541 0.47 0.55 0.775 0.753 0.766

ANG 0.464 0.555 0.516 0.542 0.721 0.716 0.692

UBQLN2 0.769 0.464 0.752 0.475 0.722 0.836 0.701

DCTN1 0.524 0.577 0.511 0.592 0.617 0.569 0.614

CCNF 0.696 0.615 0.641 0.617 0.581 0.646 0.613

Average 0.655 0.629 0.69 0.637 0.739 0.772 0.736
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Nine genes (TARDBP, FUS, TBK1, OPTN, SOD1, VCP, SQSTM1, ANG, and UBQLN2) 
showed AUC ≥ 0.7 in REVEL alone, while 10 genes, including SETX, showed AUC ≥ 0.7 
in REVEL + MOVA (Table 3, Additional file 18: Fig. S2). The mean AUC for the 12 genes 
was also higher at 0.772 compared with 0.739 for REVEL alone.

Discussion
We developed a new in silico method for predicting the pathogenicity of missense vari-
ants, MOVA, based on the assumption that the position of the variant on the protein 
affects the pathogenicity. It was developed by machine learning using the pathogenicity 
information previously reported for each gene as training data, using the position of the 
mutation site on the 3D structure of each protein predicted by Alphafold2 as the feature 
value. Similarly, we compared the prediction accuracy of MOVA with that of AlphScore, 
which predicts pathogenicity using the three-dimensional structural data of AlphaFold2. 
When used for analysis of 12 ALS-causative genes, MOVA showed higher prediction 
accuracy than AlphScore for eight of them (TARDBP, FUS, SETX, SOD1, VCP, ANG, 
UBQLN2 and CCNF). Especially for TARDBP and FUS, MOVA was superior for deter-
mining pathogenicity at hotspots; MOVA performs machine learning on a gene-by-gene 
basis, which may explain its superior performance for predicting the pathogenicity of 
polymorphisms in pathogenic genes with hotspots.

We analyzed each feature in a random forest and calculated AUCs for each gene to 
examine whether the positional information of the variants on the protein influenced 
the good performance of MOVA. The results showed that the AUC of 3D structure-
position coordinates was the highest and best correlated with MOVA, indicating that 
3D structure-position coordinates contributed to the analysis of MOVA. We also tested 
whether ’distance to known pathogenic variants’ can predict the pathogenicity of a vari-
ant. Although this also showed some usefulness, it did not contribute to improving the 
prediction accuracy of MOVA; therefore, it was not included in the MOVA features.

MOVA is a machine-learning method that focuses on specific genes. In this study, 
we analyzed 12 ALS-related genes and compared their effects with those of the existing 
in silico prediction methods. Overall, REVEL performed the best, followed by MOVA. 
However, each gene had a different algorithm that resulted in a favorable AUC. For a 
more accurate in silico analysis of the pathogenicity of novel genes, preliminary analysis 
using multiple algorithms, as was done in this study, would be necessary to select a use-
ful algorithm. ACMG guidelines also support this idea, as it is important to use multi-
ple in silico methods to predict pathogenicity [16]. Compared with existing algorithms, 
MOVA, which uses previously unused location information as the main analysis data, is 
a useful option.

AlphScore also increased accuracy when combined with CADD or REVEL, and 
MOVA, when combined with CADD or REVEL, showed AUCs that exceeded not only 
CADD and REVEL alone but also the combination of AlphScore and CADD or REVEL. 
These results demonstrate the usefulness of MOVA.

