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Abstract 

Background:  Gastric cancer is the third leading cause of death from cancer world-
wide and has a poor prognosis. Practical risk scores and prognostic models for gastric 
cancer are lacking. While immunotherapy has succeeded in some cancers, few gastric 
cancer patients benefit from immunotherapy. Immune genes and the tumor microen-
vironment (TME) are essential for cancer progression and immunotherapy response. 
However, the roles of immune genes and the tumor microenvironment in immuno-
therapy remain unclear. The study aimed to construct a prognostic prediction model 
and identify immunotherapeutic targets for gastric cancer (GC) patients by exploring 
immune genes and the tumor microenvironment.

Results:  An immune-related risk score (IRRS) model, including APOH, RNASE2, F2R, 
DEFB126, CXCL6, and CXCL3 genes, was constructed for risk stratification. Patients 
in the low-risk group, which was characterized by elevated tumor mutation burden 
(TMB) have higher survival rate. The risk level was remarkably correlated with tumor-
infiltrating immune cells (TIICs), the immune checkpoint molecule expression, and 
immunophenoscore (IPS). CXCL3 and CXCL6 were significantly upregulated in gastric 
cancer tissues compared with normal tissues using the UALCAN database and RT-qPCR. 
The nomogram showed good calibration and moderate discrimination in predicting 
overall survival (OS) at 1-, 3-, and 5- year for gastric cancer patients using risk-level and 
clinical characteristics.

Conclusion:  Our findings provided a risk stratification and prognosis prediction tool 
for gastric cancer patients and further the research into immunotherapy in gastric 
cancer.
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Introduction
Gastric cancer (GC) is an aggressive malignancy with the third-highest mortality 
rate in the world and an incidence of approximately 5.5% of all new cancer cases 
worldwide [1]. Approximately one million new cases of GC were diagnosed world-
wide in 2020 [2]. Epidemiological studies indicate that the incidence of GC in East 
Asian countries accounts for about half of all global cases [3]. Many studies have 
been conducted on the pathogenesis, diagnosis, staging, treatment, and prognosis 
of GC. However, the prognosis of GC patients remains poor [4]. There are no exist-
ing practical tools for risk stratification and prognosis prediction in patients with 
GC. Treatments for advanced GC patients, regardless of the subtypes, mainly rely 
on traditional treatment modalities, including surgery, chemotherapy, and radia-
tion therapy. The development of anti-vascular endothelial growth factor receptor 
2 (VEGFR2) antibodies and the application of immune checkpoint inhibitors (ICIs) 
indicates that immunotherapy is a promising treatment modality for GC [5]. How-
ever, the complexity of the tumor microenvironment (TME) and tumor immunity 
hinders the broader application of immunotherapy for GC [6]. Previous studies have 
explored genes closely related to GC, such as pro-angiogenic genes, suicide genes, 
et al. [7–9], but few have specifically investigated immune genes as potential targets 
for GC immunotherapy and prognosis prediction.

To fill this knowledge gap, an immune-related risk score (IRRS) model was con-
ducted using immune genes and applied to stratify GC patients. We systematically 
investigated the roles of the immune genes in GC immunotherapy and differences 
in tumor-infiltrating immune cells (TIICs), tumor mutation burden (TMB), immune 
checkpoint molecule expression level, and immunophenoscore (IPS) in the TME of 
GC patients in the high- and low- risk groups divided using the risk model. By com-
bining risk level and clinical features, a nomogram was plotted to predict the prog-
nosis of gastric cancer patients.

An innovative prognostic risk score model was proposed based on six immune 
genes, including APOH, RNASE2, F2R, DEFB126, CXCL6, and CXCL3. Advantages 
of the model compared with other prognostic models are listed as follows: first: the 
genes in the model can serve as individual targets and provide better performance 
when combined than a single factor. Second, the IRRS model was conducted on the 
basis of six genes that belong to immune genes with unique immune characteris-
tics. Our findings may aid clinicians in risk assessment and prognosis prediction and 
inform the search for new immunotherapy targets for GC patients.

