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Abstract 

Background:  Cysteine-dense peptides (CDPs) are an attractive pharmaceutical scaf-
fold that display extreme biochemical properties, low immunogenicity, and the ability 
to bind targets with high affinity and selectivity. While many CDPs have potential and 
confirmed therapeutic uses, synthesis of CDPs is a challenge. Recent advances have 
made the recombinant expression of CDPs a viable alternative to chemical synthesis. 
Moreover, identifying CDPs that can be expressed in mammalian cells is crucial in 
predicting their compatibility with gene therapy and mRNA therapy. Currently, we 
lack the ability to identify CDPs that will express recombinantly in mammalian cells 
without labour intensive experimentation. To address this, we developed CysPresso, a 
novel machine learning model that predicts recombinant expression of CDPs based on 
primary sequence.

Results:  We tested various protein representations generated by deep learning algo-
rithms (SeqVec, proteInfer, AlphaFold2) for their suitability in predicting CDP expression 
and found that AlphaFold2 representations possessed the best predictive features. We 
then optimized the model by concatenation of AlphaFold2 representations, time series 
transformation with random convolutional kernels, and dataset partitioning.

Conclusion:  Our novel model, CysPresso, is the first to successfully predict recombi-
nant CDP expression in mammalian cells and is particularly well suited for predicting 
recombinant expression of knottin peptides. When preprocessing the deep learning 
protein representation for supervised machine learning, we found that random convo-
lutional kernel transformation preserves more pertinent information relevant for pre-
dicting expressibility than embedding averaging. Our study showcases the applicability 
of deep learning-based protein representations, such as those provided by AlphaFold2, 
in tasks beyond structure prediction.
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Background
Cysteine-dense peptides (CDPs) are highly constrained by disulfide bonds, producing 
a molecular structure that confers extreme stability against proteolytic, thermal, and 
chemical degradation [1, 2]. As a result, there is much interest in utilizing CDPs as drug 
scaffolds [3]. Naturally occurring CDPs have diverse pharmacological and toxicologi-
cal effects, including activities against ion channels, G-protein coupled receptors, and 
enzymes, as well as cytotoxic and anti-microbial properties [4–7]. One particular class 
of CDP, the inhibitor cysteine knot peptides—also known as knottins—has received 
much interest due to their confirmed and potential uses as analgesics, anthelmintics, 
anti-erectile dysfunction agents, neuroprotectives, antimalarials, antimicrobials, anti-
tumour agents, protease inhibitors, toxins, insecticides, molecular imaging agents, and 
drug delivery vehicles [8–10].

Another reason that CDPs are of interest is their potential in drugging “undruggable” 
targets [11]. Identifying small molecules capable of disrupting protein–protein interac-
tions has proven to be a challenge, leaving many protein aggregation diseases untreated. 
While antibodies are capable of disrupting protein–protein interactions, their large size 
limits their ability to penetrate tissues and access intracellular targets. CDPs, on the 
other hand, are small enough to avoid these limitations while still being able to interfere 
with protein–protein interactions [12, 13].

One of the challenges of using CDPs for therapeutic purposes is that they are difficult 
to synthesize and express. While the disulfide bonds are important for the stability of the 
molecule, incorrect linkage can lead to misfolded non-native isomers [14–16]. Recent 
work using high-throughput expression systems to express CDPs in mammalian cells has 
allowed the screening of hundreds of CDPs for expression [17, 18]. Though this work has 
led to the identification of a number of CDPs that can be efficiently produced through 
recombinant expression, our ability to discern the expressibility of CDPs based on amino 
acid sequences is currently limited, necessitating prior experimentation. The ability to 
determine which CDPs will express in mammalian cells would be valuable in identifying 
those compatible with biologic production, gene therapy, and mRNA therapy, and would 
facilitate the design and development of recombinant CDPs for therapeutic use.

