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Abstract 

Background:  Alimentary tract malignancies (ATM) caused nearly one-third of all 
tumor-related death. Cuproptosis is a newly identified cell death pattern. The role of 
cuproptosis-associated lncRNAs in ATM is unknown.

Method:  Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omni-
bus (GEO) databases were used to identify prognostic lncRNAs by Cox regression and 
LASSO. Then a predictive nomogram was constructed based on seven prognostic lncR-
NAs. In addition, the prognostic potential of the seven-lncRNA signature was verified 
via survival analysis, the receiver operating characteristic (ROC) curve, calibration curve, 
and clinicopathologic characteristics correlation analysis. Furthermore, we explored 
the associations between the signature risk score and immune landscape, and somatic 
gene mutation.

Results:  We identified 1211 cuproptosis-related lncRNAs and seven survival-related 
lncRNAs. Patients were categorized into high-risk and low-risk groups with significantly 
different prognoses. ROC and calibration curve confirmed the good prediction capabil-
ity of the risk model and nomogram. Somatic mutations between the two groups were 
compared. We also found that patients in the two groups responded differently to 
immune checkpoint inhibitors and immunotherapy.

Conclusion:  The proposed novel seven lncRNAs nomogram could predict prognosis 
and guide treatment of ATM. Further research was required to validate the nomogram.

Keywords:  Cuproptosis, Long non-coding RNA, Prognosis, Immune infiltration, 
Alimentary tract malignancies

Introduction
Alimentary tract malignancies (ATM), comprising a spectrum of cancers occurring in the 
digestive tract, have seriously endangered public health and human life [1]. Arnold et al. 
reported the mortality of gastric (approximately 1.0 million new cases in 2018), esophagus 
(570,000 cases), and colorectum (1.8 million cases) cancer, which caused nearly one-third of 
all tumor-related deaths [2]. The alimentary tract, from the oropharynx to the anal canal, is 
closely related in mainly organ functions and development, suggesting common etiological 
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pathways and mechanisms. However, the mechanisms of digestive tract tumorigenicity in 
common remain to be explored.

There is currently no efficient and established early-stage screening protocol for ATM 
patients. As a result, many patients are in the middle and advanced stages when they are 
diagnosed [2]. The average survival duration of individuals with advanced ATM continues 
to be extremely low, despite advancements in several therapy approaches. Therefore, it is 
essential to explore a reliable prognostic signature to predict the prognosis of ATM patients 
and direct clinical practice.

According to Science, a novel type of cell death known as cuproptosis is brought on by an 
excessive buildup of copper. Copper causes toxic protein stress and, as a result, cell death 
by binding specifically to lipoylated parts of the tricarboxylic acid (TCA) cycle [3]. A trace 
element called copper is essential for many biological activities. Key elements of the course 
of cancer, including angiogenesis, metastasis, and proliferation, are influenced by copper 
buildup [4, 5]. Growing research over the past few years has demonstrated that copper 
homeostasis dysregulation may influence the onset and development of ATM. Jacinta et al. 
demonstrated that copper played a significant part in the biological activity that was seen 
to be amplified after being associated with a lipid-based nanosystem for the treatment of 
colorectal cancer [6]. Rebecca et al. used a multi-technology strategy to examine the mech-
anism of sensitivity in esophageal cancer to copper-dependent cell death, which could be 
targeted in the future [7]. In another study, Du et al. presented that disulfiram (DSF) was 
highly toxic to gastric cancer cells in a copper-dependent manner. And DSF/Cu exerted 
antitumor activity against gastric cancer cells in vitro and in vivo [8].

Long non-coding RNAs (lncRNAs) are a subset of untranslated RNAs that comprise 
more than 200 nucleotides [9]. Growing data reveals that lncRNAs have the capacity to 
control tumor metastasis, cancer immunity, and programmed cell death in recent years 
[10–13]. Additionally, fresh possible prognostic markers known as lncRNAs have been dis-
covered for ATM patients [14, 15]. Sun et al. explored the lncRNA-mRNA regulatory net-
works in ATM progression and performed bioinformatic analysis, indicating that THBS2 
was a potential key regulator and therapeutic target [16]. Hu et al. reported that lncRNA 
EGFR-AS1 could regulate the expression of EGFR via heightening EGFR mRNA stability to 
active phosphatidylinositol-3 kinase (PI3K)/AKT pathway for the furtherance of the malig-
nant progression of ATM [17]. Besides, Hao et al. identified immune-related lncRNA pairs 
and constructed a predictive nomogram, which demonstrated good predictive ability [18]. 
Nevertheless, research on cuproptosis-related lncRNAs in ATM is still limited.