Results
Differential gene expression analysis

The volcano plot showed a total of 3948 differentially expressed genes (DEGs) were 
screened by “edge” and “limma” R packages, including 1693 up-regulated and 2255 
down-regulated genes (Fig. 1A). 3948 DEGs were intersected with the 1793 immune 
genes, and 484 differentially expressed immune genes (DEIGs) were identified 
(Fig.  1B). Figure  1C shows the heat map of DEGs between GC tumor tissues and 
normal tissues in TCGA.
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Potential roles of differentially expressed immune genes

KOBAS-Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis 
revealed that cytokine-cytokine receptor interactions were significantly associated with 
differentially expressed immune genes (DEIGs) in GC (Fig.  2A and Additional file  2: 
Table S1). We also performed Gene Ontology (GO) analysis, which includes biological 
process (BP), cellular component (CC), and molecular function (MF) categories. In the 
BP category, DEIGs were related to humoral immune response, defense response to a 
bacterium, production of molecular, immunoglobulin production, and phagocytosis rec-
ognition. For the CC category, DEIGs were related to the immunoglobulin complex, the 

Fig. 1  Overview of DEGs in TCGA GC training cohort. A An overview of the differential gene expression 
between GC and normal tissues in TCGA cohorts. B Venn diagram showing the intersection of immune 
genes and DEGs. C Heatmap (green: low expression level; red: high expression level) of the DEGs in the tumor 
samples (red) compared with normal samples (blue)
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external side of the plasma membrane, the immunoglobulin complex circulating, blood 
microparticle, and secretory granule lumen. Receptor ligand activity, signaling receptor 
activator activity, antigen binding, cytokine activity, and immunoglobulin receptor bind-
ing were terms enriched in the MF category (Fig. 2B and Additional file 3: Table S2).

Identification of immune genes to construct the IRRS model

Univariate Cox regression analysis showed that 24 genes were associated with progno-
sis (Fig.  3A). LASSO-Cox regression model and the stepwise elimination method on 
the basis of multivariate Cox regression analysis of 24 genes were performed to identify 
the most significant Immune genes (P < 0.05). To obtain expression data from the GEO 
dataset to validate the model, we used six genes, the APOH, RNASE2, F2R, DEFB126, 
CXCL6, and CXCL3 genes, to construct the IRRS model (Fig. 3B–D).

Establishment and validation of the immune risk score model

Enrolled patients were classified into the high- or low-risk group using the calcu-
lated median risk score. The risk score formula was constructed according to a lin-
ear combination of the expression levels weighted with the regression coefficients 
from the multivariate Cox regression analysis: Risk score = 0.002 × expression of 
APOH + 0.006 × expression of F2R + 0.007 × expression of RNASE2 + 0.093 × expres-
sion of DEFB126 + 0.007 × expression of CXCL6-0.003 × expression of CXCL3. The dis-
tribution of patients with risk scores from low to high is shown in Fig. 4A. We found that 
the prognosis of GC patients was worse with increased risk score (Fig. 4B). The expres-
sion levels of five genes in the IRRS model, except for the CXCL3 gene, were all higher in 
the high-risk group (Fig. 4C). Kaplan–Meier survival curve showed a survival advantage 
of the low-risk group over the high-risk group (P < 0.05) (Fig. 4D). The area under the 
curve (AUC) values ranged from 0.639 to 0.735 (Fig. 4E). The model was externally vali-
dated with data from the GEO database, and the results were the same as TCGA data, 
suggesting the excellent predictive capacity of the risk model (Fig. 5A–J).

Expression levels of the six immune genes

Four immune genes, including CXCL3, CXCL6, F2R, and RNASE2, were upregulated 
in GC compared to normal tissues in the UALCAN database (Fig. 6). RT-qPCR results 
showed that tumor tissues exhibited significantly higher expression levels of CXCL3 

Fig. 2  KEGG and GO enrichment analysis of DEIGs
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and CXCL6 mRNAs compared with matched normal tissues, which were in line with 
the results from the UALCAN database (Fig. 7). The expressions of APOH, DEFB126, 
RNASE2, and F2R detected by RT-qPCR were shown in Additional file 1: Figure S1.