To bridge this gap, we developed CysPresso, a machine learning classifier that predicts 
whether a CDP will be expressible based on its primary sequence. We tested various 
protein representations to identify the ideal model to utilize with machine learning algo-
rithms to predict expressibility from primary sequences. We tested the performance of 
representations from an ELMo language model trained on protein sequences (SeqVec) 
[19], a deep dilated convolutional network trained on protein functions (ProteInfer) [20], 
and a neural network trained to predict protein structure (AlphaFold2) [21], and deter-
mined that AlphaFold2 representations performed best at predicting expressibility. The 
AlphaFold2 algorithm generates four protein representations, and we found that com-
bining the representations enhanced model performance. Stratification of the dataset 
into knottin and non-knottin CDPs improved predictions of expressibility for knottin 
peptides. Additionally, model performance for knottin peptide expressibility could be 
further enhanced through application of a time series classification method implement-
ing random convolutional kernels [22]. The performance of the final model, CysPresso, 
evaluated by receiver operating characteristic area under the curve (AUC) yielded 0.798 
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for non-knottin CDPs and 0.852 for knottin CDPs. To our knowledge, this is the first 
study to demonstrate that prediction of recombinant protein expression in mammalian 
cells can be carried out successfully by supervised machine learning. This method will be 
useful in identifying recombinant peptides and proteins that are expressible in mamma-
lian cells, enabling the prediction of proteins compatible with biologic production, gene 
therapy and mRNA therapy.

Methods
Data preprocessing

This study utilized previously published data [17]. In this dataset, CDPs of 30 to 50 
amino acids in length were tested for expression using the Daedalus lentivirus produc-
tion system in HEK293 cells and subsequently purified by reverse phase chromatogra-
phy (RPC). Products were deemed successfully expressed if the RPC peak demonstrated 
a single peak under both oxidizing and reducing conditions, which is characteristic of a 
single folding state and the absence of heterogeneity.

The original dataset contained a list of 1249 CDPs, including UniProt accession num-
ber, primary sequence, source organism, and expressibility. Twenty two duplicate entries 
were removed, leaving 1227 CDPs (Additional file 1: Table S1). CDPs were identified as 
knottins if the keyword knottin (KW-0960) was mapped to its UniProt entry on the Uni-
Prot database [23].

Protein representations

Protein representations, or embeddings, encode proteins into a numeric format com-
patible with mathematical operations used in machine learning. Representations from 
SeqVec were generated using the pre-trained UniRef50 ELMo model [19], resulting in 
1024 per-residue features derived from the final hidden layer of the neural network. 
Averaging within-feature yielded an embedding of 1024 features per CDP. Similarly, rep-
resentations from proteInfer were generated using the Swiss-Prot EC model [24] to yield 
1100 per-residue features, which were then averaged within-feature to yield an embed-
ding of 1100 features per CDP.

To generate AlphaFold2 representations, AlphaFold2 [21] was run using the complete 
database setting for Multiple Sequence Alignment (MSA) search on the Compute Can-
ada supercomputer cluster. The five models (monomer_casp14, model weights: v2.2.0 
with 8 × ensembling and relaxation) that were used during the 14th community wide 
experiment on the Critical Assessment of techniques for protein Structure Prediction 
(CASP14) were utilized to generate representations, but only the representation from 
the model with the highest average predicted Local Distance Difference Test (pLDDT) 
was used for downstream predictions. Embeddings from the final hidden layer of the 
single (384 per-residue features), pair (128 per-residue features after averaging the first 
dimension), MSA (256 per-residue features) and structure module (384 per-residue fea-
tures) representations were collected. To create the combined AlphaFold2 representa-
tion, the single, pair, MSA and structure module features were concatenated, producing 
feature vectors of 1152 dimensions. When used to train random forest algorithms, per-
residue features of the AlphaFold2 representations were averaged.
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Supervised learning algorithms

As random forest classifiers perform implicit feature selection and provide a meas-
ure of feature importance [25], they were implemented through scikit-learn [26] to 
allow comparisons between the quality of protein representations for the prediction 
of expressibility. Hyperparameters were left at default scikit-learn values, other than 
the n_estimators (number of trees) value which was set to 300. To estimate perfor-
mance between different protein models, tenfold cross validation was used, and the 
same shuffle was utilized across the different protein models. When data stratification 
was carried out, shuffling the train and test folds was balanced to contain an equal 
number of expressing and non-expressing non-knottins and knottins among each fold 
(Table 1).

When time series transformation was carried out, such as when implementing the 
final CysPresso model, L2-regularized logistic regression was used for supervised 
learning as described below.