Given that integrated analyses usually emphasized cancer heterogenicity, this study tried 
another view of homogeneity of cancer prognosis, immunological landscape, and somatic 
gene mutation. By using bioinformatics analysis, we identified novel cuproptosis-related 
risk lncRNAs and constructed a predictive model of digestive tract cancers, which could 
eventually guide doctors to make better clinical decisions.

Materials and methods
TCGA and GEO data

We downloaded RNA sequencing (RNA-seq), expression files, and mutation files from 
the Cancer Genome Atlas (TCGA) database (https://​portal.​gdc.​cancer.​gov/​repos​itory), 
including 375 tumor samples and 32 normal samples in STAD, 163 tumor samples and 

https://portal.gdc.cancer.gov/repository
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11 normal samples in ESCA, 480 tumor samples and 41 normal samples in COAD, 
and 167 tumor samples and 10 normal samples in READ. These data were arranged 
in accordance with TCGA procedures and combined into transcripts per million data 
(TPM). GSE40967, GSE53622, and GSE84437 from the Gene Expression Omnibus 
(GEO) database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) were downloaded and used as an 
external validation cohort.

Identification of cuproptosis‑related lncRNAs

A list of 16 cuproptosis regulators was retrieved from the lipoylated TCA cycle pathway 
of copper-induced cell death (FDX1, LIPTI, LIAS, DLD, MTF1, GLS, CDKN2A, DLAT, 
PDHA1, PDHB, DBT, GCSH, and DLST) [3] and copper transport protein (SLC31A1, 
ATP7A, and ATP7B) [19, 20].

The co-expression analysis between lncRNAs and cuproptosis-related genes was then 
carried out (|cor|> 0.4 and p < 0.001). The "DEseq2" package was used to identify lncR-
NAs that were differentially expressed between tumor and normal samples. The follow-
ing requirements were met by differentially expressed lncRNAs: p < 0.05 and (log2FC|> 1 
(FC, fold change). A Sankey diagram was mapped to assess the degree of association 
between genes involved in cuproptosis and lncRNAs.

Cuproptosis‑related lncRNAs signature for ATM prognosis

To create and validate the cuproptosis-associated lncRNAs signatures, the overall 
patients were randomly divided into either the training cohort or the test cohort in a 7:3 
ratio. Univariate Cox regression analysis was initially applied to identify the risk lncR-
NAs. The LASSO regression analysis based on tenfold cross-validation was then used to 
reduce the overfitting effect. Finally, the multivariate Cox regression analysis was used to 
identify the best prognostic signs.

We then created a risk score algorithm for ATM by calculating the relevant coefficients 
for the risk lncRNAs. The risk score for each patient was calculated using the following 
formula: Risk score = ∑ coefi*αi, where αi and coefi denoted the expression level of each 
prognostic lncRNA and its accompanying coefficient.

Validation of the lncRNA risk model

Based on the median risk score cutoff, patients in each cohort were divided into low-
risk and high-risk groups. Using the "survminer" R package, the Kaplan–Meier survival 
analysis was used to compare the overall survival (OS) between two risk cohorts. The 
receiver operating characteristic (ROC) curve was constructed to evaluate the prognos-
tic accuracy of our risk signatures. A principal component analysis (PCA) analysis was 
used to examine the distribution of high-risk and low-risk groupings. The prognostic 
signatures were analyzed both within the testing cohort and across the full cohort to 
determine the model’s viability. The risk score and clinicopathologic parameters were 
subjected to univariate and multivariate Cox regression analysis to ascertain the inde-
pendence of the cuproptosis-related lncRNAs signature (gender, age, grade, and TNM 
stage). To determine whether the signature maintained its predictive power in patient 
subgroups, stratified analysis was performed in the end.

https://www.ncbi.nlm.nih.gov/geo/
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Establishment and assessment of the nomogram

The signatures and clinical data were incorporated into the suggested prediction 
nomogram. Then, ROC curves were employed to assess the predictive ability of the 
nomogram at 1-, 3-, and 5-year. The 1-, 3-, and 5-year calibration plots (1000 boot-
strap resamples) were displayed to compare the projected overall survival with what 
was observed in the research. The 45-degree line was shown to be the best prediction.