With regard to the characteristics of genes for which MOVA is effective, it is a 
machine-learning program that considers a variant’s position in the 3D structure pre-
dicted by AlphaFold2, the pLDDT score, which is the certainty of the prediction [10], 
and the likelihood of evolutionary change between the reference and the alternative 
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amino acid residue derived from the BLOSUM62 score, using previously reported 
pathogenic mutation information as the teacher data. Therefore, it is effective when 
the pathogenicity depends on the position of the variant in the 3D structure and its 
localization to a specific region. If there is a hot spot of genetic variation, MOVA may 
increase the prediction accuracy. Indeed, in TARDBP and FUS, for which MOVA was 
effective, pathogenic mutations are concentrated at the C-terminus, and moreover, in 
TARDBP, they are concentrated in IDRs (intrinsic disordered regions) (Fig. 3, red cir-
cles) [3, 12]. Since pLDDT scores are associated with IDRs [14], MOVA may also be 
superior for detecting genes that are associated with IDRs and pathogenicity. How-
ever, in TBK1 or OPTN, where the prediction accuracy of MOVA was low, there are 
no regions of concentrated pathogenic mutations [13, 20], suggesting that the charac-
teristics of MOVA may not have been exploited.

The prediction accuracy of machine learning is known to depend on the number of 
teacher data. Two types of teacher data were used in this study: pathogenic and neu-
tral variants. More than 50 pathogenic mutants were used for TARDBP, FUS, SOD1, 
and VCP, for which MOVA showed a high prediction accuracy. In contrast, 33, 21, 
29, and 23 were used for TBK1, OPTN, SQSTM1, and ANG, respectively, which had 
low prediction accuracy. The number of pathogenic variants used for analysis in the 
MOVA may have affected the prediction accuracy; however, Spearman’s rank correla-
tion coefficient between the number of pathogenic variants used in the analysis and 
the MOVA AUC for each gene was 0.53 (p = 0.079), which was not a significant cor-
relation. The number of neutral mutations was more than 100 for FUS, SETX, TBK1, 
OPTN, SQSTM1, UBQLN2, DCTN1, and CCNF and less than 100 for TARDBP, SOD1, 
VCP, and ANG; no association with MOVA prediction accuracy was found. Statistical 
analysis showed that the coefficient of Spearman’s rank correlation between the num-
ber of neutral variants used in the analysis and MOVA AUC was − 0.36 (p = 0.25).

One limitation of MOVA is that its results depend on the number of pathogenic 
variants used in the teacher data, so fewer teacher data will result in less accurate pre-
dictions. In our study, there were some genes for which MOVA was useful, even with 
as few as 15 pathogenic mutations, but it would not be used for genes with only three 
or four known pathogenic mutations. It cannot be used for genes with no known 
pathogenic mutations, such as newly identified disease-related genes. However, the 
amount of information on genetic variation is expected to increase further with the 
generalization of exome and whole-genome analyses. In this regard, the usefulness of 
MOVA is expected to increase. In addition, the data in this analysis were based on the 
location of the wild-type. For a more rigorous analysis, positional information must 
be calculated for all mutant proteins. However, it is too time-consuming and practi-
cally difficult to estimate the 3D structures of all possible mutant proteins; therefore, 
the analysis was based on the 3D structure of the wild type. Another limitation is that, 
compared to REVEL alone, MOVA has a lower overall performance. In this regard, 
rather than blindly using MOVA alone, it is necessary to devise ways to adapt MOVA 
to genes with high prediction accuracy, or to combine MOVA with other methods. 
Finally, only the ALS-related genes were included in this study. It remains to be seen 
whether the same usefulness of MOVA as in the present analysis can be demonstrated 
for causative genes of other diseases.
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We have thus developed MOVA, a machine learning approach using the 3D structural 
position of a variant, as predicted by AlphaFold2, for learning and predicting whether or 
not a specific gene variant will be pathogenic. This method showed the second highest 
virulence discrimination rate after REVEL in the evaluation of 12 genes. For some genes, 
the discrimination rate of MOVA was higher than that of REVEL. This method is useful 
for predicting the pathogenicity of rare polymorphisms in genes in which mutations are 
clustered at specific structural sites. It also showed a high pathogenicity discrimination 
rate when combined with CADD and REVEL. This method will be useful for predict-
ing the pathogenicity of rare gene variants in which mutations are clustered at specific 
structural sites.
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