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Abstract 

Background:  Tremendous amounts of omics data accumulated have made it possible 
to identify cancer driver pathways through computational methods, which is believed 
to be able to offer critical information in such downstream research as ascertaining 
cancer pathogenesis, developing anti-cancer drugs, and so on. It is a challenging prob-
lem to identify cancer driver pathways by integrating multiple omics data.

Results:  In this study, a parameter-free identification model SMCMN, incorporat-
ing both pathway features and gene associations in Protein–Protein Interaction (PPI) 
network, is proposed. A novel measurement of mutual exclusivity is devised to exclude 
some gene sets with “inclusion” relationship. By introducing gene clustering based 
operators, a partheno-genetic algorithm CPGA is put forward for solving the SMCMN 
model. Experiments were implemented on three real cancer datasets to compare 
the identification performance of models and methods. The comparisons of models 
demonstrate that the SMCMN model does eliminate the “inclusion” relationship, and 
produces gene sets with better enrichment performance compared with the classical 
model MWSM in most cases.

Conclusions:  The gene sets recognized by the proposed CPGA-SMCMN method 
possess more genes engaging in known cancer related pathways, as well as stronger 
connectivity in PPI network. All of which have been demonstrated through extensive 
contrast experiments among the CPGA-SMCMN method and six state-of-the-art ones.

Keywords:  Cancer, Driver pathway, Protein–Protein interaction, Partheno-genetic 
algorithm

Introduction
Cancer, a disease with high mortality, is generally caused by the mutation of driver genes 
[1–4]. Different from passenger ones, whose mutations are irrelevant to cancers, the 
mutations of driver genes promote the infinite proliferation and spread of cancer cells 
[5]. Previous studies have demonstrated that the difficulty of diagnosing and treating 
cancers is attributed to enormous mutational heterogeneity inherent in cancer genomes. 
That is to say, there are many significant cellular signaling transduction pathways or 
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regulatory ones responsible for cell proliferation, metabolism and apoptosis [6, 7]. Each 
of them possesses a group of driver genes. The mutation on any one of these driver genes 
is generally sufficient to disturb the regulatory function of a pathway and result in can-
cers. Therefore, the identification of a group of driver genes enriched in a pathway, i.e., 
driver pathway, is essential for studying the pathogenic mechanism of cancers. Since it 
is time-consuming as well as expensive to identify through biological experiments in 
the lab, it is a very economic way to detect driver pathways (driver gene sets) by apply-
ing computational approaches on the abundant accumulated multi-omics data. This has 
received widely concern in bioinformatics [8–10].

There are generally two kinds of methods to identify cancer driver pathways: de novo 
methods and prior knowledge-based ones. The de novo methods attempt to discover 
a set of genes, having two fundamental features of driver pathways such as high cover-
age and high mutual exclusivity, by using just genetic data. High coverage means that 
the gene mutations in one driver pathway cover abundant cancer samples, while high 
mutual exclusivity indicates that any two genes in one pathway seldom mutate in the 
same cancer sample. Based on such two features, Vandin et al. [9] firstly proposed the 
maximum weight submatrix model trying to minimize both coverage and mutual exclu-
sivity in 2012, and solved it with a markov chain monte carlo based method Dendrix 
(De novo Driver mutual exclusivity). Later, Zhao et al. [11] put forward the binary linear 
programming method and the GA (Genetic Algorithm) one to solve the model. Both 
of which exhibit better performance than the Dendrix method, and the GA method is 
particularly convenient to solve the integrative model incorporating the gene expression 
profiles. In 2013, Zhang et al. [12] integrated two weighted networks constructed from 
mutation matrix and expression one, and proposed a network-based approach iMCMC 
(identify Mutated Core Modules in Cancer) to extract core modules from the integrated 
network. A module with specified size can not be produced by this method. In 2016, 
based on the GA method, method MOGA was devised to balance the trade-off between 
coverage and mutual exclusivity [13]. In 2017, Yahya et al. [14] put forward the QuaD-
MutEx method, which identifies gene sets through adopting monte carlo optimization 
and binary quadratic programming. In 2019, Wu et  al. [15] improved the maximum 
weight submatrix model and proposed method PGA-MWS for solving this problem. 
In 2021, Wu et  al. [10] introduced a weighted non-binary mutation matrix. They for-
mulated a new maximum weight submatrix model by redefining coverage and mutual 
exclusivity, and devised a cooperative co-evolution algorithm CGA-MWS for solving 
this model. In most cases, algorithm CGA-MWS can identify a gene set possessing more 
genes involving in one known signaling pathway compared with previous methods.

In the above de novo methods, mutation frequency based pre-filtering is usually 
conducted to decrease the number of combinations of genes. Hence, some pathways 
containing rare mutations may be ignored [16]. Prior knowledge-based methods 
regard genes with high mutation rates and their less-frequently mutated neighbors as 
drivers, and attempt to detect them from known gene-level or protein-level pathways 
or networks [17], such as MEXCOwalk [16], HotNet [18], IDM-SPS [19] and HotNet2 
[20]. However, biological networks are still associated with noise and incomplete. The 
intuition of combining these two kinds of methods, i.e., taking advantage of funda-
mental features of a driver pathway and gene relationships in biological networks, has 
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germinated. In 2020, Yahya et  al. [17] presented method QuaDMutNetEx, which is 
extended from their QuaDMutEx method by incorporating the connectivity of genes 
in the identification model. Experimental results indicate that method QuaDMutNe-
tEx can identify some driver genes with low mutation rate compared with method 
QuaDMutEx. The integration of driver pathway features and prior knowledge does 
work.

Among the above mentioned identification methods, some parameters need to be 
preset to adjust the weight of different omics data, such as methods iMCMC [12], 
MOGA [13], QuaDMutEX [14], PGA-MWS [15], and QuaDMutNetEx [17]. This may 
limit their usability and scalability, for an large number of experiments are usually 
required to ascertain these parameters before applying them. Moreover, the identifi-
cation model, adopted in such methods as Dendrix [9], GA [11], MOGA [13], may not 
distinguish two gene sets with exact different coverage or mutual exclusivity in some 
cases. As shown in Fig. 1, there is a mutation matrix with rows representing a set of 
cancer samples, and columns representing a set of genes. The black entries indicate 
genes mutate in the corresponding samples, while white ones otherwise. Between 
gene sets B and C, although gene sets C is expected to be selected for its genes having 
more uniform distribution in coverage than B, they are not able to be differentiated in 
terms of the maximum weight submatrix model (the weight function values of B and 
C are equal to 5) used in methods Dendrix, GA and MOGA.

Therefore, a measurement of mutual exclusivity, excluding some gene sets with 
“inclusion” relationship (e.g. gene set B in Fig. 1), is studied. An identification model 
without preset parameters is studied from the perspective of combining driver path-
way features with prior knowledge in biological networks. The main contributions of 
the article include: 

1)	 A novel relative hamming distance RHD is devised for calculating the distance 
between a gene and a gene set. Hence, given a gene set, the average RHD value 
between each gene and the rest genes measures the mutual exclusivity of the set.