Functional and pathway enrichment

The "limma" package was used to find the differentially expressed genes (DEGs) 
between low- and high-risk groups. The following requirements were met by DEGs: 
false discovery rate (FDR) < 0.05 and |log2FC|≥ 1. The "clusterProfiler" package was 
used to conduct functional and pathway enrichment studies using the Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases [21]. Addi-
tionally, the top six important pathways in the high-risk and low-risk subgroups were 
found using the gene set enrichment analysis (GSEA) [22].

Immunoassay

We used seven algorithms to investigate the relationship between the risk score 
and tumor-infiltrating immune cells, namely, CIBERSORT [23], CIBERSORT-ABS 
[23], EPIC [24], MCPcounter [25], quanTIseq [26], TIMER [27], and xCell [28]. The 
normalized enrichment score (NES)  was utilized to produce individual enrichment 
scores for immunological pathways using single-sample GSEA (ssGSEA). The level of 
coordinated regulation of the genes within a sample was indicated by each ssGSEA 
enrichment score. Next, the immune checkpoint gene expression was investigated. 
Finally, the tumor immune dysfunction and exclusion (TIDE) algorithm was used to 
detect T cell malfunction signatures and signatures that excluded T cell infiltration 
into tumors to predict the therapeutic response of immune checkpoint blockades 
(ICBs) [29].

Tumor mutation burden

Additionally, the TCGA Somatic Mutation Database was used to retrieve the data on 
somatic mutations for the ATM samples. We examined the tumor mutational burden 
(TMB) in both groups using the "maftools" package. The whole population was sepa-
rated into high-TMB and low-TMB subsets by median TMB, and the Kaplan–Meier 
survival curve was presented for each group.

Statistical analyses

R software (version 4.2.1) and Strawberry Perl (version 5.3.1) were used to perform all 
statistical analyses. P < 0.05 was regarded as statistical significance.

Results
Identification of cuproptosis‑regulated lncRNAs

The workflow of this project was presented in Fig.  1. From the TCGA database, 
RNA-sequencing information and clinical annotation for ATM were retrieved. In a 
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recent publication, 16 cuproptosis regulators were identified in the lipoylated TCA 
cycle pathway of copper-induced cell death (Additional file 1: Table S1). The Ensembl 
gene annotation dataset discovered 16,901 lncRNAs and 19,962 mRNAs altogether. 
Based on the Pearson correlation analysis (|cor|> 0.4 and p < 0.001), 1211 cuproptosis-
related lncRNAs were discovered. The co-expression network between the cuprop-
tosis-associated lncRNAs and cuproptosis genes was then presented by the Sankey 
plot (Fig.  2A). Then, using the criterion of p < 0.05 and (log2FC|> 1, 174 differen-
tially expressed lncRNAs between normal and cancer samples were chosen for addi-
tional study (Fig. 2B). 118 of these genes showed an upregulation, while 56 showed a 
downregulation.

Risk model

We randomly divided all ATM cases into the training set and the internal vali-
dation set at a 7:3 ratio. The training set was used to create the model, and the 
internal validation set was used to validate the model. The chi-square test revealed 
that the demographic and clinicopathologic characteristics of the two groups 
were comparable (Table  1). First, 138 lncRNAs that were significantly linked 
with the OS (p < 0.05) were originally screened using a univariate Cox propor-
tional hazard regression analysis. Then 16 lncRNAs were retrieved by LASSO 
regression analysis (Fig.  2C, D). Finally, using the multivariate Cox regres-
sion model analysis, seven lncRNAs (AC016737.1, AC048344.4, AL590483.4, 
GK-IT1, LINC01555, SETBP1-DT, and SNHG4) were obtained for creating 
the ideal prognostic signature (Fig.  2E). The risk score was calculated as fol-
lows: risk score = (0.3505 × AC016737.1 expression) + (0.1843 × AC048344.4 

Fig. 1  The process of the study
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expression) + (− 0.3853 × AL590483.4 expression) + (0.1398 × GK-IT1 expres-
sion) + (− 0.3871 × LINC01555 expression) + (0.1955 × SETBP1-DT expres-
sion) + (− 0.1491 × SNHG4 expression). The heatmap showed a close correlation 
between the seven risk lncRNAs and cuproptosis genes (Fig. 2F).