Random Convolutional Kernel Transformation

Embeddings from deep learning protein representations are commonly averaged before 
machine learning tasks are carried out [19, 27, 28]. We hypothesized that employing 
other methodologies such as utilizing convolutional kernels may provide better fea-
ture extraction. RandOm Convolutional KErnel Transform (ROCKET) is an approach 
developed for time series classification tasks that uses random convolutional kernels to 
transform sequential features, and is useful for capturing discriminating signals and pat-
terns in ordered data with a low computational requirement [22]. To apply ROCKET, 
we created a concatenation of the four AlphaFold2 representations without any per-
residue averaging. To ensure uniformity in representation size, representations of CDPs 
with fewer than 50 amino acids were padded with zeros. As a result, each CDP was 
represented as 50 residues × 1152 per-residue hidden layer neural activations. Repre-
sentations were then transformed by ROCKET, convolving 10,000 randomly generated 
kernels over the representation, producing a new representation of 20,000 features per 
CDP. The ROCKET representations were then classified using a L2-regularized logistic 
regression model, which was chosen because linear classifiers, such as logistic regres-
sion, are well-suited for utilizing limited information from a vast number of features, 
and regularization plays a crucial role in preventing overfitting when the number of fea-
tures exceeds the number of training examples [29]. The original ROCKET methodology 
also promotes the use of L2-regularized logistic regression for high classification accu-
racy when computational expense does not need to be minimized [17].

Table 1  Expressibility of recombinant non-knottin and knottin CDPs

Using a high-throughput expression system in HEK293 cells, the expressibility of 1227 CDPs was determined [17]. Entries 
were cross referenced with the UniProt database to distinguish knottins from non-knottins

Successful expression Unsuccessful expression Total

Non-knottin CDPs 513 (58.6%) 363 (41.4%) 876

Knottin CDPs 165 (47.0%) 186 (53.0%) 351

1227
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Comparison of average pLDDT values

AlphaFold2 offers a confidence metric on a per-residue basis, which is referred to as 
pLDDT [21]. The pLDDT values of AlphaFold2 for each CDP were averaged over the 
entire peptide and then displayed using a violin plot. Comparisons of average pLDDT 
values were made using the Mann Whitney test.

SHAP analysis

To investigate the impact of AlphaFold2 representation types and residue positions 
on the predictions, we trained a random forest classifier on representations of size 
50 × 1152 per CDP and analysed individual predictions over the dataset using SHap-
ley Additive exPlanations (SHAP), a method developed to compute the direct contri-
butions from each feature toward the final class probability [22]. The absolute values 
of these contributions were summed and visualized to determine which features con-
tribute the most towards expressibility. Utilizing SHAP values, we were able to isolate 
the contributions per AlphaFold2 representation type as well as the contributions per 
residue position. To account for differences in sequence length, SHAP values were 
normalized by the number of sequences of that length. As data transformation (such 
as ROCKET) breaks direct relationships between residue positions and feature con-
tributions, SHAP analysis was only applied to the random forest model.

Leave‑one‑out cross validation

To evaluate the quality of the classification in terms of class-specific accuracies, 
we computed confusion matrices for both knottin and non-knottin models using 
ROCKET time-series classification with the combined AlphaFold2 representations 
as described above using a L2-regularized logistic regression model with a decision 
threshold of 0.5. A leave-one-out cross validation scheme was followed, training as 
many model instances as samples per set and aggregating the predicted labels over 
all samples. We also aggregated the confidence estimates of the models to calculate a 
general AUC over the entire set.

Comparisons of model performance

The models discussed in this paper (except SeqVec and UniRep-RF) were evaluated 
with a permutation test over 50 random permutations of the stratified dataset, with a 
90-10 split for training and validation sets. The different models were ranked in order 
of AUC, and the average rank out of 50 permutations was determined and plotted on 
a critical difference diagram using previously described methods [30], with the sig-
nificance level set to 0.05.

To assess CysPresso in relation to state-of-the-art models of recombinant pro-
tein expression, we conducted a comparison to UniRep-RF, a predictive model of 
recombinant protein expression in B. subtilis [27]. Utilizing the CDPs in this dataset, 
UniRep protein representations were obtained [28] and UniRep-RF was implemented 
according to previously established methods with hyperparameter optimization 
[27]. UniRep-RF was compared to CysPresso by two-tailed permutation test on AUC 
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values with significance level set to 0.05. AUC was calculated by tenfold cross valida-
tion and iterated over 10,000 random permutations.

Code

Code used to generate this work is available on github at https://​github.​com/​Zebreu/​
cyspr​esso.

Results
Peptide expressibility database

The library used in this study characterized the expression of 1227 CDPs [17]. The 
lengths of the CDPs varied between 30 to 50 amino acids and were derived from a wide 
range of organisms, including mammals, arachnids, amphibians, reptiles, insects, birds, 
molluscs, fish, plants, and fungi. Of these CDPs, 351 were classified as knottins accord-
ing to the UniProt database (Table 1). The data was slightly skewed, with 58.6% and 47% 
of the non-knottin and knottin CDPs deemed expressible in HEK293 cells, respectively.