Fig. 1  An example of mutation matrix
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2)	 An identification model SMCMN, which is parameter free, is formulated by explor-
ing a Submatrix with Maximum Coverage, mutual exclusivity and Network connec-
tivity.

3)	 The CPGA algorithm, based on gene clustering and partheno-genetic algorithm, is 
proposed. Novel operators are devised to initialize and mutate individuals in terms of 
gene clustering.

4)	 Real cancer datasets were applied to test the performance of the presented CPGA-
SMCMN method, and compare it with six state-of-the-art ones.

Methods
Definitions and notations

Suppose there are a somatic mutation matrix S|P|×|G| , and a copy number variation 
matrix C|P|×|G| . The rows and columns of them denote the same cancer sample set P and 
gene set G, respectively. Each entry sij ∈{0,1} (i = 1,2,...,|P| , j = 1,2,...,|G| ) of matrix S indi-
cates whether the jth gene mutates in the ith sample or not. In matrix C, cij = ± 1 (i = 
1,2,...,|P| , j = 1,2,...,|G| ) means the jth gene is in a statistically significant variation region 
of the ith sample, and cij = 0 otherwise. In addition, two matrices F|G|×|G| and E|G|×|G| 
record the correlation between genes, where fij of matrix F denotes the relationship 
extracted from the literature, and eij of matrix E denotes the one obtained from experi-
ments (i, j = 1,2,...,|G| ). Each entry of them ranges from 0 to 999, and are normalized into 
the range between 0 to 1.

Construct matrices S and C into a binary mutation matrix A|P|×|G| . Entry aij (i = 
1,2,...,|P| , j = 1,2,...,|G| ) equals to 1 if and only if both sij and cij are not equal to 0 simul-
taneously, and 0 otherwise. A new correlation matrix W|G|×|G| is also generated by com-
bining matrices F and E, where wij(i, j = 1,2,...,|G| ) is ascertained as Equation (1):

Fig. 2 shows the schematic diagram for constructing matrices A and W.
Let Ŵ(gj) = { ai−  aij = 1, gj ∈ G } (i = 1, 2, ..., |P| ) record the set of samples in which gene 

gj mutates. Given any |P| × K  submatrix of A, denoted by M, let Ŵ(M) = a−j∈M
Ŵ(gj) 

represent the set of samples in which the genes of matrix M mutate. As shown in Fig. 1, 
B and C are a pair of submatrices with K = 3. They have the same weight in terms of for-
mula 2|Ŵ(M)| − 

∑
a−j∈M

|Ŵ(gj)| (M denotes a mutation submatrix), which is adopted by 

methods Dendrix [9], GA [11] and MOGA [13]. Nevertheless, it is apparently that in 
submatrix B, all of the patients mutating on genes g1 and g3 are covered by those mutat-
ing on gene g2 , we call gene g2 “includes” genes g1 and g3 , i.e., there are two “inclusion” 
relationships in gene set B. Hence submatrix C is expected to be selected for its genes 
having more uniform distribution in coverage than those of submatrix B. Since subma-
trices B and C can not be distinguished exactly well in terms of the above weight func-
tion, a new measurement is devised in this study.

Let CO(M) measure the “coverage” of matrix M, i.e., the ratio of samples covered by 
matrix M to the total mutation ones:

(1)wij =

{
max{fij , eij}, if eij �= 0,
0, otherwise .
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where G records the set of genes in matrix A. Given a pair of genes gj and gk of mutation 
matrix A ( gj , gk ∈ G ), let RHD(gj,gk ) represent the Relative Hamming Distance between 
gj and gk , i.e., the hamming distance of gene gj relative to gene gk , as Formula (3):

where d(aij,aik ) is defined as Formula (4):

For submatrix M|P|×K  in matrix A, let RHD(gj,M) denote the Relative Hamming Dis-
tance between gene gj and gene set GM \{gj } ( GM denotes the set of genes in M, gj ∈ GM):

Take matrix B in Fig. 1 for an example. RHD(g1 , g2 ) = 0, RHD(g2 , g1 ) = 79 , RHD(g1 , g3 ) = 
1, RHD(g3 , g1 ) = 1, RHD(g2 , g3 ) = 79 , RHD(g3 , g2 ) = 0, RHD(g1 , M) = 12 , RHD(g2 , M) = 79 , 
RHD(g3 , M) = 12 . Then the “mutual exclusivity” ME(M) can be measured as the average 
RHD between each gene of M and the rest genes of it. Greater ME(M) denotes higher 

(2)CO(M) =
|Ŵ(M)|

max{|Ŵ(gj)||gj ∈ G}
,

(3)RHD(gj , gk) =

∑|P|
i=0 d(aij , aik)

|Ŵ(gj)|
,

(4)d(aij , aik) =

{
1, if aij = 1 and aik = 0,
0, otherwise .

(5)RHD(gj ,M) =

∑
gk∈GM\gj

RHD(gj , gk)

K − 1
.

Fig. 2  Schematic diagram of constructing binary mutation matrix A and correlation matrix W 
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mutual exclusivity of matrix M. In Fig. 1, the same result 5 will be obtained when calcu-
lating matrices B and C using the formula 2|Ŵ(M)| − 

∑
a−j∈M

|Ŵ(gj)| , it is difficult to dis-

tinguish gene set B from C. However, they are easy to be distinguished with Formula (6), 
for ME(B) = 1627 , and ME(C) = 83120 . The obvious choice is matrix C for its larger ME(M).

In addition, let N(M) indicate the correlation among the genes in matrix M, as shown in 
Formula (7):

where w̃ij denotes the entry of matrix W̃|GM |×|GM | , which is a submatrix extracted from 
the correlation matrix W.

Based on the above definition, a combinatorial model SMCMN, ascertaining a 
submatrix with Maximum Coverage, mutual exclusivity, and Network connectivity, 
is established: given a mutation matrix A|P|×|G| , a correlation matrix W|G|×|G| , and a 
parameter K (0 K   |G| ), identify a submatrix M|P|×K  to maximize the weight function 
W(M):

CPGA‑SMCMN algorithm

In this part, an algorithm based on gene clustering and Partheno-Genetic Algorithm 
(we name it as CPGA) is put forward for solving the SMCMN model. The input is a 
binary mutation matrix A, a correlation matrix W, and a parameter K (0 K   |G| ). The 
output is a submatrix M. The key steps of the CPGA-SMCMN method are described 
at first, and then the pseudo code of it is illustrated.

Clustering preprocessing

As indicated in the previous section, the intrinsic computational complexity of this 
problem owes to a large number of combinations of mutated genes. Therefore, in 
the preprocessing stage, two gene clusters are built for each gene, so as to drop some 
combinations of genes with weak correlations in advance. Given gene gj ∈ G , let c1(gj) 
record the set of genes that have greater relative hamming distance with gene gj , i.e., 
c1(gj) = { gk  RHD(gj,gk)≥ µ , gk ∈ G −{gj}}. Similarly, c2(gj) is constructed to record the 
set of genes that have greater correlation with gene gj , i.e., c2(gj) = { gk  w(j,k)≥ ν , gk ∈ 
G −{gj}}. Here µ and ν are two preset parameters.