In the training, internal validation, and overall sets, the samples were regrouped into 
high-risk and low-risk groups based on the median risk scores (Fig. 3). The distribution 
of risk scores, survival time patterns, survival status, and the associated expression of 
seven risk lncRNAs were validated in the three groups. For all three analysis groups, 
the same trend results were observed. The Kaplan–Meier curves showed better survival 
in the low-risk group than in the high-risk group (all p < 0.001) (Fig.  3A–C). The risk 

Fig. 2  Identification of prognostic cuproptosis-related lncRNAs in ATM. A The Sankey diagram of 
the relationship between cuproptosis-related lncRNAs and genes. B The volcano plot of differentially 
expressed cuproptosis-related lncRNAs between normal and cancer samples. C, D LASSO regression 
algorithm identified the risk model. E The seven risk lncRNAs prognostic signature. F Correlation between 
cuproptosis-associated genes and risk lncRNAs in the TCGA-ATM cohort. Each unit’s color indicated the level 
of association. *p < 0.05, **p < 0.01, and ***p < 0.001
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curves and scatterplots showed that samples in high-risk groups had significantly higher 
mortality rates (Fig.  3D–I). The heatmap showed that three protective lncRNAs were 
noticeably downregulated whereas four risk lncRNAs were noticeably increased in the 
high-risk group (Fig. 3J–L). These all suggested that the risk prediction model demon-
strated a good capacity for prediction.

Assessment of the risk model

To determine if the risk score may function as an independent prognostic factor for 
ATM, univariate and multivariate Cox regression analyses were used. Age, gender, 
grade, stage, and risk score were all positively correlated with the prognosis of ATM 
in the entire sample, according to the results of the univariate Cox regression analysis 

Table 1  The basic characteristics of ATM patients in the training and validation groups

Characteristics All Training Validation P value
N = 1154 N = 808 N = 346

CancerType 0.195

COAD 455 (39.4%) 331 (41.0%) 124 (35.8%)

ESCA 163 (14.1%) 106 (13.1%) 57 (16.5%)

READ 166 (14.4%) 110 (13.6%) 56 (16.2%)

STAD 370 (32.1%) 261 (32.3%) 109 (31.5%)

Age 0.264

≤ 65 535 (46.5%) 365 (45.3%) 170 (49.1%)

> 65 616 (53.5%) 440 (54.7%) 176 (50.9%)

Gender 0.466

FEMALE 447 (38.7%) 319 (39.5%) 128 (37.0%)

MALE 707 (61.3%) 489 (60.5%) 218 (63.0%)

Grade 0.595

G1 26 (5.3%) 17 (5.1%) 9 (5.8%)

G2 200 (41.0%) 132 (39.6%) 68 (43.9%)

G3 262 (53.7%) 184 (55.3%) 78 (50.3%)

Stage 0.388

I 171 (15.7%) 112 (14.6%) 59 (18.4%)

II 406 (37.3%) 285 (37.1%) 121 (37.7%)

III 378 (34.7%) 274 (35.7%) 104 (32.4%)

IV 134 (12.3%) 97 (12.6%) 37 (11.5%)

T 0.072

T1 65 (5.8%) 48 (6.1%) 17 (5.1%)

T2 220 (19.6%) 139 (17.6%) 81 (24.3%)

T3 667 (59.3%) 477 (60.3%) 190 (56.9%)

T4 173 (15.4%) 127 (16.1%) 46 (13.8%)

N 0.467

N0 524 (47.1%) 361 (46.0%) 163 (49.5%)

N1 310 (27.9%) 226 (28.8%) 84 (25.5%)

N2 199 (17.9%) 137 (17.5%) 62 (18.8%)

N3 80 (7.2%) 60 (7.7%) 20 (6.1%)

M 0.362

M0 906 (88.3%) 631 (87.6%) 275 (89.9%)

M1 120 (11.7%) 89 (12.4%) 31 (10.1%)
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(p < 0.001). (Fig.  4A; Additional file  2: Table  S2). Age, stage, and risk score were also 
shown to be independent prognostic factors in ATM by the multivariate Cox regression 
analysis (p < 0.05) (Fig. 4B; Additional file 2: Table S2). In the univariate and multivariate 
analyses, the HR values for risk scores were 1.732 (1.559–1.925) and 1.314 (1.092–1.582).

