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Abstract 

Background:  A major current focus in the analysis of protein–protein interaction (PPI) 
data is how to identify essential proteins. As massive PPI data are available, this warrants 
the design of efficient computing methods for identifying essential proteins. Previous 
studies have achieved considerable performance. However, as a consequence of the 
features of high noise and structural complexity in PPIs, it is still a challenge to further 
upgrade the performance of the identification methods.

Methods:  This paper proposes an identification method, named CTF, which identifies 
essential proteins based on edge features including h-quasi-cliques and uv-triangle 
graphs and the fusion of multiple-source information. We first design an edge-weight 
function, named EWCT, for computing the topological scores of proteins based on 
quasi-cliques and triangle graphs. Then, we generate an edge-weighted PPI network 
using EWCT and dynamic PPI data. Finally, we compute the essentiality of proteins by 
the fusion of topological scores and three scores of biological information.

Results:  We evaluated the performance of the CTF method by comparison with 16 
other methods, such as MON, PeC, TEGS, and LBCC, the experiment results on three 
datasets of Saccharomyces cerevisiae show that CTF outperforms the state-of-the-art 
methods. Moreover, our method indicates that the fusion of other biological informa-
tion is beneficial to improve the accuracy of identification.

Keywords:  Essential protein, Quasi-clique, Triangle graph, Dynamic protein–protein 
interaction network, Fusion method

Background
Proteins are the material basis of life activities. They can be divided into essential and 
non-essential proteins. The cell becomes nonfunctional or dysfunctional when essential 
proteins are knocked out [1]. Identification of essential proteins can help us uncover the 
mechanisms of cell aging and aging-related diseases and is of great significance to dis-
ease diagnosis and drug design [2].

Essential proteins have been identified by biological experimental approaches and 
computing methods. The advantage of biological experimental methods, such as gene 
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knockout, conditional knockout, and RNA interference [3], is high reliability, but the 
disadvantages are that they are time-consuming and expensive [4]. With the rapid devel-
opment of high-throughput experimental methods, protein–protein interaction (PPI) 
data have been enriched. Consequently, it is possible to identify essential proteins using 
computing methods [5].

Interactions among proteins can be modeled by a simple graph where a vertex cor-
responds to a protein and an edge to an interaction, also called a protein–protein inter-
action network (PIN). In a PIN, highly connected vertices tend to be essential based on 
the centrality–lethality rule proposed by Jeong et al [6]. Accordingly, computing meth-
ods identify essential proteins by the topological features of PINs [7]. For these methods, 
centrality measures are crucial. Much research in recent years has focused on central-
ity measures, such as degree centrality (DC) [8], betweenness centrality (BC) [9], close-
ness centrality (CC) [10], subgraph centrality (SC) [11], eigenvector centrality (EC) [12], 
information centrality (IC) [13], local average centrality (LAC) [14], and neighbor cen-
trality (NC) [15]. It must be also mentioned that previous research shows that we cannot 
identify all essential proteins based on existing centrality measures, because of noise in 
PINs, limitations of centrality measures, and other reasons [16]. It remains challenging 
to develop novel centrality measures to further improve the performance of the identifi-
cation methods [17].

Besides centrality measures, previous research shows that it is helpful for identifying 
essential proteins to fuse multisource biological information [18], such as GO annota-
tions, protein complexes, gene expression profiles, and subcellular localization. Fusion 
methods can be generally grouped into three categories: edge weight methods, PIN 
reconstruction methods, and fusion methods.

The basic idea of edge weight methods is to identify essential proteins via an edge-
weighted PIN, whose edges are weighted based on topological features and biological 
information. Edge-weighted PINs can be obtained via the fusion of gene expression pro-
files, such as the methods proposed by Tang et al. (WDC) [19], Zhang et al. (CoEWC) 
[20], Li et al. (PeC) [21], and Zhong et al. (JDC) [22]. GO annotations are another kind of 
biological information used to assign a weight to an edge [23], for example, the method 
GEG presented by Zhang et al. [24]. Previous studies have demonstrated that the num-
ber of protein domain types contained in a protein is highly correlated with its essenti-
ality, for example, the model NPRI developed by Chen et al. [25]. Based on the relation 
between the orthology and essential proteins, Peng et al. proposed the method ION [26]. 
Recently, to further enhance accuracy, some methods generate an edge-weighted PIN by 
simultaneously fusing several kinds of biological information, such as esPOS [27], TEO 
[28], and TEGS [29].

To decrease the influence of noise or incompleteness inherently existing in PINs, 
the key point of PIN reconstruction methods is to reconstruct a PIN using biologi-
cal information. In the study of Wang et al., a dynamic PIN (DPIN), which consists 
of a series of time-sequenced subnetworks that are static PINs, was constructed by 
combining gene expression data with PINs for denoising PINs [30]. The WPDINM 
model proposed by Meng et  al. estimates the essentiality of proteins based on sub-
cellular localization, orthologous information, and a novel weighted protein–domain 
interaction network constructed by PINs and gene expression profiles [31]. On the 
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basis of the relations between protein functions and subcellular localization, Li et al. 
presented the SPP method [32]. Zhao et al. presented two methods, DSN and MON, 
by integrating PINs, protein domains, gene expression profiles, orthologous proteins, 
and subcellular localization information [33, 34].

The fundamental strategy of fusion methods is to identify essential proteins 
through weighted scores computed using other kinds of biological information or 
other methods, which are complementary, that is, the essential protein sets identi-
fied by these methods are different [18, 21, 35]. By fusion of PINs, orthologous pro-
teins, and subcellular localization, the SON method was presented by Li et  al. [36]. 
The LIDC method proposed by Luo et al. computes weighted scores using PINs and 
protein complex information [37]. Based on the TEGS method, Zhang et al. proposed 
the CEGSO method through fusing subcellular locations and two other methods [5], 
namely, IDC [37] and NOS. Based on the combination of local density, BC and IDC, 
Qin et al. presented the LBCC method [38].