(6)ME(M) =

∑
gj∈GM

RHD(gj ,M)

K
.

(7)N (M) =

∑|GM |
i=1

∑|GM |
j=1 w̃ij

|GM | × (|GM | − 1)
,

(8)

W (M) = CO(M)+ME(M)+ N (M)

=
|Ŵ(M)|

max{|Ŵ(gj)||gj ∈ G}
+

∑
gj∈GM

RHD(gj ,M)

K
+

∑|GM |
i=1

∑|GM |
j=1 w̃ij

|GM | × (|GM | − 1)
.
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Individual representation and population

The representation of a solution is generally used to encode an individual, i.e., a chromo-
some. In the CPGA-SMCMN method, a chromosome is encoded by a set of K genes, i.e., X 
={x1,x2,...,xK } ( xj ∈{1, 2, ..., |G| }, j = 1, 2, ..., K). N chromosomes construct a population. The 
initialization of a chromosome is depicted as the following two steps:

	(1).	 Select a gene gj ( gj ∈ G ) with roulette strategy, i.e., greater |Ŵ(gj)| contributes to 
higher probability of choosing gene gj . Let X ={j}.

	(2).	 Iteratively select the rest K  − 1 genes with roulette strategy. Assume that X ={x1
,x2,...,xk } (1≤ k  K  ). Let C̃ = 

⋂k
j=1 c1(gxj ) ∩ 

⋃k
j=1 c2(gxj ) . The next gene gr ( gr ∈ C̃ ) is 

chosen in terms of |Ŵ(gr )|
∑|C̃|

t=1 |Ŵ(gyt )|
 ( yt ∈{1,2,...,|G|}), and should meet the constraint 

of 
∑k

t=1 w(gr ,gxt )

k
 ≥ ν ( ν is a preset parameter). A chromosome can not be created 

successfully if C̃ = ∅ at any one iteration.

Fitness function

Fitness measures the viability of individuals in a population, and pilots the direction of evo-
lution. Given chromosome X, let MX represent a |P| × K  submatrix of A, the columns of MX 
come from the genes in X. Then weight function W (MX ) is adopted to evaluate the fitness 
of chromosome X, as defined in Equation (9). The greater Fitness(X) is, the more viable the 
solution X is.

Genetic operators

In a partheno-genetic algorithm, selection operator and recombination one are required to 
generate offspring. In the CPGA algorithm, both roulette wheel selection and elitist strategy 
are adopted, i.e., an individual with higher fitness has a higher probability of being selected, 
and the individual with the highest fitness will be remained during the process of evolu-
tion. Furthermore, a greedy-based recombination operator is devised so as to enhance the 
population diversity, and escape from premature convergence as well as the local optimum, 
as follows:

	(1).	 Given chromosome X = {x1, x2, . . . , xK } ( xj ∈{1,2,...,|G| }, j = 1,2,...,K), one of the 
following two methods is executed randomly to drop a gene from X. 1) Drop the 
gene from X that mutates in the fewest patients, i.e., xj = arg min

xj∈X

|Ŵ(gxj )| , 2) 

Drop a gene from X randomly. The new chromosome is denoted by X̂.
	(2).	 Let C̃ = 

⋂
xj∈X̂

 c1(gxj ) , select the gene gr ( gr ∈ C̃ ) having the largest |Ŵ(gr)| on the 

premise of meeting 
∑k

t=1 w(gr ,gt )
k

 ≥ ν ( ν is a preset parameter). If there is no eligible 

gene found from C̃ , chromosome X remains unchanged.

(9)Fitness(X) = W (MX )
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CPGA‑SMCMN

The CPGA-SMCMN method is described in Algorithm  1. In Step 1, some param-
eters used in this method are set. Step 2–4 implement preprocessing, taking time 
O(|G|2|P|) . In Step 5, the generation of an initial population of size N takes time 
O(NK|P||G|). Step 6 initializes the best individual, and the calculation of fitness 
takes time O(N |P|(K 2 + |G|)) . The entire evolution, controlled by maxg and maxt, 
is performed from Step 7 to Step 20, where roulette wheel selection and recom-
bination operators are executed iteratively from Step 9 to Step 14, taking time 
O(maxgNK|G||P|). Finally the best individual is translated and output in Step 21 and 
22. Therefore, the total maximum time complexity of algorithm CPGA-SMCMN is 
O(|G||P|(|G| +maxgNK )).

Results
In this section, experimental comparisons are conducted based on real biological 
data. We begin by testing the models which are based on the proposed coverage and 
mutual exclusivity, and comparing them with the famous one proposed by Vandin 
et  al. [9], which has also been used in such methods as Dendrix [9], GA [11], and 
MOGA [13]. Then the identification performance of method CPGA-SMCMN was 
compared with six state-of-the-art methods, i.e., Dendrix [9], CGA-MWS [10], GA 
[11], iMCMC [12], MOGA [13] and PGA-MWS [15]. The experimental comparisons 
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were implemented on a Lenovo PC with Intel(R) Core(TM) i7-7700 3.60GHz CPU 
and 24GB RAM. The operating system was Windows 11, the compiler used by the 
Dendrix, the CPGA and the CPGA-SMCMN methods is Python 3.0 in PyCharm 
2018.1.4, the compiler used by the GA and the CGA-MWS methods is MyEclipse 
2016 CI, the compiler used by the PGA-MWS method is R x64 4.1.0.

Experimental dataset

Three sorts of cancer datasets were adopted in the experiments: glioblastoma (GBM), 
ovarian cancer (OVCA), and thyroid cancer (THCA). The mutation data of glioblastoma 
and ovarian cancer were get from Zhao et  al. [11]. The mutation data of thyroid can-
cer and the copy number variation data of the three cancers were obtained from TCGA 
(http://​tcga-​data.​nci.​nih.​gov/​tcga/). GISTIC [21] was applied to transfer the value of the 
copy number variation data from its original one to −1 , 0, or 1. The association con-
fidence values among genes, which respectively comes from the literature and experi-
ments, were acquired from the STRING network (https://​cn.​string-​db.​org/).

In the three datasets, the genes which mutate in less than 0.5% samples were dropped. 
In addition, since Gene TP53 are very prevalent (mutating in more than 80% of samples, 
much higher than other genes mutating in less than 25% of samples) and TTN may be 
artifacts in the OVCA dataset, they are deleted from the dataset [11]. Table 1 shows the 
processed data, where column “Edges” indicates the number of edges among the corre-
sponding genes in the STRING network.