Immune cells identification and survival analysis

The CIBERSORT algorithm [10] was used to estimate the contents of 22 types of 
immune cells in each sample. The violin diagram shows that the infiltration levels of 
immune cells, including M2 macrophages and mast cells, were higher in the high-risk 
group than in the low-risk group, which was statistically significant (P < 0.05) (Fig. 8).

The expression of immune checkpoint molecules in high‑ and low‑ risk groups

We compared the expression of five immune checkpoint molecules (TIGIT, CTLA4, 
PD1, PD-L1, and LAG3) between high- and low-risk groups. The results indicated 
TIGIT was significantly upregulated in the high-risk group (Fig. 9A). There were higher 
expressions of CTLA4, PD1, and LAG3 in the high-risk group, but these differences 
did not meet statistical significance (Fig.  9B, C, E). Figure  9D showed a trend toward 

Fig. 3  Generation of a gene expression signature for risk assessment on the basis of immune-related clusters. 
A Screening of immune genes related to survival by univariate analysis from TCGA dataset. B The optimal 
parameter (lambda) was selected in the LASSO model; dotted vertical lines were drawn at the optimal values 
using the minimum criteria. C Multivariate Cox regression analyses of overall survival (OS) in TCGA. P-values 
were obtained by multivariate Cox regression. D LASSO coefficient profiles of the candidate OS-related 
Immune genes with nonzero coefficients determined by the optimal lambda
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a decreased level of PD-L1 in the high-risk group, but the difference also did not reach 
statistical significance.

Immunophenoscores in accordance with the expression of CTLA4 and PD1

IPS is a quantitative index that evaluates the effectiveness of checkpoint inhibitors. 
As shown in Fig. 10, we compared the IPS of patients in low- and high-risk groups in 
accordance with the expression of CTLA4 and PD1. The IPS of patients with CTLA4-
negative/PD1-negative and CTLA4-positive/PD1-negative in the low-risk group signif-
icantly differ from that of patients in the high-risk group (Fig.  10A, B). There was no 
difference between IPS of patients with CTLA4-negative/PD1-positive and CTLA4-pos-
itive/PD1-positive in the low- and high-risk groups (Fig. 10C, D).

TMB in low‑ and high‑risk groups

The waterfall diagram reveals the integration status of somatic mutations in TCGA GC 
patients. The numbers of somatic mutations of TTN, TP53, MUC16, LRP1B, CSMD3, 
SYNE1, ARID1A, and FAT4 gene were higher in low-risk group (Fig. 11A, B). TMB was 

Fig. 4  Risk score analyses of GC patients in TCGA using the IRRS model. A Distribution of risk scores per 
patient. B Relationships between survival status and survival times of GC patients ranked by risk. The black 
dotted line represents the median cut-off point used to divide patients into low- and high-risk groups. C 
Heatmap of the six-IRG expression profile. Red to green indicates decreasing expression level, from high 
to low. D Survival analysis of the predictive model. The Kaplan–Meier curves for the high- and low-risk are 
shown on the top; the number of living patients in the high- and low-risk groups over time (year) are shown 
on the bottom. E The receiver operating characteristic (ROC) curves of predictive models at 1-, 3-, and 5- year. 
Red represents 1- year, blue represents 3- year, and green represents 5- year
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higher in the low-risk group than  the high-risk group (Fig. 11C). Kaplan–Meier analysis 
showed that patients with high TMB had a better prognosis (Fig. 11D).