The predictive power of the risk signature for the OS was evaluated using the ROC 
curve. At 1-, 3-, and 5-year, this risk score’s predictive ability was strong (Fig. 4C). When 
compared to other clinicopathologic variables, the AUC associated with the risk score 
was the highest (Fig. 4D). Additionally, we investigated how the risk model affected vari-
ous subgroups using Kaplan–Meier curves, which showed good performance in most 
subgroups (p < 0.05) (Additional file 5: Fig. S1). Above all, our findings showed that the 
risk score based on the signatures of the seven risk lncRNAs was useful for prognostic 
analysis.

Nomogram

We created a nomogram based on the training cohort to compute the overall survival 
rate of 1-, 3-, and 5-year  using the risk score in combination with clinicopathological 
variables such as age, gender, grade, and stage (Fig. 5A). The nomogram’s AUC values for 
the 1-, 3-, and 5-year periods were 0.728, 0.765, and 0.741, respectively, demonstrating 
its strong predictive power (Fig. 5B). The calibration plots showed good agreement for 
the accuracy of 1-, 3-, and 5-year overall survival prediction (Fig. 5C). The nomogram 
displayed a greater AUC compared to the single parameter in the model. Then the model 

Fig. 3  Prognosis capability of the model in the three patient sets. Kaplan–Meier survival analysis for OS (A–C), 
risk score distribution (D–F), the OS statuses (G–I), and heat maps of the seven CRLs (J–L) of the high-risk and 
low-risk cohorts in the training, testing, and entire subsets
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Fig. 4  Validation of the model. A, B Uni-Cox and multi-Cox analyses of OS for risk score, gender, age, stage, 
and grade. C Time-dependent ROC curve analyses of the risk score model at 1-, 3-, and 5-year. D Comparison 
of the ROC curves of the nomogram, risk score, gender, age, stage, and grade

Fig. 5  A Nomogram for survival prediction. B, C The ROC curves and calibration curves in the training cohort. 
D, E The ROC curves and calibration curves in the external validation cohort
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was verified by using samples from the GEO cohort. The results indicated ideal predic-
tive ability in external validation (Fig. 5D, E).

PCA and biological pathways analyses

PCA was used to analyze the aggregation characteristics of the low-risk and high-risk 
sets. The outcomes presented that risk lncRNAs had superior classification capacity than 
all genes, cuproptosis regulators, and cuproptosis-related lncRNAs (Fig. 6A–C).

DEGs with the cut-off criteria of log2|FC|> 1 and FDR < 0.05 were chosen to further 
investigate the variations in biological processes and signaling pathways in the two 
groups. The GO analysis indicated that DEGs were involved in epidermal cell differenti-
ation, anterior/posterior pattern specification, epidermis development, embryonic organ 
development, regionalization, and pattern specification process in the biological process 
(BP) category. The apical part of cell, cornified envelope, apical plasma membrane, Golgi 
lumen, anchored component of membrane, and keratin filament were enriched in DEGs 
at the cell component (CC) category. Besides, DEGs were mainly correlated with the bile 

Fig. 6  PCA, GO, and KEGG analyses. A–C 3D scatter plots of the sample distribution. D, E GO analysis of 
biological processes, cellular components, and molecular functions. F, G KEGG analysis of different signaling 
pathways



Page 11 of 18Xie et al. BMC Bioinformatics          (2023) 24:184 	

acid binding, oxidoreductase activity, structural constituent of skin epidermis, extracel-
lular matrix structural constituent, and DNA-binding transcription activator activity for 
the molecular function (MF) category (Fig. 6D, E; Additional file 3: Table S3).