Parameter setting and evaluation index

The parameters of the CPGA-SMCMN method were set as follows: N = |G|
4  , maxg = 

1000, maxt = 100, rr = 0.3, µ = 0.7, ν = 0.5, which were ascertained through a large 
number of experimental tests, as shown in Appendix. The Dendrix method was executed 
for 106 iterations and sampled a set every 103 iterations. The parameters of method GA 
were set as: maxg = 1000, maxt = 10, N = |G| , and Pm = 0.1. The ones of method PGA-
MWS were set as: maxg = 500, maxt = 10, N = log2(

∏K−1
i=0 |G| − i ), α = 0.7, β = 10, and 

τ = |G|
5  . The ones of method CGA-MWS were set as: maxg = 1000, maxt = 10, N = |G|

4  , 
Pm = 0.3, �1 = 3, and �2 = 7. The gene sets detected by methods iMCMC and MOGA 
were directly referred to literature [12, 13], for their source codes were not acquired.

In the experiments, pathway enrichment as well as network connectivity are adopted 
to evaluate the identified gene sets. That is to say, given a detected gene set, the more 
genes enriched in a cancer-related biological pathway, the better the gene set is. Simi-
larly, it is also anticipated that more genes of the set connect in the PPI network. The 
cancer related pathways used in the analysis and discussion of experimental results are 
referred to the KEGG database (http://​www.​genome.​jp/​kegg/).

Table 1  The experimental data of three sorts of cancers

Cancers Patients Genes Edges

GBM 90 920 55686

OVCA 313 2547 414682

THCA 487 1613 151714

http://tcga-data.nci.nih.gov/tcga/
https://cn.string-db.org/
http://www.genome.jp/kegg/
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A random test [12] was employed to calculate the significance of the identified gene 
sets. Given a submatrix M with K detected genes, its significance is calculated as 
Formula (10):

where Mi denotes a submatrix with K randomly selected genes.

Comparison of models

In this section, experiments were performed to evaluate the pathway enrichment of 
the gene sets acquired under different identification models, i.e., the proposed models 
and the one proposed by Vandin et al. [9]. The models were solved with the same par-
thenogenetic algorithm of method PGA-MWS [15]. Tables 2, 3 and 4 show the com-
parison results on such three cancer datasets as GBM, OVCA and THCA. MWSM 
denotes the Maximum Weight Sub-Matrix model proposed by Vandin et  al. [9], 
SMCM and SMCMN denote two models based on the proposed coverage and mutual 
exclusivity, while model SMCM indicates the one that does not consider the network 
connectivity. The genes displayed in bold means that they are engaging in the same 
cancer-related pathway. Moreover, let rpe indicate the percentage of genes enriched 

(10)p− value =

∑1000
i=1 W (Mi) > W (M)

1000
,

Table 2  Pathway enrichment of gene sets under different models (GBM dataset)

Bold indicate that the genes are enriched in the same biological signaling pathway

K MWSM rpe(%)

2 CDKN2B CDK4 100.0

3 CDKN2B CDK4 RB1 100.0

4 CDKN2B RB1 TSPAN31 ERBB2 50.0

5 CDKN2B RB1 ERBB2 TSPAN31 PPP2R1A 40.0

6 CDKN2B RB1 CDK4  ERBB2 MSH2 NKG7 50.0

7 CDKN2B RB1 CDK4 DBC1 BCAS1 CD33 ERBB2 42.9

8 ERBB2 CDK4 RELN FGF21  RB1 PRF1 NTRK3 CDKN2B 50.0

 K SMCM rpe(%)

2 CDKN2B CDK4 100.0

3 CDKN2B CDK4 TP53 100.0

4 CDKN2B CDK4 RB1 TP53 100.0

5 FGFR3 NF1 TP53 CDKN2B TSPAN31 60.0

6 NF1 TP53  CDKN2B CYP27B1 DBC1 SYNE1 33.3

7 EGFR TP53 CDK4 RELN TEK CDKN2B NF1 57.1

8 EGFR TP53 FGFR3 RELN NF1 CDKN2B SYNE1 CYP27B1 50.0

 K SMCMN rpe(%)

2 CDKN2B CDK4 100.0

3 CDKN2A CDK4 TP53 100.0

4 CDKN2A CDK4 TP53 RB1 100.0

5 CDKN2A CDK4 TP53 CCNE1 RB1 100.0

6 PIK3CA TP53 PTEN ERBB2 EGFR CDKN2A 83.3

7 PIK3CA TP53 PTEN ERBB2 EGFR PIK3R1 CDKN2A 85.7

8 CDKN2A CDK4 TP53 CASP3 CCNE1 RB1 PIK3CA FOXO1 62.5
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in the same signaling pathway among the identified genes. It has the same meaning in 
the subsequent tables.

From Tables 2, 3 and 4, we can notice that in most cases, based on models SMCM 
and SMCMN, the identification algorithm is able to acquire gene sets which have 
more genes involving in one known cancer related pathway. As shown in Table  2, 
except for K = 6, the number of enriched genes based on model SMCM is greater 
than or equal to that based on model MWSM. The gene sets detected based on 
model SMCMN possess more genes engaging in one known cancer related pathway 
than those identified based on model MWSM under each K setting. In addition, it is 
noticed that when K = 7, there exactly exists an “inclusion” relationship in the gene 
set acquired by model MWSM, i.e., the samples mutating on gene CD33 are covered 
utterly by those mutating on gene CDK4. The genes obtained by models SMCM and 
SMCMN do exempt from the relationship. In Table  3, although there is no appar-
ent difference in the number of enriched genes detected based on models MWSM 
and SMCM, the number of which identified based on model SMCMN is apparent 
greater than that based on model MWSM. In Table  4, except for K = 4 and 5, the 
gene sets recognized based on models MWSM and SMCM have the same number 
of genes enriched in one cancer related pathway. Model SMCMN still performs the 
best among the three models in terms of the number of enriched genes under each K 
setting. Therefore, the proposed coverage and mutual exclusivity play a positive effect 

Table 3  Pathway enrichment of gene sets under different models (OVCA dataset)

Bold indicate that the genes are enriched in the same biological signaling pathway

K MWSM rpe(%)

2 MYC CCNE1 100.0

3 MYC CCNE1 NINJ2 66.7

4 MYC CCNE1 NINJ2 ABCC10 50.0

5 MYC CCNE1  COL5A3 NINJ2 ABCC10 40.0

6 MYC CCNE1 COL5A3 NINJ2 MYH4 ABCC10 33.3

7 MYC CCNE1 COL5A3 NINJ2 MYH4 ABCC10 TRAPPC8 28.6

8 MYC CCNE1 COL5A3 NINJ2 MYH4 ABCC10 TRAPPC8 PRPC7 25.0

 K SMCM rpe(%)

2 MYC CCNE1 100.0

3 MYC CCNE1 KRAS 100.0

4 MYC CCNE1 NINJ2 MACF1 50.0

5 MYC CCNE1 NINJ2 MACF1 NF1 40.0

6 MYC CCNE1 NINJ2 MACF1 NF1 ARFRP1 33.3

7 MYC CCNE1  NINJ2 MACF1 NF1 MBD3 ZNF512B 28.6

8 MYC CCNE1 PPP2R2A NINJ2 MACF1 NOTCH3 TPD52L2 RYR2 37.5

 K SMCMN rpe(%)

2 MYC CCNE1 100.0

3 MYC KRAS CCNE1 100.0

4 MYC KRAS CCNE1 FBXW7 75.0

5 MYC KRAS CDH1 CTNNB1 CCNE1 80.0

6 MYC KRAS CDH1 CTNNB1 CCNE1 NOTCH3 66.7

7 MYC KRAS CDH1 CTNNB1 CCNE1 NOTCH3 FZD2 57.1

8 MYC KRAS CCNE1 PTEN NRAS NF1 BRAF NOTCH3 62.5



Page 12 of 25Wu et al. BMC Bioinformatics          (2023) 24:211 

on optimizing identification, and the introduction of network connectivity further 
improves the ability of optimization.