Exploration of alterations of the six immune genes

Genetic mutations are key mechanisms underlying tumorigenesis. The genes’  struc-
tural variant data, mutation data, and copy number alteration (CNA) data are shown 
in Fig. 12A, B, C, D, E, F-a. We identified the locations of the mutations within the gene 

Fig. 5  External validation of the risk model using expression data from the GEO database as validation. 
Patients with lower risk scores showed better OS than those with higher risk scores in A–E GSE15459 and F–J 
GSE62254
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Fig. 6  Box plots show the mRNA levels of the five immune genes in primary tumor tissues and normal 
gastric tissues

Fig. 7  The mRNA levels of CXCL3 and CXCL6 in seventeen pairs of GC tissues and their paired adjacent 
normal tissues were measured by RT-qPCR (paired t-test, * P < 0.05; ** P < 0.01). A CXCL3 and B CXCL6
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and acquired the mutated site visualized on the three-dimensional (3D) structure of pro-
teins (Fig. 12A, B, C, D, E, F-b, c). We then examined the relationship between specific 
genetic alterations and the survival of GC patients (Additional file 1: Figure S2A, B, C, 
D, E, F). Some sporadic mutation sites were seen in APOH, RNASE2, and F2R genes. 
And no significant association of specific gene mutations with survival was found. Six 
genes are as shown: (A) APOH, (B) CXCL3, (C) CXCL6, (D) DEFB126, (E) F2R, and (F) 
RNASE2.

Development of a nomogram to predict survival of GC patients

The results of univariate Cox regression analysis showed that age, stage, N-stage, and risk 
level are survival-related factors (Fig. 13A). From the results of multivariate Cox analy-
sis (Fig. 13B), we ultimately chose risk-level, age, gender, T-stage, N-stage, and M-stage 
to develop a nomogram after the gradual optimization of Akaike information criterion 
(AIC) values (Fig. 14A). The result indicated that a higher total score corresponded with 
a shorter survival time of the patients. The calibration curves of the nomogram for the 
survival probability at 1, 3, or 5 years suggest a great clinical application value (Fig. 14B, 
C, D). The C-index of nomogram is 0.656, suggesting good accuracy in predicting the 
survival probability for GC patients.

Fig. 8  Analysis of TIICs in high- and low-risk groups
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Discussion
GC has a high incidence and mortality rate globally [11], and there is an urgent need to 
develop practical tools for risk stratification and prognosis prediction for GC patients. 
Widespread attention has been devoted to the research of immunotherapy in can-
cer management. Immunotherapy has been successfully used to treat various cancers, 
including lung and breast cancer [12] [13]. Immunotherapy may be an effective treat-
ment for GC patients [4]. Here we identified a novel IRRS model with immune genes for 
risk stratification. We investigated the expression level and mutation status of genes in 
the model and TIICs, TMB, immune checkpoint molecule expression levels, and IPS in 

Fig. 9  Analysis of immune checkpoint molecule expression levels. A–E Differences in expression of five 
immune checkpoint molecules, TIGIT, CTLA4, PD1, PD-L1, and LAG3, between low- and high-risk groups



Page 11 of 21Liu et al. BMC Bioinformatics          (2023) 24:191 	

the TME of patients in high- and low-risk groups. We developed a nomogram with risk 
level and clinical characteristics for predicting the survival of GC patients.

Increasing evidence has shown that a single gene feature is vulnerable to multiple fac-
tors. In this study, we identified 3948 DEGs, including 484 Immune genes, by analyzing 
data from the TCGA database. Through KEGG and GO enrichment analysis, the DEIGs 
were mainly enriched in cytokine-cytokine receptor interaction, humoral immune 
response, immunoglobulin complex, and receptor ligand activity pathways, which may 
be the main signaling pathways affecting the prognosis of GC patients. Univariate and 
multivariate Cox regression analyses and the LASSO-Cox regression model identified 
a combination of six immune genes (APOH, RNASE2, F2R, DEFB126, CXCL6, and 
CXCL3 genes) to construct the IRRS model. A nomogram is a convenient-to-use tool for 
individualized prognosis prediction in clinical practice that can help develop a follow-
up and treatment plan suitable for patients. In this study, age, gender, T-stage, N-stage, 
and M-stage were independent prognostic factors for GC patients. Risk level and clini-
cal characteristics were incorporated into a nomogram. The IRRS model had a powerful 
capacity for risk stratification in GC patients. Immune genes in the model and immune 
checkpoints in TME may be targets for the immunotherapy of GC. The nomogram, 
combining clinical features and risk level, demonstrates good sensitivity and specificity 
for prognosis prediction.