Although all the previously mentioned identification methods have demonstrated 
good performance, they suffer some disadvantages, and there is room for enhance-
ment. For concerning the methods based on centrality measures, the limitation is 
that these measures are not sufficient to perfectly characterize the complete features 
of essential proteins. There remains a need for efficient centrality measures that can 
compute the essentiality of lowly or highly connected proteins, because lowly con-
nected proteins may be essential and highly connected proteins maybe not. For exam-
ple, there are 321 essential proteins whose interactions are less than or equal to 3 
and there are 809 non-essential proteins whose interactions are greater than average 
in the DIP dataset (see Section “Experiments and discussions”), which contains 1167 
essential proteins out of 5093 proteins. The example is inconsistent with the assump-
tion that highly connected proteins tend to be essential. Therefore, how to design a 
method to identify the two types of proteins by deeply analyzing the topological fea-
tures of PINs is still an important question. For the methods based on fusing multi-
source biological information, it is still a challenge to identify more inherent potential 
relations between essential proteins and biological properties in different kinds of 
biological information.

To tackle the limitations mentioned above, we present a novel method for identifying 
essential proteins, named CTF (the identification method of essential proteins based on 
edge features including h-quasi-cliques and uv-triangle graphs, and the fusion of mul-
tiple-source biological information). To our knowledge, it is the first time that the con-
cepts of h-quasi-cliques and uv-triangle graphs are considered in the identification of 
essential proteins. The contributions of this paper are summarized as follows. 

1	 For constructing an edge-weighted PIN, we propose an function, named EWCT (the 
edge weight function based on edge features h-quasi-cliques and uv-triangle graphs 
by combining with GO annotations), to weight edges.

2	 To denoise PINs and further enhance their performance, we construct an edge-
weighted PIN using EWCT and a DPIN.

3	 To further enhance accuracy, the CTF method computes three essential scores of 
proteins using three kinds of biological information, namely, protein complexes, sub-
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cellular localization, and orthologous information, and the CTF method is upgraded 
by optimizing the weights of the different essential scores.

To verify the effectiveness and superiority of CTF, we design experiments on three 
different yeast PINs and compare CTF with 16 methods, including MON, PeC, 
TEGS, and LBCC. The results show that CTF has higher performance than the other 
methods.

Definitions and notations
Let us introduce some notations and terminologies before describing the CTF method 
in detail. A PIN is typically modeled by a simple graph G = (V ,E) with a set of vertices 
V and a set of edges E, where vertices and edges represent proteins and interactions, 
respectively. For an edge e ∈ E incident on u and v, denote the edge e by e = (u, v) or 
(u,  v), and we say that u and v are “adjacent” or u is a “neighbor” of v. The kth-order 
neighbors of vertex u are a set of vertices whose shortest path distances to u are equal to 
k, and the kth-order nearest neighbors of protein u are a set of vertices whose shortest 
path distances to u are less than or equal to k. In this paper, for convenience, we inter-
changeably use the terms “vertex” and “protein” without any confusion because of the 
one-to-one mapping between the vertex set and the protein set and similarly for “edge” 
and “interaction”.

In a simple graph G = (V ,E) , the “degree” of a vertex u is the number of edges inci-
dent on it. Let d(v) denote the degree of v, and N(v) denote the set of neighbors of v. 
The union of N(u) and N(v), denoted by N (u) ∪ N (v) , is the set of vertices that are in 
N(u) or N(v) or both N(u) and N(v), and the intersection of N(u) and N(v), denoted by 
N (u) ∩ N (v) , is the set of vertices that are in both N(u) and N(v). The set N (u) ∩ N (v) is 
called the common neighbor set of u and v.

An edge-weighted graph is a graph that has a number, called a weight, associated with 
each edge. We denote the weight of the edge e incident on vertices u and v by w(e(u, v)).

Given a simple graph G = (V ,E) , G is a clique if u is adjacent to v for arbitrary two dis-
tinct vertices u and v of V. Therefore, given a clique with n vertices, it has (n ∗ (n− 1))/2 
edges. The maximal clique problem is to find a clique that is not contained in any other 
clique in a graph. In real-world contexts, we need to relax a clique problem to an almost-
clique problem, that is, dense incomplete graphs, also called quasi-cliques, which gener-
alize the notion of cliques. In our method, we define a variant of cliques: h-quasi-cliques.

Definition 1  (h-quasi-clique) For a simple graph G with n vertices, G is an h-quasi-
clique such that the number of edges in G is greater than or equal to (n ∗ (n− 1))/4 , that 
is, half the number of edges of a clique with n vertices.

Given a simple graph G = (V ,E) , for each v ∈ V  , if G contains at least one subgraph 
that is a triangle and contains vertex v, we say that G is a triangle graph. A variant of a 
triangle graph is a uv-triangle graph.

Definition 2  (uv-triangle graph) Given a simple graph G = (V ,E) , we say that G is a 
uv-triangle graph if it satisfies the uv-triangle condition: there exists an edge e = (u, v) 
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for each vertex w ∈ V  such that w,w1,w2 induces a triangle in G, where w1 and 
w2 ∈ u, v ∪ (N (u) ∩ N (v)) . The triangle is called a triangle graphlet of G.

For example, Fig. 1 illustrates a subgraph that is an h-quasi-clique and is also a uv-
triangle graph, where the blue vertices belong to N (u) ∩ N (v) , and the gray vertices 
belong to (N (u) ∪ N (v))− (N (u) ∩ N (v)).

For a graph G, if G is an h-quasi-clique and is also a uv-triangle graph, the density 
of the edges in G is much higher and can be used to measure the edge density of the 
subgraph.