Protein representation performance

Protein representations of CDPs were generated by obtaining neural embeddings from 
SeqVec, proteInfer, and AlphaFold2–models that are distinct in how they generate rep-
resentations. For instance, SeqVec generates protein representations by utilizing the 
bi-directional language model ‘Embeddings from Language Models’ to identify relation-
ships based on sequence syntax [19]. On the other hand, proteInfer [20] and AlphaFold2 
[21] are neural network models trained to predict protein function and structure, respec-
tively. Embeddings from these models were averaged and used as inputs for random 
forest algorithms to predict expressibility and tested using a stratified tenfold cross vali-
dation. AUC was used as the evaluation metric (Fig. 1A). As random forest algorithms 
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Fig. 1  Random forest classifiers trained on SeqVec, proteInfer, and AlphaFold2 protein representations 
predict recombinant CDP expressibility. Random forest classifiers were trained using protein representations 
generated by primary sequences of CDPs and performance was estimated by tenfold cross validation. 
AUC was used as the performance metric. A An example showing receiver operating characteristic curves 
generated using the single representation from AlphaFold2 neural embeddings. B The performance of 
protein representations generated by SeqVec, proteInfer, and AlphaFold2. AlphaFold2 protein representations 
had the highest predictive performance. C The predictive performance of neural embeddings from the four 
representations generated by AlphaFold2 and a concatenated combined representation. The combined 
representation produced classifiers with the best performance at predicting recombinant CDP expressibility. 
Error bars represent standard deviation of the mean value

https://github.com/Zebreu/cyspresso
https://github.com/Zebreu/cyspresso
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perform implicit feature selection, the performance of the random forest algorithm 
becomes a measure of feature performance. Thus, we examined the performance of pro-
tein representations generated from primary sequences at predicting expressibility. Out 
of the different protein representations tested, SeqVec had the least predictive power 
but still yielded usable models with AUC averaging 0.665. When classifiers were trained 
using embeddings from proteInfer, performance was improved with classifier AUC aver-
aging 0.696. Interestingly, the best performance was obtained with embeddings from 
AlphaFold2. By using the single representation from AlphaFold2, AUC averaged 0.781 
(Fig. 1B).

AlphaFold2 uses four different types of representations for structure predictions [21]. 
The MSA representation is based on the primary sequence and evolutionary relation-
ships between proteins. The abstract single representation is derived from a linear pro-
jection of the first row of the MSA representation. The pair representation is a model 
of amino acids which are likely in close proximity based on a structure database search. 
These three representations are updated by the neural network and used as inputs to 
generate the structure module representation, which is a prediction of atom coordinates 
and a per-residue confidence measure. As the four AlphaFold2 representations con-
tain different information (evolutionary relationships, abstract features, known protein 
structures, and atomic positions), we examined whether any of them provided superior 
model performance at predicting CDP expressibility, and found that AUC for MSA, sin-
gle, pair, and structure module representations were similar (0.789, 0.781, 0.790, and 
0.788 respectively). We then examined the effect of concatenating the four representa-
tions and observed an improvement in model performance (AUC = 0.801) (Fig. 1C).

Generating a state‑of‑the‑art classifier of recombinant non‑knottin and knottin CDP 

expressibility

Having determined that combined AlphaFold2 protein representations provided the 
best performance for predicting recombinant CDP expressibility, we then sought to 
optimize the classification model. To accomplish this, we first examined whether the 
classifier would benefit from partitioning the data into non-knottin CDPs and knottin 
CDPs. Intriguingly, when the dataset was subset to knottins, the classifier performance 
was enhanced, although such an improvement was not observed when the dataset was 
subset to non-knottin CDPs (Fig. 2A).