These findings have guiding significance in formulating follow-up strategies for GC 
patients and improving the effect of GC immunotherapy. Immune genes are associated 

Fig. 10  Analysis of IPS in low- and high-risk groups. IPS calculated by expression of CTLA4 and PD1 A ctla4_
neg_pd1_neg B ctla4_pos_pd1_neg C ctla4_neg_pd1_pos D ctla4_pos_pd1_pos
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with the occurrence, development, and metastasis of multiple cancers, such as non-
small cell lung cancer, lung squamous cell carcinoma, esophageal cancer, and stom-
ach cancer [14–17], and are essential targets for immunotherapy. Among the six genes 
identified in our analysis, CXCL3 was the only protective factor. Validation by the 
UALCAN database and PCR experiments revealed that CXCL3 and CXCL6 were signifi-
cantly highly expressed in GC tissues. CXC chemokines are a subfamily of chemotactic 
cytokines with a CXC motif at the N-terminus. CXCL3 acts on the CXCR2 receptor, 
whereas CXCL6 acts on both CXCR1 and CXCR2 receptors, ultimately resulting in the 
recruitment of tumor-associated neutrophils and the promotion of tumor angiogen-
esis [18]. Notably, we found that CXCL3 expression levels gradually decreased as the 
risk of GC patients increased. This could be explained by a compensatory increase of 
CXCL3 expression at the early stage of tumorigenesis, thus protecting the body. When 
some types of cancer cells fail to express CXCL3 highly, the degree of tumor malig-
nancy and the risk of patients are increased. In the cBioPortal database, we found that 
the mutation type of CXCL3 and CXCL6 in GC was an “amplification” mutation, but its 
alteration frequency was only approximately 0.7%, indicating that amplification-based 
mutations were not associated with gene overexpression in tumor tissues; no mutations 
were detected on the main domains of CXCL3 and CXCL6 genes. CXC chemokines are 

Fig. 11  Analysis of gene mutation in high- and low-risk groups. A–B The landscape of mutation profiles 
in high- and low-risk groups. The annotations below colors indicate different mutation types. The bar plot 
on top shows the mutation burden. The numbers on the right represent the mutation frequency. C Tumor 
mutation burden in high- and low-risk groups. D Association of tumor mutation burden with survival
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mainly enriched in chemokine signaling pathways and cytokine-cytokine receptor inter-
action pathways in renal cancer [19]. Chemokine signaling pathways are vital in various 
cancers’ immune evasion and metastasis [20, 21]. KEGG pathway enrichment analysis 
indicated that DEIGs are mainly enriched in the cytokine-cytokine receptor interac-
tion and chemokine signaling pathways. Therefore, we hypothesize that the mechanisms 
of CXCL3 and CXCL6 affecting the progression of GC may be related to these path-
ways. These data indicate that CXCL3 and CXCL6 may be potential drug therapeutic 

Fig. 12  Mutation status of the six immune genes. a The alteration frequency with mutation type, b mutation 
site, and c mutation site in the 3D structure were shown in: A APOH, B CXCL3, C CXCL6, D DEFB126, E F2R, 
and F RNASE2

Fig. 13  Detailed information on the specific variables involved in the final prognostic model. A Screening 
of OS-related clinical variables by univariate analysis in the GC cohort. B Determination of the final variables 
by multivariate analysis on the basis of the backward stepwise variable selection with the Akaike information 
criterion (AIC). P < 0.05 indicates statistical significance
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targets as factors in immune-related signaling pathways in GC. Previous studies showed 
that CXCL6 enhances the growth and metastases of ESCC cells both in vitro and in vivo 
[22], and the expression of APOH in hepatocellular carcinoma and colorectal cancer was 
higher than that in adjacent tissues [23, 24]. The results are consistent with our findings 
in GC. Other evidence suggests that CXCL6 and APOH are potent oncoproteins that 
promote tumor growth. PCR showed that APOH, RNASE2, F2R, and DEFB126 mRNA 
were not significantly highly expressed in GC tissues. These observations suggest that 
CXCL3 and CXCL6 are major contributing factors in the model. No significant differ-
ences were observed with the other four genes, possibly due to racial differences in gene 
expression and insufficient sample size. Nevertheless, this result does not reduce the 
validity and accuracy of the model.