In the KEGG analysis, these DEGs presented more enrichment in signaling pathways 
regulating pluripotency of stem cells, pancreatic secretion, staphylococcus aureus infec-
tion, steroid hormone biosynthesis, and protein digestion and absorption (Fig.  6F, G; 
Additional file 4: Table S4).

To compare the variations in biological processes and pathways between the high-risk 
and low-risk categories, we further conducted GSEA analyses (Additional file  5: Figs. 
S2, S3). The findings showed that the low-risk group had higher levels of base excision 
repair, citrate cycle, TCA cycle, oxidative phosphorylation, peroxisome, and ribosome. 
In the high-risk group, linoleic acid metabolism was enhanced.

Correlation analysis between risk scores and gene mutations

The somatic mutations between the two groups were contrasted. TP53, TTN, APC, 
MUC16, SYNE1, KRAS, LRP1B, PIK3CA, FAT4, and CSMD3 were the ten most fre-
quently altered genes. The low-risk set had more frequent TP53, APC, and KRAS 
mutations (Fig. 7A, B). And the alternation of APC mutation frequency was the most 
significant (from 13% in the high-risk group to 73% in the low-risk group). Detailed 
information on somatic mutation was presented in Fig.  7C and D. Then the relation-
ship between TMB and risk sets was investigated. The result indicated no significant dif-
ference in TMB in low-risk and high-risk sets (Fig.  7E). The ATM patients were then 
separated into low-mutation and high-mutation categories by median TMB. According 

Fig. 7  Somatic mutation analysis. Waterfall plots (A, B) and MAF-summary plots (C, D) of the somatic 
mutation profiles of two risk cohorts. E Comparison of the TMB level in the two cohorts. F Kaplan–Meier 
survival curves in the high-TMB group and low-TMB group. G Kaplan–Meier survival curves among different 
subgroups
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to the Kaplan–Meier curves, the high-mutation samples presented better survival than 
the low-mutation group (p < 0.001) (Fig. 7F). When TMB and risk scores were combined 
to evaluate the prognosis, we discovered that patients with higher TMB in the low-risk 
fraction presented the best prognosis, whereas patients with lower TMB in the high-risk 
subset had the worst survival rate (Fig. 7G).

Immune landscape of ATM patients

Immune cell infiltration research revealed a link between risk scores and tumor-infil-
trating immune cells. Immune cells were found to be closely related to high-risk ratings 
on various algorithms (Fig. 8A). According to the ssGSEA data, the high-risk group was 
abundant in immune cells such as aDCs, B cells, CD8 + T cells, DCs, macrophage, mast 
cells, neutrophils, NK cells, T helper cells, Tfh, Th1 cells, TIL, and Treg (Fig.  8B, C). 
Furthermore, immunological scores revealed that the immune function in the high-risk 

Fig. 8  Differences of the immune landscape in two risk subsets of ATM. A Bubble plot of the correlation 
between the immune infiltration and risk scores via different algorithms. B Boxplot of the immune cell 
abundance. C Heatmap of the discrepancies of immune cell abundance via the ssGSEA method. D Boxplot 
for the immune-associated functions E Comparison of the immune checkpoints genes expression F TIDE 
scores. *p < 0.05, **p < 0.01, and ***p < 0.001; ns, no significance
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group was enriched, including APC co-inhibition, check-point, cytolytic activity, inflam-
mation-promoting, T cell co-inhibition, type I IFN response, and type II IFN response 
(Fig. 8D).

Given the importance of ICIs in tumor treatment, we investigated immune check-
point genes in both groups, indicating that major checkpoint gene expression differed 
between the two groups. And more immune checkpoint expression was observed in the 
high-risk set, such as CD27, CD40, CD86, LAG3, and NRP1 (Fig. 8E). TIDE scores in 
the high-risk group were considerably higher than in the low-risk group. This suggested 
that TIDE might be used to assess ATM patients’ susceptibility to ICB therapy (Fig. 8F). 
Above all, these findings revealed that high-risk patients might be more sensitive to 
immunotherapy.