To further improve classifier performance, a time series classification method was 
utilized. The neural embeddings generated by the models used in this study pro-
duce high dimensional feature vectors describing each residue in the peptide. The 
features were initially averaged to compress the sequence of amino acid residue fea-
tures into a summary representation of a fixed size per peptide that was then used 
to train the random forest classifiers. While averaging preserves information from 
each residue, information such as order and sequential relationships are lost. There-
fore, we hypothesized that by implementing a large number of random convolutional 
kernels, relevant features for expressibility may be captured. As a result, we applied 
a time series transformation technique that utilizes random convolutional kernels, 
named ROCKET [22], to the combined AlphaFold2 representations. Before imple-
menting ROCKET, classifier performance (AUC) was estimated to be 0.827 ± 0.065 



Page 8 of 17Ouellet et al. BMC Bioinformatics          (2023) 24:200 

A

Un
pa
rti
tio
ne
d

No
n-k

no
ttin

s

Kn
ott
ins

0.7

0.8

0.9

AU
C

B

Un
pa
rti
tio
ne
d

No
n-k

no
ttin

s

Kn
ott
ins

0.7

0.8

0.9

AU
C

E F

438

75

151

212

Expressible
Not

expressible

Ex
pr
es

si
bl
e

N
ot

ex
pr
es

si
bl
e

Experimental

Pr
ed

ic
te
d

# of peptides
0 150 300 450

126

39

35

151

Expressible
Not

expressible

Ex
pr
es

si
bl
e

N
ot

ex
pr
es

si
bl
e

Experimental

Pr
ed

ic
te
d

# of peptides
0 50 100 150

C

D

Fig. 2  Dataset partitioning and time series classification improves prediction of knottin expressibility. 
A Splitting the dataset into non-knottin and knottin partitions improves prediction of knottin but not 
non-knottin CDP expressibility when using random forest classifiers. B Transforming AlphaFold2 protein 
representations with ROCKET time-series classification further improves prediction of knottin but not 
non-knottin CDP expressibility. Error bars represent standard deviation of the mean. C Mean AUC rank for 
various models at predicting non-knottin expressibility (50 permutations). Training random forest algorithms 
on the combined AlphaFold2 representation provided the best performance. Ranks that are not significantly 
different are connected by horizontal lines. D Mean AUC rank for various models at predicting knottin 
expressibility (50 permutations). Utilizing ROCKET on the combined AlphaFold2 representation provided the 
best performance. Ranks that are not significantly different are connected by horizontal lines. E Confusion 
matrix of the final machine learning model for non-knottin CDPs evaluated by leave-one-out cross validation. 
F Confusion matrix of the final machine learning model for knottins evaluated by leave-one-out cross 
validation
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(Fig. 2A). Using the same cross validation folds, we found that employing ROCKET 
improved classifier performance for knottins and resulted in an estimated AUC of 
0.865 ± 0.043 (Fig. 2B). Curiously, while the prediction of knottin expressibility was 
improved by the use of ROCKET, it appeared to have no impact on the prediction of 
non-knottin expressibility (Fig. 2B).

The proteInfer, individual AlphaFold2, combined AlphaFold2, and ROCKET mod-
els were compared by permutation test. Model performance was ranked accord-
ing to AUC. For predicting the expressibility of non-knottin CDPs, the top ranked 
model was the combined AlphaFold2 representation without ROCKET time series 
transformation, though it was not ranked significantly better than the MSA, pair or 
ROCKET models (Fig.  2C). On the other hand, for predicting the expressibility of 
knottin CDPs, the top ranked model was the combined AlphaFold2 representation 
with ROCKET time series transformation, which ranked significantly better than all 
of the other models (Fig. 2D).

The finalized model, CysPresso, which utilizes partitioning and random convolu-
tional kernel transformation, was evaluated by leave-one-out-cross-validation. Using 
this approach, classifier AUC was determined to be 0.798 for non-knottin CDPs 
(Fig. 2E, Table 2) and 0.852 for knottins (Fig. 2F, Table 2). A diagram of the machine 
learning model architecture is shown in Fig. 3.

Table 2  Classifier performance metrics for CysPresso

The performance of the non-knottin and knottin CysPresso models were evaluated by leave-one-out cross-validation

Measure Non-knottin CDP model Knottin model

AUC​ 0.798 0.852

Sensitivity 0.853 0.764

Specificity 0.584 0.812

Precision 0.743 0.783

Accuracy 0.742 0.789

F1 Score 0.794 0.773

Fig. 3  Machine learning architecture diagram of CysPresso. The primary sequence of the CDP is used to 
generate MSA, single, pair, and structure module AlphaFold2 representations. The four representations are 
concatenated, and a time series transformation utilizing random convolutional kernels is carried out on the 
concatenated representation. The transformed representation is then used to predict expressibility using 
L2-regularized logistic regression machine learning models for knottin and non-knottin CDPs
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Model interpretability