Methods
Previous studies have shown that there are several strategies to upgrade the perfor-
mance of the essential protein identification methods. The first one is to design novel 
centrality measures, which can provide crucial insights on the topological features of 
PINs. The second strategy is to denoise PINs to increase the precision of the interac-
tions [29]. Another one is to identify essential proteins based on the fusion of other 
kinds of biological information or other kinds of identification methods.

In this study, we present a new identification method based on a new centrality 
measure, DPINs, and the fusion of three kinds of biological information, namely, pro-
tein complex, subcellular location, and orthologous information, as shown in Fig. 2.

Edge‑weight function

There are four scores in the CTF method. The first one is a topological score com-
puted based on an edge-weighted PIN. To construct an edge-weighted PIN, we first 
propose the EWCT function for the assignment of weights to edges.

The central idea of EWCT is to assign weights to the edges of PINs based on the 
edge features of the PINs and GO annotations. The topological features used in 
EWCT are h-quasi-cliques and uv-triangle graphs.

Theorem  1  Given a PIN Gp = (Vp,Ep) , for (u, v) ∈ Ep , let C1 = N (u) ∩ N (v) , and 
C2 = N (w1) ∪ N (w2) , where w1 ∈ u, v and w2 ∈ C1 . Let Guv = (Vuv ,Euv) be the induced 
subgraph on the vertex set u, v ∪ C1 ∪ C2 . If |Vuv| < 8 , then Guv is an h-quasi-clique, and 
it is also a uv-triangle graph.

Fig. 1  The subgraph Guv induced by solid edges is an h-quasi-clique and is also a uv-triangle graph
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Proof  We first show that Guv is an h-quasi-clique.
The number of edges in Guv is computed below. Let n = |Vuv| , 
n1 = |C1|, n2 = |C2|,w ∈ u, v, v1 ∈ C1 , and v2 ∈ N (w) ∩ N (v1) ⊆ C2 . Consequently, we 
have that n = n1 + n2 + 2 . Observe that vertices u, v, and v1 are vertices of a triangle in 
Gp , and the number of these triangles is n1 ; vertices w, v1 , and v2 are vertices of a triangle 
in Gp , and the number of these triangles is n2 . Therefore, the number of edges in Guv is 
at least 2n1 + 2n2 + 1 = 2n− 3 . The triangles formed by vertices u, v, and v1 or w, v1 , 
and v2 are triangle graphlets of Guv.

In addition, for the clique Cuv = (Vc,Ec) on the vertex set u, v ∪ C1 ∪ C2 , we have 
|Ec| = n(n− 1)/2 = (n1 + n2 + 2)(n1 + n2 + 1)/2.

Since n is an integer and 0 < n < 8 , Eq. (1) holds.

Thus, Guv is an h-quasi-clique by Definition 1.

By the construction of Guv and Definition 2, we get that Guv is a uv-triangle graph. The 
theorem follows. � �

To the best of our knowledge, the average degree in a PIN is about 8, and the degrees 
of about 60–85% of proteins in a PIN are less than or equal to 7 such as shown in Table 1, 
in which there are 5 PINs, including Gavin, Krogan, DIP, MIPS, and MBD, for describ-
ing degree properties of vertices in PINs. We may conclude that the vertex number of a 
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Fig. 2  The framework of CTF
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maximal clique in a PIN is lower than 8, and the vertex number of Guv is lower than 7 in 
most cases. The property of a PIN satisfies the conditions of Theorem 1 in most cases, 
that is, Guv is an h-quasi-clique and is also a uv-triangle graph.

The important observation is that Guv is characterized by the richness of triangle 
graphlets. The edge feature of Guv can be used to compute the weight of (u, v).

To define the function EWCT, the two definitions below are used.

Definition 3  (Half of the Common Neighbors) For two vertices u and v in a PIN, the 
half of the common neighbors (HCN) of u and v is defined as Eq. (2).

Definition 4  (Summation of All Neighbor Supports) For two vertices u and v in a PIN, 
the summation of all neighbor supports (SANS) is the summation of the product of 
HCN(u, w) and HCN(w, v), where w is a common neighbor of u and v.

Note that, as illustrated above, the vertex set 
{u, v} ∪ (N (u) ∩ N (v)) ∪ ((N (u) ∩ N (w)) ∪ (N (v) ∩ N (w))) is an h-quasi-clique in most 
cases and is also a uv-triangle graph.

On the basis of HCN and SANS, we define the function EWCT by Eq. (4) used to 
compute the importance of edge e = (u, v) . In addition, GO annotations can be used to 
adjust the weights of the edges as stated above. We use the function Go(v, u) proposed 
by Wang [39] to adjust the edge weights, where the value of Go(v, u) is between 0 and 1.

For two vertices u and v in a PIN, the function EWCT is defined as Eq. (4), where the 
divisor in Eq. (4) is used to balance the difference of the neighbor numbers for different 
vertices.

The meaning of function EWCT(u, v) is that its value is highly correlated with two edge 
features h-quasi-cliques and uv-triangle graph.

For example, previous studies have shown that the neighborhood topology of 
a PIN is highly correlated with the essentiality of proteins. Based on the neighbor-
hood topology of a PIN, four kinds of subgraphs occur frequently in PINs as shown in 

(2)| HCN(u, v)| =
|N (u) N (v)|

2

(3)SANS(u, v) =
∑

w∈(N (u)∩N (v))

(HCN(u,w)×HCN(w, v))

(4)EWCT(u, v) =
SANS(u, v)−HCN(u, v)

(|N (u) ∪ N (v)| + 1)
× Go(u, v)

Table 1  Degree properties of vertices in PINs

Datasets Average vertex degree Percentages of vertices 
(degree ≤ 7)

Gavin 8.27 59.79

Krogan 7.80 71.10

DIP 9.72 68.00

MIPS 5.42 85.10

MBD 9.00 73.40
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Fig. 3, called T1-Graph, T2-Graph, T3-Graph, and T4-Graph, where the edge e = (u, v) 
will be assigned a weight. As detailed in Fig.  3, the solid edges are the characteriz-
ing edges used to compute the weight of e. The features of these four graphlets are 
described in Table 2. If we only consider topological features by omitting GO annota-
tions in Eq. (4), that is, set Go(u, v) to 1, the EWCT values of the edge e in T1-Graph, 
T2-Graph, T3-Graph, and T4-Graph are 0, 0, 0.2, and 1.2, respectively. That is, higher 
EWCT values lead to more important edges.