With the development of cancer vaccines, ICIs, and CAR-T cells, immunother-
apy has made breakthroughs in treating cancers such as melanoma, non-small cell 

Fig. 14  A nomogram diagram considering risk-level and clinical characteristics for predicting the 
individualized survival probability of GC patients. A Nomogram for predicting 1-, 3-, and 5-year OS for GC 
patients in TCGA cohort. B–D Calibration curves of nomogram in terms of the agreement between predicted 
and observed 1-, 3-, and 5-year outcomes. The 45° dashed line represents the ideal performance; the red lines 
show the actual performance



Page 15 of 21Liu et al. BMC Bioinformatics          (2023) 24:191 	

lung cancer, and prostate cancer [25–27]. Immunotherapy exerts potent anti-tumor 
effects by regulating the immune system and inducing long-lasting immune responses 
and tumor regression in advanced cancer patients [28]. However, drug resistance, 
immune escape, and unpredictable efficacy in response to immunotherapies are chal-
lenges [29]. The TME, composed of extracellular matrix, T cells, B cells, neutrophils, 
macrophages, and other components, has an essential impact on immunotherapeu-
tic efficacy [30–32]. Interactions between immune cells and tumor cells in the TME 
determine the elimination and progression of tumors [33]. We examined TIICs in 
TME of patients categorized using the risk model. M2 macrophages, mast cell acti-
vated, and mast cell resting infiltrations were significantly elevated in patients with 
high-risk scores, indicating that these cells were associated with risk stratification 
in GC patients. Some possible mechanisms may explain these results. Macrophages 
act in wound healing and autoimmune diseases by secreting various cytokines and 
growth factors [34, 35]. Activated macrophages are classified into anti-tumor M1 
and pro-tumor M2 types by the action of cytokines such as TGF-β1, IL-4, and IL-13 
[36, 37]. Previous studies showed that M2 macrophages in GC tissue promote tumor 
progression and metastasis, resulting in poor prognosis [38–40]. Our results show-
ing that the high-risk group was highly infiltrated with M2 macrophages provide 
further evidence of the tumor-promoting functions of M2 macrophages in GC. Heli-
cobacter pylori (Hp) also promotes macrophage polarization from M1 macrophages 
to M2 macrophages [40]. We suspect that the mechanisms of the Hp trigger GC 
development [41] may be associated with macrophages. Tumor-associated mast cells 
(TAMCs) play a pro-tumor or anti-tumor role depending on the tumor type, stage of 
tumor development, and spatial distribution in the tumor tissue [42]. Mast cells are 
recruited to the TME by cytokines produced by tumor cells such as vascular endothe-
lial growth factors (VEGFs), angiogenic hormone (ANGPT1), CCL2, and CXCL12 
chemokines. The cytokines activate specific receptors on the surface of mast cells 
and play a vital role in the spatial distribution of TAMCs in the TME [43]. One study 
found that the density of mast cells in the TME is associated with the formation and 
progression of micro-vascularization in GC patients [44]. Mast cells release VEGF-A, 
VEGF-C, VEGF-F, CXCL-8, MMP-9, and other factors, which promote tumor angio-
genesis. Thus, the tumor-promoting effects of mast cells cannot be neglected in GC 
development. We speculate that chemokines secreted by tumor cells in the high-risk 
group may result in high levels of mast cell infiltration. Increased levels of mast cells 
then promote tumor growth by mediating angiogenesis. The immune cells mentioned 
above have dual roles in tumorigenesis: as a tumor suppressor and a tumor growth 
promoter. The results reveal the complexity and heterogeneity of the TME and show 
the potentially important roles of the immune cells in immunotherapy. Therefore, we 
suspect that distinct prognostic outcomes for patients with the same GC subtype may 
be associated with the types of TIICs and the degree of infiltration in TME.