Discussion
Despite a decrease in ATM morbidity, it continues to be the world’s leading cause of 
mortality from malignant tumors today [2]. Thus, research into carcinogenesis and 
tumor growth pathways remains critical. However, most studies focus on a specific can-
cer type while providing little concrete information about the homogeneity of cancers. 
The common mechanisms of digestive tract tumorigenicity have been explored recently 
and present encouraging results [30, 31]. So, this study tried another view of the homo-
geneity of cancer development. According to Science, cuproptosis was a novel type of 
cell death, which played a critical role in the occurrence and development of ATM [3]. 
And the prognostic significance of cuproptosis-related lncRNAs in ATM hadn’t been 
investigated before. By using bioinformatics analysis, we identified novel biomarkers 
associated with clinical traits and common regulatory mechanisms of digestive tract 
cancers.

Many ATM patients are initially diagnosed in the middle or advanced stages. As a 
result, early diagnosis biomarkers and effective therapy techniques are essential for 
ATM patients. Numerous studies have shown that lncRNAs have an important role in 
the early detection of ATM. Li et al. conducted a meta-analysis of 40 original research 
articles involving 6,772 individuals, indicating that serum or plasma lncRNAs had high 
sensitivity and specificity in identifying gastric cancer [32]. Cheng et al. discovered that 
the lncRNA LINC00662 affected CLDN8/IL22 co-expression and stimulated the ERK 
signaling pathway to enhance colon cancer growth and metastasis [33]. Huang et  al. 
demonstrated that the lncRNA-encoded peptide HOXB-AS3 inhibited the growth of 
colon cancer cells [34]. Roohinejad et al. found that PVT1 and CCAT1 lncRNAs were 
great markers for the early diagnosis of ESCC, which played a critical role in cancer cell 
growth and regulation [35].

Cuproptosis, a novel mode of cell death, was recently described. It was produced by 
excessive copper binding to lipoylated components of the tricarboxylic acid (TCA) cycle, 
leading to toxic protein stress and cell death [3, 36]. Researchers discovered that cuprop-
tosis might play an important role in tumor proliferation, metastasis, and angiogenesis 
[5]. Nonetheless, the prognostic significance of cuproptosis-related lncRNAs in ATM is 
little understood. The goal of this work was to create a new cuproptosis-related lncRNAs 
profile to predict survival and tumor immunity in ATM patients.



Page 14 of 18Xie et al. BMC Bioinformatics          (2023) 24:184 

We started by downloading clinical data, transcriptome sequencing data, and survival 
data on ATM patients from the TCGA and GEO databases. Then seven risk lncRNAs 
were identified and used for signature construction. AC016737.1, GK-IT1, LINC01555, 
SETBP1-DT, and SNHG4 were proven to play critical roles in multiple malignancies 
[37–41]. The genes AC048344.4 and AL590483.4 were undocumented, and it was cur-
rently unknown what the underlying mechanism of these lncRNAs in ATM was. These 
discovered lncRNAs were intriguing targets for cancer therapy and might very well con-
tribute to the mechanism of ATM.

The risk value produced by the model, just as some recognized prognostic indicators 
like pathologic stages, could be used to independently predict the prognosis of ATM 
patients. Additionally, the risk model was more effective in predicting patient outcomes 
because it comprised only seven identified lncRNAs. The nomogram was subsequently 
approved as a technique for predicting the 1-, 3-, and 5-year OS of ATM patients. The 
congruence between the predictions made by the nomogram and the actual results was 
shown via calibration curves. Statistical investigation revealed that our prognostic signa-
ture was highly accurate and sensitive.

TMB has been shown to be an accurate predictor of the efficacy of immunotherapy 
[42, 43]. Then we analyzed the TMB landscape in both groups, and a higher level of TMB 
was discovered in the high-risk cohort. The results indicated that our signature might be 
used to identify individuals who might benefit from immunotherapy, potentially improv-
ing treatment results and reducing the risk of serious immune-related side events.

Numerous studies have shown that the tumor immunological microenvironment is 
critical in the formation and progression of ATM [44, 45]. Between the high-risk and 
low-risk groups in our investigation, the ssGSEA algorithm found a substantial differ-
ence in immune cell infiltration. These findings showed that cuproptosis was closely 
related to immune infiltration and the tumor-immune microenvironment in patients 
with ATM. A higher proportion of immune cells, such as aDCs, B cells, CD8 + T cells, 
DCs, macrophages, mast cells, neutrophils, NK cells, T helper cells, Tfh, Th1 cells, TIL, 
and Treg, were infiltrated in the high-risk fraction compared to the low-risk group. And 
patients in the low-risk group survived longer than those in the high-risk fraction. The 
findings suggested that worse survival outcomes for ATM patients were predicted by the 
enrichment of these immune cells.