Furthermore, we also analyze the computational complexity of the EWCT 
method. The basic operation of EWCT is to compute the common neighbor set of 
u and v, that is, N (u) ∩ N (v) . Therefore, the computational complexity of EWCT is 
O(d(u)× log(d(v)) . To compute the weights for all e ∈ E , the computational complex-
ity is O(|E| × d(u)× log(d(v)) . As the average degree in a PIN is about 8, the EWCT 
function can be efficiently computed.

Construction of an edge‑weighted PIN

It is well known that PINs obtained through high-throughput methods have a high 
level of noise. This leads to difficulties in identifying essential proteins. A PIN is also 
called a static PIN to distinguish from a DPIN. In addition, interactions among pro-
teins are dynamic in a cell, that is, a static PIN cannot reflect the dynamic feature of 
interactions.

To tackle these two problems, especially the noise in the form of false positives, we 
construct a DPIN by combining static PINs with gene expression profiles. This paper 
applies the 3-sigma method proposed by Wang et al. to construct DPINs [30].

A DPIN is defined as a 4-tuple DG = (V ,E,T , ATE) , where V and E correspond to 
proteins and interactions of PINs, respectively, T = {Ti|1 ≤ i ≤ n} is a set of active time 
points for proteins, and ATE is a function whose value is the active time attribute set 

Fig. 3  The four common kinds of graphlets in PINs

Table 2  The features of four graphlets

Graphlets Features Importance 
of edge e

T1-Graph |N(u) ∩ N(v)| = 0 , and there may only exist an edge between two vertices belonging 
to N(w), where w ∈ {u, v}.

Weak

T2-Graph |N(u) ∩ N(v)| ≤ 2 , and u, v, and there does not exist an edge between two vertices 
belonging to N(u) ∩ N(v).

Weak

T3-Graph |N(u) ∩ N(v)| = 1 , and there is an edge incident on w1 and w2, where 
w1 ∈ N(u) ∩ N(v) , w2 ∈ (N(u) ∪ N(v)− (N(u) ∩ N(v)).

Medium

T4-Graph |N(u) ∩ N(v)| ≥ 2 , and u, v ,w1,w2 induces a clique. Strong
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of proteins. A snapshot of a DPIN is defined as a 3-tuple DGi = (Vi,Ei, ATE(u, v,Ti)) , 
where Vi ∈ V  and Ei ∈ E are active at time point Ti ∈ T  , ATE(u, v,Ti) is used to com-
pute the active probability of vertices u and v in Vi at time point Ti , and i ∈ [1, |T |].

Given a DPIN subnetwork DGi = (Vi,Ei, ATE(u, v,Ti)) , the weight of edge (u,  v) is 
computed using the function EWD(u, v,Ti) as Eq. (5). Recall that gene expression pro-
files are used to construct DPINs, and the gene expression profiles used in our experi-
ments are 12 time intervals per cycle. Therefore, the number of active time points is 12 
for a gene in a cycle, that is, |T | = 12.

As detailed in Algorithm 1, the method CEP (construction of an edge-weighted PIN) is 
used to construct an edge-weighted PIN. CEP contains 12 iterations, and each iteration 
processes a DPIN subnetwork and consists of two major steps. To begin with, compute 
the EWD value by Eq. (5)), and after that, we delete the trivial edges.

The interactions with high weights tend to connect essential proteins. After obtaining 
an edge-weighted PIN, it will be used to compute the topological score of a protein.

Essentiality scores based on edge features

For protein u in an edge-weighted PIN, the topological score function defined by Eq. 
(6), named TS(u), is used to compute the topological score of u based on the weights of 
edges adjacent to u.

Normally, the range of TS(u) is from 0 to 100. Accordingly, if the value of TS(u) is too 
high, it is treated as an abnormal value. In fact, most of the proteins with too high topol-
ogy scores are not essential, and their topology scores are assigned 0 by a threshold. In 
practice, we take 1000 as the threshold of TS(u). For example, as shown in Fig. 4a and b, 
respectively, there are 32 and 25 high-score proteins arranged in circles, whose scores 

(5)EWD(u, v,Ti) = ATE(u, v,Ti)× EWQC(u, v),Ti ∈ T , i ∈ [1, 12]

(6)TS(u) =
∑

v∈N(u)

w(e(u, v))

2
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are greater than 1000 in the Gavin dataset. The subgraph induced by these proteins is a 
quasi-clique. The quasi-clique with 1 essential protein has 32 vertices and 458 edges in 
Fig. 4a, and the quasi-clique with 3 essential proteins has 25 vertices and 289 edges in 
Fig. 4b. For the proteins arranged in a circle, their topology scores are set to zero.

Essentiality scores based on biological information

As pointed out above, previous studies indicate that the use of biological information 
can improve the accuracy of essential protein identification. This paper applies three 
kinds of biological information, namely, protein complexes, subcellular localizations, 
and orthologous information.

A protein complex is a group of proteins that mutually interact, that is, protein com-
plexes are substructures of a PIN. For a protein in a complex, the essentiality highly posi-
tively correlates with the participation degree [40].