We then posed the question: Which features are most important for determining 
expressibility in non-knottin and knottin CDPs? To answer this, we calculated random 
forest feature contributions by SHAP analysis [31]. Surprisingly, this analysis revealed 
that the region most important for the prediction of expressibility in non-knottins 
was near the C-terminus, whereas amino acid residues closer to the N-terminus were 
deemed more important for predicting expressibility in knottins (Fig.  4A). We then 
examined the relative importance of the different AlphaFold2 representations in the pre-
diction of expressibility and found that the structure module representation was most 
important for predicting non-knottin expressibility, while the abstract single representa-
tion was most important for predicting knottin expressibility (Fig. 4B). This difference 
provides a strong rationale for partitioning the dataset into non-knottin and knottin sub-
groups for improved model performance.

AlphaFold2 provides a per-residue confidence metric called pLDDT, which estimates 
how well the structure prediction should agree with experimentally determined struc-
tures. To determine whether the confidence of the AlphaFold2 structure prediction was 
associated with prediction outcome, the average pLDDT in correctly predicted (true 
positive and true negative) and incorrectly predicted (false positive and false negative) 
CDPs were plotted in Fig. 5A. The lack of a difference between the average pLDDT val-
ues of CDPs that were correctly and incorrectly classified suggests that the confidence of 
the AlphaFold2 structures do not impact expressibility prediction. This finding is further 
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Fig. 4  Features important for predicting expressibility in non-knottins are different from the features that 
are important for predicting expressibility in knottin peptides. This figure shows absolute SHAP values, 
which illustrate to what degree a feature affects prediction, calculated for different AlphaFold2 features. A 
The relative importance of amino acid position for prediction of expressibility in non-knottin and knottin 
peptides. In non-knottins, a region near the C-terminus (position 42 to 47) was identified as playing an 
important role in determining expressibility. In knottin peptides, the features at amino acid position 7–9 near 
the N-terminus were most important for expressibility. B The relative importance of the different AlphaFold2 
representations for expressibility prediction of non-knottin and knottin peptides. For non-knottins, the 
structure representation module representation was most important for prediction of expressibility. On the 
other hand, in knottin peptides, the abstract single representation was most important for prediction of 
expressibility
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supported by the fact that the non-knottin CDPs in this study had a higher average 
pLDDT than knottins (Fig. 5B), despite the non-knottin model having a lower perfor-
mance than that of the knottin model.

Comparison to state‑of‑the‑art models

As far as we know, CysPresso is the first machine learning model that predicts 
the expressibility of recombinant proteins in mammalian cells based on primary 
sequence. Due to the absence of another model for this classification task, it is chal-
lenging to make state-of-the-art comparisons. Recently, a classification model called 
UniRep-RF was developed using UniRep protein representations obtained from 

Fig. 5  CysPresso outcomes are not biased by pLDDT, a confidence metric of AlphaFold2 predictions. A 
AlphaFold2 average pLDDT values are not significantly different between CDPs that were correctly predicted 
as expressible and CDPs that were incorrectly predicted. Mann–Whitney test, p = 0.512. B The average pLDDT 
values of non-knottin CDPs in the dataset analyzed for this study are significantly higher than those of knottin 
CDPs. Mann–Whitney test, p < 0.0001. The median and interquartile ranges are indicated by the horizontal 
lines in the violin plots

Table 3  Comparison of the performance of CysPresso and UniRep-RF at predicting expressibility of 
CDPs from primary sequence

The performance of CysPresso and UniRep-RF [27] were evaluated by leave-one-out cross-validation

Measure CysPresso UniRep-RF

AUC​ 0.816 0.760

Sensitivity 0.818 0.786

Specificity 0.672 0.594

Precision 0.755 0.705

Accuracy 0.753 0.700

F1 Score 0.785 0.743
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primary sequence to predict recombinant protein expression in B. subtilis, where it 
achieved an AUC of 0.64 [27]. As this model was the closest known comparable model 
to CysPresso, we obtained UniRep representations [28] for the dataset utilized in this 
study and evaluated the performance of UniRep-RF and CysPresso using leave-one-
out cross-validation (Table 3). Interestingly, UniRep-RF was much better at predict-
ing expressibility of CDPs than it was at predicting recombinant protein expression in 
B. subtilis and achieved an AUC of 0.760. By comparison, CysPresso provided better 
performance at the task of predicting CDP expressibility from primary sequence and 
yielded an AUC of 0.816. To test if CysPresso and UniRep-RF were significantly differ-
ent when evaluated by AUC, we then carried out a non-parametric permutation test 
and found that CysPresso significantly outperformed UniRep-RF at predicting CDP 
expressibility (p = 0.0059).