Comparison of methods

In this section, experiments were conducted to compare the identification performance 
of methods Dendrix [9], GA [11], iMCMC [12], MOGA [13], PGA-MWS [15], CGA-
MWS [10] and CPGA-SMCMN. In addition, the performance of algorithm CPGA for 
solving the classical MWSM model was also tested and presented.

Glioblastoma

Table  5 compares the identification results under different K settings. When K = 2, 
each detected gene set, except for (CDKN2A, CYP27B1) identified by method iMCMC, 
is enriched in one cancer-related biological pathway. Specifically, gene set (CDKN2B, 
CDK4), detected by methods GA, PGA-MWS, CGA-MWS, CPGA, and CPGA-
SMCMN, enriches in the cell cycle signaling pathway (Fig. 3). It was declared that the 
cell cycle and the MAPK signaling pathways may be disturbed simultaneously and coop-
eratively involved in the initiation and progression of GBM [22]. Gene set (CDKN2A, 
TP53), detected by methods Dendrix and MOGA, enriches in the p53 signaling pathway. 
When K = 3, except for methods iMCMC and MOGA, the other six methods can pro-
duce a gene set engaged in one cancer-related pathway. In terms of the KEGG database, 

Table 4  Pathway enrichment of gene sets under different models(THCA dataset)

Bold indicate that the genes are enriched in the same biological signaling pathway

K MWSM rpe(%)

2 BRAF NRAS 100.0

3 BRAF NRAS HRAS 100.0

4 BRAF NRAS HRAS PTEN 100.0

5 BRAF NRAS HRAS GLUD1 CNTLN 60.0

6 BRAF NRAS HRAS LIPJ CNTLN ZCCHC2 50.0

7 BRAF NRAS HRAS SLC25A45 CNTLN DOCK6 PRKG1 42.9

8 BRAF NRAS HRAS GLUD1 CNTLN DOCK6 SLC1A6 SLC25A45 37.5

 K SMCM rpe(%)

2 BRAF NRAS 100.0

3 BRAF NRAS HRAS 100.0

4 BRAF NRAS HRAS MRPS16 75.0

5 BRAF NRAS HRAS PTEN CNTLN 80.0

6 BRAF NRAS HRAS TDRD7 DOK5 IFIT3 50.0

7 BRAF NRAS HRAS EIF3L SLC25A45 RUFY2 ABHD16A 42.9

8 BRAF NRAS HRAS TG ZCCHC2 ZNF385D PRKG1 SEC14L2 37.5

 K SMCMN rpe(%)

2 BRAF NRAS 100.0

3 BRAF NRAS HRAS 100.0

4 BRAF NRAS HRAS RAF1 100.0

5 BRAF NRAS HRAS PTEN PIK3CG 80.0

6 BRAF NRAS HRAS PIK3CA KRAS RAF1 100.0

7 BRAF NRAS HRAS PIK3CA PTEN PIK3R5 MUC16 71.4

8 BRAF NRAS HRAS PIK3CA PTEN KRAS TP53 DIS3 75.0
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Table 5  Comparisons of experimental results on the glioblastoma dataset

K Dendrix Time(s) rpe(%)

2 CDKN2A TP53 94.2 100.0

3 RB1 CDKN2B CDK4 101.7 100.0

4 RB1 CDKN2B CDK4 FUT2 104.5 75.0

5 RB1 CDKN2B CDK4 FGFR1 CARD8 128.1 60.0

6 RB1 CDKN2B COL4A1 GML PIH1D1 TSPAN31 125.5 33.3

7 RB1 CDKN2B CYP27B1 GPR19 PPP1R115A PAN1 TAS2R9 125.5 28.6

8 RB1 CDKN2B CCNE1 CHEK1 CSNK2A2 NOVA2 PDE6H TSPAN31 128.0 25.0

 K GA Time(s) rpe(%)

2 CDKN2B CDK4 5.5 100.0

3 CDKN2B CDK4 RB1 6.0 100.0

4 CDKN2B CDK4 RB1 ERBB2 6.2 75.0

5 CDKN2B CDK4 RB1 ERBB2 EMP3 6.2 60.0

6 CDKN2B CDK4 RB1 ERBB2 CSF1R FCGRT​ 6.1 50.0

7 CDKN2B CDK4 RB1 ERBB2 FGFR3 NTRK3 ROR2 6.3 42.9

8 CDKN2B CDK4 RB1 ERBB2 FGFR3 NTRK3 ROR2 SPHK2 6.3 37.5

 K iMCMC Time(s) rpe(%)

2 CDKN2A CYP27B1 – –

3 TP53 PTEN MTAP – –

4 EGFR MDM2 NF1 CHAT – –

 K MOGA

2 CDKN2A TP53 – –

3 CDKN2B CDK4 TP53 – –

 K PGA-MWS Time(s) rpe(%)

2 CDKN2B CDK4 6.0 100.0

3 CDKN2A CDK4 TP53 11.0 100.0

4 CDKN2A CDK4 TP53  NF1 24.0 75.0

5 CDKN2A CDK4 TP53 COL6A3 NF1 39.0 60.0

6 CDKN2A CDK4 TP53 COL6A3 NF1 SHH 42.0 50.0

7 CDKN2A CDK4 TP53 COL6A3 NF1 SHH TSPAN31 101.0 42.9

8 TP53 COL6A3 COL6A2 CDKN2B NF1 RCBTB2 TSPAN31 SHH 110.0 37.5

 K CGA-MWS Time(s) rpe(%)

2 CDKN2B CDK4 0.5 100.0

3 CDKN2A CDK4 TP53 0.5 100.0

4 CDKN2B CDK4 RB1 TP53 0.7 75.0

5 CDKN2B CDK4 RB1 TP53 EGFR 0.8 60.0

6 CDKN2B CDK4 RB1 TP53 EGFR DBC1 0.8 50.0

7 CDKN2B CDK4 RB1 TP53 EGFR DBC1 NTRK3 1.0 42.9

8 TP53 CDK4 EGFR FGFR3 CDKN2B RB1 NTRK3 DBC1 0.8 50.0

 K CPGA Time(s) rpe(%)

2 CDKN2B CDK4 14.9 100.0

3 CDKN2B CDK4 RB1 14.0 100.0

4 CDKN2A CDK4 RB1 ERBB2 14.7 50.0

5 CCNE1 CDK4 ERBB2 CDKN2B RB1 22.7 60.0

6 CCNE1 CDK4 ERBB2 TP53 CDKN2B RB1 25.5 66.7

7 CCNE1 CDK4 ERBB2 TP53 FGFR3 CDKN2A RB1 26.7 71.4

8 TP53 MDM2 EGFR CASP3 PRKDC CDH1 CTNNB1 NUMB 30.2 37.5
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gene set (RB1, CDKN2B, CDK4) detected by methods Dendrix, GA, and CPGA is part 
of the cell cycle signaling pathway, and gene set (CDKN2A, TP53, CDK4) detected by 
methods PGA-MWS, CGA-MWS, and CPGA-SMCMN is part of the p53 signaling 
pathway (Fig. 3). The deregulated p53 signaling pathway is generally discovered in GBM, 
and its components are related to GBM cell invasion, migration, proliferation, escape 
from apoptosis and cancer cell stem cells [23].