Subcellular localization information is vital to understand the functions of proteins 
and is easily obtained. From a biological view, for two proteins, there is an interaction 
between them if and only if they are in the same subcellular compartment [41]. Subcel-
lular localization information can be used to reduce the noise in PINs and is helpful for 
further improvement of identification accuracy.

Fig. 4  Non-essential proteins in a large quasi-clique
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Because orthologous proteins have evolved from a common ancestor, they often per-
form the same function. The SON method proposed by Li et  al. applied orthologous 
information, subcellular localization, and PINs to identify essential proteins [36]. Some 
previous studies also showed that the identification accuracy of essential proteins could 
be improved using orthologous information.

Based on these reports, this paper identifies essential proteins by the fusion of three 
kinds of biological information mentioned above.

CTF method

Comparisons of the essential protein sets identified by the methods TS, IDC, SCIS, 
and NOS, show that these methods are complementary. In this paper, we first compute 
essentiality scores of proteins by four scores, namely, the topology score TS and three 
kinds of biological information scores as shown in Eq. (7), where IDC(u), SCIS(u), and 
NOS(u) are obtained from protein complexes, subcellular localizations, and ortholo-
gous information, respectively. These four scores are combined via a linear combination. 
Then, we rank proteins by essential scores in descending order, and the higher-ranked 
proteins are more likely to be essential proteins, that is, we can choose the top k proteins 
as essential candidates.

Note that the value of NOS ranges from 0 to 1 in practice. By contrast, those of TS, IDC, 
and SCIS range from 0 to 100, that is, the value of NOS is much less than TS, IDC, and 
SCIS. Subsequently, the value of NOS is amplified 100-fold in Eq. (7) to scale the four 
scores.

The parameter α ∈ [0, 1] is used to tune the rate of the four components TS, IDC, 
NOS, and SCIS. If α is set to 1, the essential score is determined by TS and IDC, and if 
α is set to 0, the essential score is determined by NOS and SCIS. If α is between 0 and 1, 
essential scores are computed according to the percentages of TS, IDC, NOS, and SCIS. 
In CTF, α is set to 0.4, and the reason is described in Subsection “Parameter settings”.

The details of the CTF method are described in Algorithm 2.

(7)
CTF(u) = α ×

[

α ×

(

TS(u)+ IDC(u)

2

)

+ (1− α)× 100×NOS(u)

]

+(1− α)× SCIS(u)
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Experiments and discussions
Experimental data

In this study, multiple biological datasets from the baker’s yeast Saccharomyces cerevi-
siae are used, namely, PINs, GO annotations, gene expression profiles, subcellular locali-
zations, protein complexes, orthologous information, and standard essential proteins. 
Saccharomyces cerevisiae has been widely used for essential protein studies because it is 
one of the most intensively studied organisms in molecular and cell biology, and it con-
tains the most complete PPIs and rich biological information. Therefore, we evaluate the 
performance of CTF based on Saccharomyces cerevisiae datasets as shown in Table 3.

Comparisons with other methods

To show the advantage of our method CTF, three comparison methods are used, namely, 
statistical measures, top k proteins method, and receiver operating characteristic (ROC) 
and precision-recall (PR) curves.

Comparisons of statistical measures

For comparisons of CTF with some other existing algorithms, six statistical measures 
are employed, namely, sensitivity (SN), specificity (SP), positive predictive value (PPV), 
negative predictive value (NPV), F-measure (F), and accuracy (ACC​). These measures are 
commonly used to measure the performance of essential protein identification. Let TP 
and TN denote the number of samples of the essential and non-essential proteins, which 
are identified correctly, respectively, and FN and FP denote the number of samples of the 
essential proteins and non-essential proteins, which are identified wrongly, respectively. 
These measures mentioned above are described as shown in Eqs. (8–13).
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According to previously published studies, about 20–30% of all proteins are essential in a 
PIN. Therefore, we choose the top 25% as essential proteins and the others as non-essen-
tial proteins. For CTF, the lowest scores of essential proteins are 21.36 in DIP (1167th), 
21.2 in Krogan (929th), and 23.355 in Gavin (714th). The average of the lowest scores is 
21.97 in three datasets. Therefore, we take 22 as the threshold for CTF.

If we only use the threshold to choose essential proteins, for some datasets, the 
size of the candidate set may be inappropriate. Therefore, the evaluation model of 
this paper is described as follows. Let s be the number of the essential candidates 
chosen by a threshold and r be 25% of the size of the dataset, then we choose the 

(8)SN =
TP

TP + FN

(9)SP =
TN

TN + FP

(10)PPV =
TP

TP + FP

(11)NPV =
TN

TN + FN

(12)F =
2× SN × PPV

SN + PPV

(13)ACC =
TP + TN

TP + TN + FP + FN

Table 3  Multiple biological datasets used for evaluating the performance of CTF

Data type Data source Quantity

PINs DIP, Krogan, and Gavin DIP: 24,743 interactions among 5093 
proteins

Krogan: 14,317 interactions among 3672 
proteins

Gavin: 7669 interactions among 1855 
proteins

GO annotations Saccharomyces GENOME Database 
(SGD)

42,878 GO annotations for 7014 proteins

Gene expression profiles GEO (Gene Expression Omnibus), 
GSE3431 series

36 sample sites for 6777 gene expression 
sequences

Subcellular localizations COMPARTMENTS Database 4865 proteins involved in 11 different 
localizations

Protein complexes CM270, CM425, CYC408, and CYC428 745 protein complexes containing 2167 
proteins

Orthologous information InParanoid database 100 genomes (1 prokaryote and 99 
eukaryotes)

Standard essential proteins MIPS, SGD, DEG, and SGDP Database 1285 essential proteins, including 1167 in 
DIP, 929 in Krogan, and 714 in Gavin
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top (s + r)/2 as the essential candidates. Actually, experiment results show that the 
evaluation model is better than the simple threshold model or the top k model.