Discussion
The expressibility of recombinant peptides in human cells can be predicted from primary 

sequences using machine learning methods

Peptide therapeutics occupy 5% of the global pharmaceutical market, and their approval 
rate has steadily increased over the last few decades [32]. Presently, peptide therapeu-
tics face two major challenges: the poor yield of peptides from traditional solid-phase 
synthesis [33] and the intrinsically short plasma half-life of peptides [34]. As a result of 
recent advances, recombinant peptide production is now a cost effective, simple, and 
high-yield production platform for peptide drugs [35]. Our tool helps predict which 
peptides are compatible with recombinant expression, reducing the amount of time-
consuming empirical experimentation required to identify expressible CDPs by allow-
ing laboratory efforts to focus on the candidates most likely to express. Furthermore, 
CysPresso may be useful in the identification of CDPs that are compatible with in situ 
expression technologies such as viral gene therapy and mRNA-based therapeutics, 
methods that may extend the in vivo activity of peptide therapeutics.

To our knowledge there is currently no other model that predicts the expressibility 
of CDPs (or any difficult-to-express proteins) in mammalian cells based on primary 
sequence. However, numerous machine learning algorithms have been created for 
the prediction of heterologous recombinant protein solubility in bacterial expression 
systems such as E. coli. In E. coli, overexpression of heterologous proteins can result 
in protein aggregates and the formation of insoluble inclusion bodies–a phenome-
non thought to be a result of misfolding or the formation of intermolecular oligom-
ers. These same factors likely lead to unsuccessful recombinant CDPs expression in 
mammalian cells. Therefore, prediction of protein solubility in E.  coli and predict-
ing CDP expression in mammalian cells is not a dissimilar problem. Recent examples 
for sequence-based prediction of protein solubility include SoluProt which achieves 
an AUC of 0.62 [36], SoDoPe which achieves an AUC of 0.71 [37], SKADE which 
achieves an AUC of 0.82 [38], and DSResSol which achieves an AUC of 0.87 [39]. Our 
model achieved an AUC of 0.82, which provides comparable performance and it was 
significantly better at predicting CDP expressibility than UniRep-RF, a B. subtilis spe-
cific machine learning model for predicting protein expression [27].
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Deep learning protein representations retain information that is complementary 

to prediction tasks beyond protein structure

In this study, we tested various protein representations and evaluated their usefulness at 
predicting expressibility of difficult-to-express peptides. We began our investigation by 
utilizing neural embeddings from protein language models such as SeqVec and ProteIn-
fer, which are based on statistical models and generated by training large scale sequence 
datasets. We also utilized AlphaFold2 neural embeddings, which include several rep-
resentations based on evolutionary, positional, structural, and simulated relationships. 
AlphaFold2 protein representations provided better predictive performance than the 
purely language based models. This may be due to the structural information contained 
within AlphaFold2 representations, as the expressibility of a peptide is determined not 
only by its amino acid sequence but also by its tertiary and quaternary structure.

While AlphaFold2 accurately predicts protein structures, the suitability of AlphaFold2 
neural embeddings for use in general functional prediction tasks is not well established. 
We find that AlphaFold2 neural embeddings are indeed suitable for general purpose 
tasks such as the prediction of expressibility of difficult-to-express peptides such as 
CDPs. Our results agree with work from other groups that have shown that AlphaFold2 
produces a general-purpose protein representation that can be used for functional pre-
dictions [40]. Though in this study we focused on the expressibility of CDPs, protein rep-
resentations can theoretically be generated for any class of protein or peptide, thus there 
is no reason why the methods utilized in this study cannot be generalized to expression 
datasets of any difficult-to-expression protein. On the same note, protein representa-
tions from deep learning protein models, such as those used in this study and others 
such as RoseTTAFold [32], colabfold [41], openFold [33], proteinBERT [34] and ESMfold 
[35] have no species bias. Resultantly, there is no reason why the methods in this study 
cannot be generalized to the prediction of expressibility in any heterologous expression 
system.