When K = 4–8, the number of enriched genes found by method CPGA-SMCMN is equal 
to or greater than those identified by the other methods. With the increase of K, the advan-
tage becomes more and more obvious. When K = 4–7, the identified gene sets (CDKN2A, 
TP53, CDK4) and (CDKN2A, TP53, CDK4, CCNE1, CASP3) are involved in the p53 signal-
ing pathway. When K = 8, there are seven genes (TP53, CDK4, EGFR, ERBB2, PDGFRA, 
PIK3R1, PIK3CA) involving in the PI3K-Akt signaling pathway. It was regarded that the 
PI3K/Akt/mTOR pathway is implicated to growth, survival, metabolism, autophagy, angio-
genesis, and chemotherapy resistance of GBM [24]. Among genes (RB1, ERBB2, CTNNB1) 
identified by method CPGA-SMCMN, although they are not enriched in a biological path-
way with any other identified genes, they have been reported to be important cancer related 
genes. For example, the retinoblastoma RB1 gene is a tumor suppressor one, whose sta-
tus is identified as a determinant of glioblastoma therapeutic efficacy [25]. ERBB2 has been 
implied as an appropriate target for CAR T cells in glioblastoma, its expression is often asso-
ciated with high-grade gliomas [26]. It has been discovered that the expression of CTNNB1 
was substantially higher in IDH1WT gliomas than in IDH1MUT one, indicating that it is 

Table 5  (continued)

 K CPGA-SMCMN Time(s) rpe(%)

2 CDKN2B CDK4 30.5 100.0

3 CDKN2A TP53 CDK4 14.1 100.0

4 CDKN2A TP53 CDK4 RB1 8.1 75.0

5 CDKN2A TP53 CDK4 CCNE1 RB1 8.1 80.0

6 CDKN2A TP53 CDK4 CCNE1 ERBB2 RB1 7.9 66.7

7 CDKN2A TP53 CDK4 CCNE1 CASP3 ERBB2 RB1 22.2 71.4

8 TP53 CDK4 EGFR ERBB2 PDGFRA PIK3R1 PIK3CA CTNNB1 15.0 87.5

Bold indicate that the genes are enriched in the same biological signaling pathway

Fig. 3  Biological pathways enriched with the genes detected by method CPGA-SMCMN (GBM dataset). The 
solid line represents a direct interaction between two genes, and the dotted one indicates an indirect one. 
The pink nodes denote the genes detected by method CPGA-SMCMN. The same notations are used in the 
subsequent figures
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probable for gene CTNNB1 to have a correlation with immunosuppressive microenviron-
ment [27]. In addition, compare the results of methods CPGA and Dendrix, which apply 
different identification algorithms on the maximum weight submatrix model. The results 
indicate that the proposed partheno-genetic algorithm exhibits stronger optimization abil-
ity than the markov chain monte carlo algorithm used in method Dendrix.

Besides the identified gene sets, the execution efficiency is also compared among these 
identification methods. The running time of methods iMCMC and MOGA was not pre-
sented (denoted by −), for their source codes were not acquired. As shown in Table 5, 
all of the methods can execute with relatively high efficiency. Figure 4 exhibits the con-
nectivity of genes identified by different methods in the PPI network for K = 8. The 
genes engaging in one cancer related pathway are labeled in blue. It can be noticed that 
the genes obtained by methods CPGA-SMCMN and CPGA manifest better connectiv-
ity than those identified by other methods. The seven gene sets acquired by the CPGA-
SMCMN method were subjected to significance tests, and each of them has a p-value 
of less than 0.005. Furthermore, their coverage and mutual exclusivity are illustrated in 
Fig. 5, where mutual exclusivity mutations are denoted by red bars, co-occurring muta-
tions are denoted by blue bars, and no mutations are denoted by white bars. It is appar-
ent that all of the seven gene sets show preferable coverage and mutual exclusivity. More 
than two-thirds of patients are covered by each gene set. Genes CDKN2B and CDKN2A 
mutate in more than half of patients, respectively. It has been validated that CDKN2A/B 
deletion is a prognostic biomarker for IDH-wildtype GBM [28]. In addition, several low-
frequency mutation genes were detected by method CPGA-SMCMN and were involved 
in the same pathway with other detected genes. For example, gene PIK3CA mutates in 5 

Fig. 4  Connectivity of genes in the PPI network (GBM dataset, K = 8)
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samples, and gene PIK3R1 mutates in 6 samples. They were all missed by other contrast 
methods.

Ovarian carcinoma

Table 6 compares the identified gene sets as well as execution efficiency based on the 
ovarian carcinoma dataset, where K = 2–8. Since Zheng et  al. [13] had not provided 
the identified gene sets on ovarian cancer dataset, the MOGA method is not compared 
in Table 6. When K = 2, except for method iMCMC, each of the methods produces a 
gene set engaging in the PI3K-Akt or the MAPK signaling pathways (Fig. 6). It has been 
reported that the PI3K-Akt signaling pathway is a critical one for therapeutic interven-
tion in ovarian cancer [29]. The MAPK signaling pathway is a critical regulator of ovar-
ian cancer cell proliferation [30].

When K is greater than 3, methods CPGA and CPGA-SMCMN can produce superior 
gene sets to the other methods in terms of pathway enrichment. In particular, when K = 
3–6, all of the genes obtained by method CPGA-SMCMN are engaging in the PI3K-Akt 
signaling pathway. When K = 7 and 8, although CTNNB1 and TERT are not involved 
in the PI3K-Akt signaling pathway together with other genes, they are critical OVCA 
related genes. CTNNB1 mutations in the ovary are characteristic features of ovarian car-
cinomas [31]. The methylation of TERT is one of the important characteristics of ovarian 
carcinomas [32]. In addition, genes (KRAS, PIK3CA, PTEN, STK11) are also engaging in 
the mTOR signaling pathway (Fig.  6). It is acknowledged that the alterations in genes 
associated with the PI3K/AKT/mTOR pathway are commonly found in ovarian cancer 
[33].