We compare CTF with 14 existing methods, including MON, JDC, and LBCC on 
the DIP, Krogan, and Gavin datasets. The results are shown in Tables 4, 5 and 6.

The comparison results show that CTF outperforms the other methods on DIP 
(Table  4) and Krogan (Table  5), and CTF outperforms other methods in terms of 

Table 4  Comparison of statistical measures of CTF and other methods on the DIP dataset

Bold values indicate the best reults in contrast experiments

SN SP PPV NPV F ACC​

BC 0.3710 0.7860 0.3401 0.8079 0.3549 0.6909

NC 0.4670 0.8146 0.4281 0.8372 0.4467 0.7349

CoEWC 0.4653 0.8141 0.4266 0.8366 0.4451 0.7341

PeC 0.4225 0.8013 0.3873 0.8236 0.4041 0.7145

WDC 0.4893 0.8212 0.4485 0.8440 0.4680 0.7451

ION 0.5441 0.8372 0.4984 0.8607 0.5203 0.7701

LAC 0.4739 0.8164 0.4341 0.8392 0.4531 0.7379

LBCC 0.2464 0.7382 0.2160 0.7699 0.2302 0.6065

TEO 0.4919 0.8220 0.4509 0.8448 0.4705 0.7463

esPOS 0.5064 0.8260 0.4639 0.8492 0.4842 0.7528

TEGS 0.5176 0.8296 0.4745 0.8526 0.4951 0.7581

JDC 0.4859 0.8199 0.4451 0.8429 0.4646 0.7434

DSN 0.5287 0.8327 0.4843 0.8560 0.5055 0.7630

MON 0.5433 0.8370 0.4976 0.8604 0.5195 0.7697

CTF 0.5458 0.8609 0.5385 0.8645 0.5421 0.7887

Table 5  Comparison of statistical measures of CTF and other methods on the Krogan dataset

Bold values indicate the best reults in contrast experiments

SN SP PPV NPV F ACC​

BC 0.3628 0.7882 0.3671 0.7850 0.3649 0.6806

NC 0.4273 0.8101 0.4325 0.8068 0.4299 0.7132

CoEWC 0.4306 0.8112 0.4357 0.8079 0.4331 0.7149

PeC 0.4263 0.8097 0.4314 0.8065 0.4288 0.7127

WDC 0.4607 0.8214 0.4662 0.8181 0.4635 0.7301

ION 0.5371 0.8472 0.5436 0.8439 0.5403 0.7688

LAC 0.4284 0.8104 0.4336 0.8072 0.4310 0.7138

LBCC 0.4639 0.8225 0.4695 0.8192 0.4667 0.7318

TEO 0.4510 0.8181 0.4564 0.8148 0.4537 0.7252

esPOS 0.4672 0.8236 0.4728 0.8203 0.4700 0.7334

TEGS 0.4833 0.8290 0.4891 0.8257 0.4862 0.7416

JDC 0.4553 0.8195 0.4608 0.8163 0.4580 0.7274

DSN 0.4952 0.8330 0.5011 0.8297 0.4981 0.7475

MON 0.5274 0.8440 0.5338 0.8406 0.5306 0.7639

CTF 0.5447 0.8611 0.5705 0.8481 0.5573 0.7810
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three measures, namely, SN, NPV, and F-measure on Gavin (Table 6). Therefore, the 
CTF method has better performance than the other existing methods.  

Comparisons of top k proteins

Similar to most comparisons, we also carry out comparisons of the top k pro-
teins between CTF and other methods. We first rank proteins by essential scores in  

Table 6  Comparison of statistical measures of CTF and other methods on the Gavin dataset

Bold values indicate the best reults in contrast experiments

SN SP PPV NPV F ACC​

BC 0.2815 0.7695 0.4332 0.6312 0.3413 0.5817

NC 0.3796 0.8309 0.5841 0.6815 0.4601 0.6571

CoEWC 0.3880 0.8361 0.5970 0.6858 0.4703 0.6636

PeC 0.3922 0.8387 0.6034 0.6880 0.4754 0.6668

WDC 0.4076 0.8484 0.6272 0.6959 0.4941 0.6787

ION 0.4314 0.8633 0.6638 0.7081 0.5229 0.697

LAC 0.3824 0.8326 0.5884 0.6830 0.4635 0.6593

LBCC 0.3810 0.8317 0.5862 0.6822 0.4618 0.6582

TEO 0.4398 0.8685 0.6767 0.7124 0.5331 0.7035

esPOS 0.3978 0.8422 0.6121 0.6909 0.4822 0.6712

TEGS 0.4258 0.8598 0.6552 0.7052 0.5161 0.6927

JDC 0.2577 0.7546 0.3966 0.6190 0.3124 0.5633

DSN 0.4510 0.8755 0.6940 0.7182 0.5467 0.7121

MON 0.4720 0.8887 0.7263 0.7290 0.5722 0.7283
CTF 0.5630 0.7932 0.6301 0.7436 0.5947 0.7046

Table 7  Number of proteins accurately predicted by CTF and 16 other compared methods on the 
DIP dataset

Bold values indicate the best reults in contrast experiments

TOP k 100 200 300 400 500 600

NC 55 126 182 230 279 309

PeC 75 138 200 247 286 328

WDC 70 132 188 246 298 340

ION 78 155 220 276 330 379

CoEWC 80 133 182 234 276 316

LAC 59 120 176 228 266 306

GEG 80 160 214 261 300 334

SON 81 153 224 282 340 389

LBCC 74 135 205 262 308 361

TEO 82 153 218 276 320 365

esPOS 85 155 211 268 320 362

TEGS 82 163 234 289 345 397

JDC 80 153 224 267 315 355

DSN 92 179 248 298 340 391

MON 90 173 244 306 358 411

GEGSO 86 172 245 314 370 432
CTF 2nd 91 4th 167 4th 242 1st 314 1st 374 2nd 422
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descending order, then choose the top k proteins as essential candidates and determine 
how many of these are essential.