Different variables determine the expressibility of non‑knottin peptides and knottin 

peptides

Our analysis demonstrated that expressibility is determined by different protein features 
in knottin and non-knottin CDPs. Knottins are characterized by six cysteine residues 
making up three interwoven disulfide bridges that form a unique pseudoknot with con-
served secondary structure [3]. It is hypothesized that during folding, the C-terminus of 
the peptide first forms a conserved ꞵ-hairpin, allowing disulfide bridges to form between 
cysteines II–V and III–VI. Folding is then completed by the N-terminal loop swinging 
around to create the cysteine I–IV disulfide bridge [42]. Since our data suggests that the 
N-terminal region is important for the prediction of expressibility, it is likely that the 
success of the final N-terminal folding step is required for successful expression of knot-
tin peptides.

Our results also demonstrated that the various AlphaFold2 representations hold differ-
ential predictive value. For non-knottins, the structure representation was most impor-
tant for predicting expressibility, while for knottins, the abstract single representation 
was most predictive. We speculate that this may be due to the fact that the non-knottin 
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CDPs in this study was a heterogeneous group that included cyclotides, hitchins, growth 
factor cysteine knots and non-knotted CDPs [17], while the knottin peptides in this 
study were a homogenous group that all had the conserved inhibitor cysteine knot 
structure characteristic of knottins. As a result, structurally diverse non-knottin CDPs 
benefited more from structural information, whereas structural information was less 
important at providing features that determine expressibility in the structurally related 
knottins group. In this case, primary sequence relationships captured in the abstract sin-
gle representation provided more meaningful predictive value.

Random convolutional kernel time series classification improves protein representation 

feature performance for prediction of knottin expressibility

The goal of time series classification is to predict the class that a new sample belongs to 
using labeled ordered training data. While the data used with time series algorithms are 
typically sequences of discrete-time data, any data registered with some notion of order-
ing is compatible [43]. As AlphaFold2 and many other protein models such as SeqVec 
and ProteInfer produce such ordered data (ie. a neural embedding for each amino acid 
residue), we were able to cast our classification problem as a time series classification 
problem. We find that applying a time series transformation such as ROCKET improves 
the capture of ordered features relevant for the prediction of peptide expressibility when 
examining knottin peptides. Importantly, ROCKET employs random convolutional ker-
nels, which have been shown to be a simple and cost efficient method to capture many 
features which previously required their own specialized techniques [44]. Thus far, 
almost all studies that use protein representations for supervised machine learning tasks 
generate embeddings by taking the average of the pool of activations from the last hid-
den layer of the model [45]. Our results suggest that the use of time series transforma-
tions, in particular–the use of convolutional kernels–provides a better summary of the 
protein representation by capturing important features that are lost by averaging.

Study limitations

We analyzed a previously published dataset [17] that examined the expressibility of 
CDPs in HEK293 cells using a high-throughput Daedalus lentivirus transduction system. 
In that study, CDPs were considered successfully expressed if the peptide product was 
free of heterogeneity, as determined by RPC. It is important to note that, while RPC is a 
rigorous tool for ensuring chemical and conformational homogeneity, it is possible that 
the expressed products lack biological activity or that heterogeneous products deemed 
unexpressible may in fact be biologically functional. Additionally, the Daedalus lentivi-
ral expression system that generated the dataset requires proteolytic cleavage to free the 
peptide from a mouse Igκ peptide sequence. Thus, it is possible our results are not gen-
eralizable to peptides expressed by other methods.

It is also important to note that the dataset used in this study is likely to be affected 
by selection biases and coverage bias. For example, our dataset only included CDPs that 
were between 30 and 50 amino acids long. According to a 2017 analysis [17] of CDPs 
listed on the RSCB Protein Data Bank [46], non-knottin CDPs ranged from 15 to 81 
amino acids in length, and knottin CDPs ranged from 20 to 70 amino acids in length. 
Resultantly, it is possible that CysPresso may not generalize to CDPs outside of the 30 
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to 50 amino acid range. Future work should aim to evaluate CysPresso with randomly 
sampled real-world data.

Conclusion
In this work, we used supervised machine learning to develop a tool to predict whether a 
CDP is expressible in a mammalian cell expression system. To accomplish this, we tested 
the performance of various protein representations and found that AlphaFold2 repre-
sentations, which are typically used to generate predictions of protein structures, can 
also be used to predict expressibility. By combining the four AlphaFold2 representations, 
partitioning the model, and utilizing time series transformation and random convolu-
tional kernels, we further improved the performance of the expressibility classifier to 
yield an approach with state-of-the-art performance for predicting CDP expressibility in 
mammalian cells.
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