Fig. 5  The coverage and mutual exclusivity of the gene sets detected by the CPGA-SMCMN method (GBM 
dataset)
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Table 6  Comparisons of experimental results on the ovarian carcinoma dataset

K Dendrix Time(s) rpe(%)

2 MYC CCNE1 364.3 100.0

3 MYC CCNE1 NINJ2 299.3 66.7

4 MYC CCNE1 ABCC10 NINJ2 300.4 50.0

5 MYC CCNE1 COL5A3 ABCC10 NINJ2 268.5 60.0

6 MYC CCNE1 COL5A3 ABCC10 NINJ2 MYH4 282.8 50.0

7 MYC CCNE1 COL5A3 ABCC10 NINJ2 KIAA1012 MYH4 261.9 42.9

8 MYC CCNE1 COL5A3 ABCC10 NINJ2 KIAA1012 MYH4 PEG3 269.4 37.5

 K GA Time(s) rpe(%)

2 MYC CCNE1 8.2 100.0

3 MYC CCNE1 NINJ2 10.3 66.7

4 MYC CCNE1 MYH4 NINJ2 12.2 50.0

5 MYC CCNE1 COL5A3 ABCC10 NINJ2 15.5 60.0

6 MYC CCNE1 COL5A3 ABCC10 NINJ2 MYH4 16.2 50.0

7 MYC CCNE1 COL5A3 ABCC10 NINJ2 PEG3 MYH4 18.6 42.9

8 MYC CCNE1 COL5A3 ABCC10 NINJ2 PEG3 MYH4 KIAA1012 21.3 37.5

 K iMCMC Time(s) rpe(%)

2 KRAS PPP2R2A – –

3 MYC CCNE1 RAD52 – –

 K PGA-MWS Time(s) rpe(%)

2 MYC CCNE1 45.0 100.0

3 MYC CCNE1  NINJ2 137.0 66.7

4 MYC CCNE1  MACF1 NINJ2 235.0 50.0

5 MYC CCNE1 MACF1 NINJ2 BRD4 722.0 40.0

6 MYC CCNE1 MACF1 NINJ2 BRD4 RYR2 813.0 33.3

7 MYC CCNE1 MACF1 NINJ2 BRD4 KIF26B ZDHHC11 1145.0 28.6

8 MYC CCNE1 MACF1 NINJ2 BRD4 KIF26B ZDHHC11 USH2A 741.0 25.0

 K CGA-MWS Time(s) rpe(%)

2 MYC CCNE1 4.5 100.0

3 MYC CCNE1 NINJ2 5.2 66.7

4 MYC CCNE1 MACF1 NINJ2 5.5 50.0

5 MYC CCNE1 MACF1 NINJ2 NF1 7.0 40.0

6 MYC CCNE1 MACF1 NINJ2 BRD4 LRP2 8.2 33.3

7 MYC CCNE1 MACF1 NINJ2 BRD4 ZDHHC11 LRP2 9.5 28.6

8 MYC CCNE1 MACF1 NINJ2 BRD4 USH2A KIF26B TBP 10.3 25.0

 K CPGA Time(s) rpe(%)

2 MYC CCNE1 257.9 100.0

3 MYC CCNE1 KRAS 416.4 100.0

4 MYC CCNE1 KRAS TERT 626.8 75.0

5 MYC CCNE1 KRAS STK11 NF1 1206.4 80.0

6 MYC CCNE1 KRAS STK11 PIK3CA NF1 756.6 83.3

7 MYC CCNE1 KRAS STK11 PIK3CA PTEN NF1 1167.8 85.7

8 MYC CCNE1 KRAS STK11 PIK3CA PTEN CDH1 TERT 1208.4 75.0

 K CPGA-SMCMN Time(s) rpe(%)

2 MYC KRAS 529.8 100.0

3 MYC CCNE1 KRAS 762.8 100.0

4 MYC CCNE1 KRAS PIK3CA 1383.6 100.0
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From Table 6, it can be observed that the running time increases comparative to that 
spent in the GBM database, for the OVCA dataset has much more samples and genes 
than the GBM dataset. Except for the Dendrix method, the efficiency of other meth-
ods are affected by the size of identified gene set K. In Fig. 7, the connectivity of genes 
detected by different methods in the PPI network is displayed, where K = 8. The gene 

Table 6  (continued)

Fig. 6  Biological pathways enriched with the genes detected by method CPGA-SMCMN (OVCA dataset)

Fig. 7  Connectivity of genes in the PPI network (OVCA dataset, K = 8)

Bold indicate that the genes are enriched in the same biological signaling pathway

 K CPGA-SMCMN Time(s) rpe(%)

5 MYC CCNE1 KRAS PIK3CA PTEN 1645.0 100.0

6 MYC CCNE1 KRAS PIK3CA PTEN STK11 867.4 100.0

7 MYC CCNE1 KRAS PIK3CA PTEN STK11 CTNNB1 2544.8 85.7

8 MYC CCNE1 KRAS PIK3CA PTEN STK11  CTNNB1 TERT 1429.7 75.0
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sets found by methods CPGA and CPGA-SMCMN still exhibit better connectivity than 
those acquired by the other methods. Since they all have p-values less than 0.005, they 
are statistically significant. Figure 8 illustrates the coverage and mutual exclusivity of the 
detected gene sets, where K ranges from 2 to 8. At least one-third patients are covered by 
each gene set. Gene MYC mutates in more than a quarter of patients. It has been dem-
onstrated that ovarian cancer cells highly rely on MYC for maintaining their oncogenic 
growth, and MYC is a therapeutic target for ovarian cancer [34]. In addition, some genes 
with low mutation frequency are also contained in the detected gene sets. For example, 
gene PIK3CA mutates in 5 patients, gene PTEN mutates in 6 samples, and gene STK11 
mutates in 8 samples.

Thyroid carcinoma

In Table 7, the identified gene sets and execution time are compared based on the THCA 
dataset, where K = 2–8. Since Zhang et al. [12] and Zheng et al. [13] do not provide the 
results of methods iMCMC and MOGA on this dataset, they were not compared. It can 
be clearly observed that the results acquired by methods CPGA and CPGA-SMCMN 
are close in the number of enriched genes, and manifest much superior enrichment per-
formance to those detected with other methods. As displayed in Fig. 9, the genes rec-
ognized by the CPGA-SMCMN method involve in two crucial signaling pathways, i.e., 
the mTOR signaling pathway and the PI3K-Akt one. The overactivation of the PI3K/Akt/
mTOR pathway plays a significant role in the pathogenesis of medullary thyroid cancer 
[35]. Though three genes, i.e., RET, CDKN2A, and JAK2, are not enriched in a cancer 
related pathway with other detected genes, they are believed to have a close relationship 
with thyroid carcinoma. RET alterations have been identified in diverse thyroid cancer 
subtypes, and its fusions have been demonstrated to be a common oncogenic driver 
event of papillary thyroid carcinoma [36]. The increased expression of CDKN2A gene 
product is associated with thyroid cancer progression [37]. It has been reported recently 