To evaluate the performance of CTF, we compare it with 16 methods, namely, NC, 
PeC, WDC, ION, CoEWC, LAC, GEG, SON, LBCC, TEO, esPOS, TEGS, JDC, DSN, 

Table 8  Number of proteins accurately predicted by CTF and 16 other compared methods on the 
Krogan dataset

Bold values indicate the best reults in contrast experiments

TOP k 100 200 300 400 500 600

NC 66 131 184 220 272 305

PeC 80 137 183 221 261 300

WDC 72 136 199 242 274 315

ION 79 154 210 261 313 370

CoEWC 74 131 174 217 257 296

LAC 73 134 180 218 261 299

GEG 72 144 195 244 279 317

SON 84 158 215 275 329 374

LBCC 63 130 190 243 289 319

TEO 72 150 210 253 295 326

esPOS 72 131 189 236 272 315

TEGS 74 151 211 261 301 341

JDC 74 148 199 242 285 319

DSN 91 164 216 272 313 349

MON 88 166 232 292 343 390

GEGSO 81 156 217 280 335 381

CTF 3rd 85 4th 157 1st 236 1st 307 1st 367 1st 408

Table 9  Number of proteins accurately predicted by CTF and 16 other compared methods on the 
Gavin dataset

Bold values indicate the best reults in contrast experiments

TOP k 100 200 300 400 500 600

NC 33 106 175 232 293 349

PeC 44 125 201 249 292 325

WDC 41 119 195 252 311 356

ION 45 126 202 264 325 372

CoEWC 44 122 196 250 291 329

LAC 27 109 178 235 297 341

GEG 51 131 206 256 301 341

SON 82 166 235 295 336 382

LBCC 38 113 176 235 285 321

TEO 43 120 203 275 332 367

esPOS 38 112 181 254 298 354

TEGS 49 126 204 268 317 362

JDC 42 85 123 158 197 231

DSN 95 174 234 291 340 384

MON 92 170 242 299 353 398
GEGSO 48 130 205 277 324 387

CTF 3rd 89 4th 164 4th 231 2nd 296 2nd 342 2nd 389
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MON, and GEGSO on the DIP, Krogan, and Gavin datasets. The results are listed 
in Table  7, Table  8, and Table  9, in which the number of essential proteins in the top 
k-ranked proteins is shown, where k is set to 100, 200, 300, 400, 500, and 600. The results 
show that CTF outperforms the other compared methods in more than half of all cases.

Comparison of ROC and PR curves

ROC and PR curves are commonly used to visually evaluate the performance of iden-
tification methods. A ROC curve is a graphical plot created by plotting the true posi-
tive rate (TPR, also called the sensitivity (SN), represented as Eq. (8)) against the false 
positive rate (FPR, represented as Eq. (14)), and a PR curve is a graphical plot created by 
plotting the TPR against the PPV.

As stated above, the proteins obtained by the methods are ranked by their scores in 
descending order. We choose the score of the kth protein as the threshold for CTF. The 
top k proteins are put into the positive set, which is the candidate set of essential pro-
teins, and the others are put into the negative set, which is the candidate set of non-
essential proteins, where 1 ≤ k ≤ 5093 on the DIP data, 1 ≤ k ≤ 3672 on the Krogan 
data, and 1 ≤ k ≤ 1855 on the Gavin data. Then, the values of TPR, FPR, and PPV are 
calculated and plotted in the ROC and PR curves.

The area under the ROC or PR curve (AUC) is a measure used to evaluate the perfor-
mance of identification methods. In general, a larger AUC value means better identifica-
tion performance. The AUC values of ROC and PR for CTF and other existing methods 
are illustrated in Fig. 5.

Figure 5 indicates that CTF is very effective. In ROC analysis, CTF (blue) outperforms 
the other existing methods on three datasets as shown in Fig. 5a–c, and for PR analysis, 
CTF (blue) also outperforms the other existing methods on DIP and Krogan as shown in 
Fig. 5d and e. CTF has good performance on Gavin as shown in Fig. 5f. From the annota-
tion numbers in Fig. 5, the values of AUC for CTF are significantly higher than the other 
existing methods.

Ablation study

To elucidate the contributions of the CTF method, we perform an ablation study to 
investigate whether the EWCT-based measure TS and the usage of DPINs provide 
improvements in the identification performance. For investigating the effect of TS, 
we only use TS scores to identify essential proteins, and for investigating the effect of 
DPINs, we use static PINs instead of DPINs to compute the TS scores of the proteins.

Effect of the EWCT‑based measure TS

To investigate the effects of the TS measure, we conduct an ablation study by removing 
three scores, namely, IDC, SCIS, and NOS, from CTF, that is, only use the topological 
scores computed by TS to identify the essential proteins and compare the results with 

(14)FPR =
FP

FP + TN
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Fig. 5  Comparison of AOC and PR curves of CTF and 11 methods based on DIP and Krogan and 10 methods 
based on Gavin
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other centrality measures, such as BC, SC, and LAC. The results in Tables  10 and 11 
show that TS can identify more essential proteins than the other five centrality measures 
in most cases (83%) on static PINs and in all cases on DPINs. That is, TS outperforms 
other centrality measures, such as BC, SC, and LAC.