Immune checkpoint inhibitors have ushered in a revolutionary age of cancer immu-
notherapy, with the potential to improve the treatment results of cancer patients [46]. 
Therefore, we investigated the differences in immune checkpoint gene expression 
between the high-risk and low-risk groups. According to the findings, immunological 
checkpoints such as CD27, CD40, CD86, LAG3, and NRP1, were more active in the 
high-risk group. Previous studies had partly explained the role of these immune check-
points in ATM patients. For example, Rhyner et al. reported that the LAG3 expression 
on tumor-infiltrating lymphocytes was significantly associated with prognosis. LAG3 
testing might aid in predicting outcomes for colon cancer patients and might help to find 
those who would benefit from adjuvant chemotherapy [47]. Additionally, gastric cancer 
and esophageal cancer were tightly linked to LAG3, which was thought to be a prospec-
tive therapeutic target for antitumor therapy [44, 48]. Above all, our signature suggested 
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that for ATM patients at higher risk, medicines targeting these immune checkpoints 
would offer a viable therapy option.

Several studies indicated the role of copper in ATM. For instance, disulfiram (DSF)/
Cu-induced formation of reactive oxygen species (ROS) resulted in the growth inhi-
bition of GC cells via glycolysis [8]. Besides, Hu et al. found that copper could induce 
autophagic cell death by targeting ULK1 in colorectal cancer [49]. Based on the GO 
and KEGG analysis, we reasonably guessed that cuproptosis might be involved in ATM 
progression by influencing the activity of apical plasma membrane and D-binding tran-
scription activator. And signaling pathways regulating pluripotency of stem cells and 
metabolism of xenobiotics by cytochrome P450 might be involved in pathway mecha-
nism in ATM development. According to the GSEA analysis, the signaling pathway of 
the citrate cycle TCA cycle was enriched in the low-risk group. Cuproptosis occurs 
when copper binds to lipoylated enzymes in the TCA cycle, causing protein aggregation, 
proteotoxic stress, and cell death. As a result, the TCA cycle might be a critical route in 
ATM copper-dependent cell death. These findings suggested inhibiting the TCA cycle 
pathway could have anti-cancer effects in ATM. Nonetheless, these findings required 
additional investigation.

The advancement of interaction prediction research in various fields of computational 
biology has provided valuable insights into genetic markers and molecular mechanisms 
[50, 51]. At present, the interactions between lncRNA and miRNA are mainly obtained 
through biological experiments, but such experiments are often time-consuming and 
labor-intensive, it is necessary to design a computational method that can predict the 
interactions between lncRNA and miRNA. Wang et  al. proposed a method based on 
graph convolutional neural and conditional random field for predicting lncRNA–miRNA 
interactions, which had an AUC value of 0.947 and presented higher prediction accu-
racy than the other methods [52]. Zhang et al. used network distance analysis to pre-
dict lncRNA–miRNA interaction, verifying the reliability of this method [53]. Besides, 
Liu et  al. established a novel matrix factorization model to predict lncRNA–miRNA 
interactions, and the model obtained reliable performance [54]. Thus, the interaction 
prediction between cuproptosis-related lncRNAs and miRNA could be investigated by 
computational biology methods in the future.

Limitation

Undoubtedly, our current research also included several limitations and flaws. First, the 
whole samples used for our signatures were obtained from the TCGA and GEO data-
bases. Second, there weren’t enough clinical samples used to validate signatures. As a 
result, additional study in the following clinical stage is required. Finally, in  vivo and 
in  vitro investigations should be conducted to investigate the underlying processes of 
how these cuproptosis-related lncRNAs influence ATM.

Conclusion
In summary, we effectively developed a novel seven lncRNAs signature with excel-
lent sensitivities and specificities to predict survival outcomes in patients with ATM. 
Furthermore, our research sheds light on how cuproptosis-related lncRNAs in ATM 
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function at the molecular level. The signature might offer direction for the customized 
treatment of ATM patients as well as aid in evaluating the effectiveness of targeted ther-
apies and immunotherapy.
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