Fig. 8  The coverage and mutual exclusivity of the gene sets detected by the CPGA-SMCMN method (OVCA 
dataset)
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Table 7  Comparisons of experimental results on the thyroid carcinoma dataset

K Dendrix Time(s) rpe(%)

2 BRAF NRAS 358.9 100.0

3 BRAF NRAS HRAS 364.6 100.0

4 BRAF NRAS HRAS PTEN 380.0 100.0

5 BRAF NRAS HRAS  LIPJ CNTLN 360.3 60.0

6 BRAF NRAS HRAS DOK6 CNTLN GLUD1 380.3 50.0

7 BRAF NRAS HRAS LIPJ CNTLN MYO1C SLC25A45 359.8 42.6

8 BRAF NRAS HRAS ZCCHC2 CNTLN CFAP70 SUV39H2 SLC25A45 375.6 37.5

 K GA Time(s) rpe(%)

2 BRAF NRAS 4.3 100.0

3 BRAF NRAS HRAS 5.6 100.0

4 BRAF NRAS HRAS CCSER2 6.1 75.0

5 BRAF NRAS HRAS PTEN CNTLN 8.0 80.0

6 BRAF NRAS HRAS PTEN ZCCHC2 CNTLN 8.9 66.7

7 BRAF NRAS HRAS PTEN  ZCCHC2 CNTLN DOCK6 9.7 57.1

8 BRAF NRAS HRAS PTEN KRAS  ZCCHC2 CNTLN DOCK6 10.2 62.5

 K PGA-MWS Time(s) rpe(%)

2 BRAF NRAS 45.0 100.0

3 BRAF NRAS HRAS 89.0 100.0

4 BRAF NRAS PTEN  GTPBP4 169.0 75.0

5 BRAF NRAS HRAS PTEN GTPBP4 435.0 80.0

6 BRAF NRAS HRAS PTEN GTPBP4 TAF18 648.0 66.7

7 BRAF NRAS HRAS PTEN GTPBP4 VAPA CEP120 828.0 57.1

8 BRAF NRAS HRAS PTEN  GTPBP4 CNTLN DOCK6 SLC25A45 1026.0 50.0

 K CGA-MWS Time(s) rpe(%)

2 BRAF NRAS 1.9 100.0

3 BRAF NRAS HRAS 2.4 100.0

4 BRAF NRAS HRAS PTEN 2.6 100.0

5 BRAF NRAS HRAS PTEN  CNTLN 3.5 80.0

6 BRAF NRAS HRAS  CNTLN TG PRKG1 4.0 50.0

7 BRAF NRAS HRAS  CNTLN TG SYCE1 PRKG1 4.4 42.6

8 BRAF NRAS HRAS  CNTLN TG SYCE1 DOCK6 PRKG1 5.4 37.5

 K CPGA Time(s) rpe(%)

2 BRAF NRAS 68.1 100.0

3 BRAF NRAS HRAS 66.6 100.0

4 BRAF NRAS HRAS PTEN 60.1 100.0

5 BRAF NRAS HRAS PTEN  RET 116.2 80.0

6 BRAF NRAS HRAS PTEN KRAS  RET 128.2 83.3

7 BRAF NRAS HRAS PTEN KRAS RAF1  RET 109.2 85.7

8 BRAF NRAS HRAS PTEN KRAS RAF1  RET JAK2 103.8 75.0

 K CPGA-SMCMN Time(s) rpe(%)

2 BRAF NRAS 255.8 100.0

3 BRAF NRAS HRAS 199.5 100.0

4 BRAF HRAS NRAS PTEN 186.8 100.0

5 BRAF HRAS NRAS PTEN KRAS 165.4 100.0

6 BRAF HRAS NRAS PTEN KRAS  RET 165.0 83.3

7 BRAF HRAS NRAS PTEN KRAS RAF1  CDKN2A 205.8 85.7
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that gene JAK2 may be a latent target of oridonin in the treatment of thyroid cancer [38]. 
The running time exhibited in Table 7 demonstrates that all of the methods can solve the 
problem in feasible time.

Figure 10 shows the connectivity of genes identified by different methods in the PPI 
network with K = 8. The genes recognized by methods CPGA-SMCMN and CPGA are 
absolutely the same, and present stronger connectivity than the genes acquired with 
other methods. Each of the eight gene sets detected by method CPGA-SMCMN has 

Fig. 9  Biological pathways enriched with the genes detected by method CPGA-SMCMN (THCA dataset)

Table 7  (continued)

Bold indicate that the genes are enriched in the same biological signaling pathway

 K CPGA-SMCMN Time(s) rpe(%)

8 BRAF HRAS NRAS PTEN KRAS RAF1  RET JAK2 136.7 75.0

Fig. 10  Connectivity of genes in the PPI network (THCA dataset, K = 8)
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a p-value of less than 0.005, hence they are statistically significant. The coverage and 
mutual exclusivity of them are illustrated in Fig.  11. It can be discovered that at least 
two-thirds of patients are covered by each gene set, and gene BRAF does a great contri-
bution to the coverage. There are about 45% of sporadic papillary thyroid cancers have 
genetic variation in this gene [39]. Furthermore, a low-frequency gene RAF1, mutat-
ing in 3 patients, was recognized by method CPGA-SMCMN and was enriched in the 
mTOR and the PI3K-Akt signaling pathways with other identified genes.

Discussion
The problem of identifying cancer driver pathways has drawn great attention in the area 
of studying cancers. In this article, the relative hamming distance RHD is devised for cal-
culating the distance between a gene and a gene set, and a new measurement of mutual 
exclusivity is put forward based on RHD to exclude the gene sets having an “inclusion” 
relationship. A parameter-free identification model SMCMN is proposed by ascer-
taining a submatrix having maximum coverage, mutual exclusivity and network con-
nectivity. Furthermore, a partheno-genetic algorithm is presented by introducing gene 
clustering based operators for initializing and recombining individuals.

The performance of algorithm CPGA is closely related with a pair of artificial param-
eters, i.e., µ and ν , whose values were determined with abundant pre-experiments. How 
to eliminate them by combining different omics data will be studied in the future. In 
addition, during the process of experiments, it is confirmed that the execution efficiency 
of method CPGA-SMCMN decreases obviously with the increase of gene number. The 
improvement of execution efficiency will also become a focus of future studies.

Fig. 11  The coverage and mutual exclusivity of the gene sets detected by the CPGA-SMCMN method (THCA 
dataset)
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Appendix A: Experimental results under different maxg, maxt, N, rr, µ and ν
Figure  12 demonstrates the average Fitness obtained for solving the most complex 
OVCA dataset under different combinations of parameters maxg, maxt, N, rr, µ , and 
ν . Ten runs were performed for each group of parameters, and the average over ten 
runs was calculated and displayed. Since Fitness varies between a narrow range or 
remains unchanged under different parameter settings, the middle values of them are 
chosen for the trade-off between Fitness and execution efficiency, i.e., maxg = 1000, 
maxt = 100, N = |G|

4  , rr = 0.3, µ = 0.7, ν = 0.5.
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