Table 10  Comparison of six centrality measures used to identify essential proteins on static PINs

Bold values indicate the best reults in contrast experiments

EWCT​ DC BC CC NC LAC

DIP (TOP k) 100 2nd 55 46 44 41 55 59
200 2nd 120 82 77 79 126 120

300 1st 182 115 112 117 182 176

400 1st 235 158 145 153 230 228

500 1st 286 201 177 189 279 266

600 1st 333 251 220 228 309 306

Krogan (TOP k) 100 3rd 65 51 44 44 66 73
200 1st 134 102 91 76 131 134

300 1st 184 138 127 115 184 180

400 1st 235 190 167 152 220 218

500 1st 277 235 212 187 272 261

600 1st 314 271 240 221 305 299

Gavin (TOP k) 100 1st 76 38 44 48 33 27

200 1st 152 104 91 96 106 109

300 1st 217 172 127 150 175 178

400 1st 281 242 167 189 232 235

500 1st 336 281 212 236 293 297

600 1st 375 325 240 282 349 341

Table 11  Comparison of six centrality measures used to identify essential proteins on DPINs

Bold values indicate the best reults in contrast experiments

EWCT​ DC BC CC NC LAC

DIP (TOP k) 100 1st 74 43 43 30 55 71

200 1st 145 93 78 60 123 127

300 1st 209 140 103 92 184 181

400 1st 261 178 140 119 236 223

500 1st 308 223 177 144 279 267

600 1st 357 269 215 175 316 323

Krogan (TOP k) 100 1st 70 62 48 41 69 67

200 1st 138 108 95 83 133 118

300 1st 192 156 131 123 180 182

400 1st 241 202 177 156 229 231

500 1st 285 246 210 181 267 272

600 1st 321 281 248 224 310 311

Gavin (TOP k) 100 1st 79 36 43 49 25 28

200 1st 156 102 92 96 92 95

300 1st 222 165 132 151 157 165

400 1st 293 239 172 199 205 232

500 1st 336 294 213 248 264 288
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Further analysis indicates that there are some proteins identified as essential proteins 
by the TS measure but non-essential proteins by other centrality measures, such as BC, 
SC, and LAC. The common feature of these proteins is that they have low connectivity 
(degrees), but rich triangle graphlets formed by their second-order nearest neighbors. 
For example, as shown in Fig. 6, the proteins YPL217C in DIP, YAL034W-A in Gavin, 
and YHR065C in Krogan are identified as essential by TS but non-essential by BC, SC, 
and LAC.

Effect of DPINs

To demonstrate the effect of DPINs on the performance of CTF, we constructed ablation 
experiments, which use DPINs and static PINs to identify essential proteins. As shown 
in Table  12, when using DPINs, CTF can identify more essential proteins than using 
static PINs, that is, the results show that DPINs play an important role in the perfor-
mance of CTF.

Fig. 6  Essential proteins identified by TS and their neighbor structures while ignored by the other centrality 
measures

Table 12  Ablation experiments on DPINs and static PINs

Bold values indicate the best reults in contrast experiments

DIP Krogan Gavin

DPIN 637 506 402
Static PIN 602 501 395



Page 21 of 24Liu et al. BMC Bioinformatics          (2023) 24:203 	

Parameter settings

To balance the weight of the different components in CTF for improving accuracy, a 
proportional parameter α ∈ (0.1, 0.9) is adopted. As shown in Table 13, the number of 
essential proteins in top k proteins is shown, where k is set to 100, 200, 300, 400, 500, and 
600 on the three datasets, and α is set to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. The 
highest number of essential proteins is shown in bold in Table 13 in each case. From the 
numbers in Table 13, we find that the best performance of CTF is achieved when α is set 
to 0.4.

Conclusion
Essential proteins are very important for living organism survival, disease diagnosis and 
treatment, and drug design. The massively increasing number of PINs has enabled us to 
identify essential proteins using computing methods. To further improve the accuracy 
of identification, better centrality measures and the fusion of biological information are 
two crucial techniques.

In this paper, we presented the CTF method, based on h-quasi-cliques, uv-triangle 
graphs, and the fusion of three kinds of biological information. CTF first constructs an 
edge-weighted PIN to compute the topological scores of proteins and then computes 
the other three essential scores on the basis of three kinds of biological information. 
The analysis and experiments indicate that CTF has the following advantages. First, our 
method proposes the EWCT function for constructing an edge-weighted PIN used to 
compute the topological scores of proteins based on h-quasi-cliques, uv-triangle graph, 
and GO annotations. EWCT provides a deep insight into the inherent topological 

Table 13  Effects of different α values, α ∈ (0.1–0.9)

Bold values indicate the best reults in contrast experiments

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DIP (TOP k) 100 72 81 87 91 92 89 87 86 83

200 139 156 165 167 172 172 170 163 159

300 209 227 239 242 242 243 245 238 234

400 275 301 308 314 311 309 305 301 301

500 335 360 372 374 374 371 360 353 346

600 392 412 422 422 425 423 415 407 391

Krogan (TOP k) 100 75 83 85 85 81 78 79 76 75

200 146 161 166 157 155 155 151 146 144

300 218 236 241 236 235 228 222 216 212

400 279 303 311 307 304 290 281 272 261

500 337 352 362 367 359 351 343 324 307

600 387 394 396 408 412 411 402 383 358

Gavin (TOP k) 100 78 81 86 89 86 78 65 55 48

200 146 160 163 164 155 134 131 128 124

300 222 225 231 231 213 213 210 206 202

400 282 294 294 296 277 279 279 275 264

500 334 344 344 342 339 333 332 327 326

600 369 380 387 389 383 389 388 375 377
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features of essential proteins. Second, to reduce the noise in PINs, CTF constructs an 
edge-weighted PIN using DPINs. In addition, CTF further upgrades the accuracy of 
identification through the fusion of three kinds of biological information. The experi-
ment results on three PIN datasets show that CTF has substantially higher performance 
in terms of six statistical measures, including sensitivity, specificity, and F-measure, than 
other existing methods.

A well-defined centrality measure based on the topological features of PINs is still a 
very important issue, and to denoise PINs is another important issue. In future work, 
we plan to design better centrality measures and denoise PINs for identifying essential 
proteins.
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