TMB is associated with immunotherapy response in various cancers, including 
breast cancer, non-small-cell lung cancer, and colorectal cancer [45–48]. We found 
that patients in the low-risk group were characterized by a higher TMB, and patients 
with high TMB had longer OS than those with low TMB. This may be because cell 
mutations generate a variety of neoantigens leading to cancer cells being more 
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susceptible to being recognized and cleared by the immune system after increased 
antigen diversity. Previous studies found that TMB can predict ICIs’ efficacy. TMB 
has emerged as a valuable biomarker for identifying patients who will benefit from 
immunotherapy in melanoma and non-small cell lung cancer [49, 50]. Considering 
that neoantigens are more likely to appear on HLA molecules on the surface of tumor 
cells in patients with TMB-Hi [51, 52], it is rational to hypothesize that patients with 
TMB-Hi may be more receptive to continuous immunotherapy because of increased 
antigenic diversity.

Over the past decade, many cancer patients have derived significant clinical benefits 
from immunotherapy targeting immune checkpoint molecules. In the study, we obtained 
two meaningful findings. First, the IPS of patients with CTLA4-positive/PD1-negative 
in the low-risk group was significantly higher than that of patients with high risk. This 
result reveals that patients with CTLA4-positive/PD1-negative respond better to immu-
notherapy. The mechanism may be as follows: PD-1 inhibits T lymphocyte’s  immune 
surveillance, resulting in  tumor cells’  immune escape [53]. Therefore, immunotherapy 
response is significantly improved in PD-1-negative patients. Second, TIGIT expression 
was elevated in the TME of GC patients in the high-risk group. T cell immunoglobu-
lin and ITIM domain (TIGIT), along with PD-1 and CTLA-4, is an immune checkpoint 
molecule and a novel ICI receptor. TIGIT expressed by tumor cells and antigen-present-
ing cells in the TME is critical in limiting innate and adaptive immunity against tumors 
[54, 55]. These results suggest that anti-CTLA4 inhibitors and anti-TIGIT inhibitors may 
be promising immunotherapeutic agents for GC.

However, our model should be validated further by performing both animal experi-
ments and drug trials to verify the immunotherapy targets better. These have not only 
increased the challenges but also made us more motivated to continue exploring.

Conclusion
Here we present a risk score model based on six immune genes, including APOH, F2R, 
RNASE2, DEFB126, CXCL3, and CXCL6 genes. Combined with the clinical factors, 
the model can calculate the survival rate of individual patients at 1-, 3-, and 5-year and 
inform individualized treatment plans and follow-up strategies. Furthermore, CXCL3 
and CXCL6 may be new targets for the immunotherapy of GC. The type and degree of 
TIICs may be related to the prognosis of GC patients. TMB may help to predict the effi-
cacy of immunotherapy in GC patients. Anti-CTLA4 inhibitors and anti-TIGIT inhibi-
tors may be effective immunotherapeutic agents for GC. We hope these results will 
contribute to furthering the potential application of immunotherapy for GC.

Materials and methods
Data acquisition

The RNA-seq and clinical data of 373 samples, including 343 gastric adenomas and 
adenocarcinoma samples and 30 normal samples, were downloaded from the TCGA 
database (https://​portal.​gdc.​cancer.​gov/) and used as the training set. Additional sam-
ples were obtained from GSE62254 (n = 300) and GSE15459 (n = 192) in the GEO data-
base (http://​www.​ncbi.​nlm.​nih.​gov/​geo) and used as the validation set. Samples in the 

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo
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training set with missing clinical information or survival time less than one month were 
excluded.

Detailed clinical information is available in Additional file  4: Table  S3. The immune 
genes list was downloaded from the IMMPORT database (https://​www.​immpo​rt.​org/). 
Seventeen pairs of RNA samples of gastric adenocarcinoma and normal tissues were col-
lected from the First Affiliated Hospital of Fujian Medical University, China.

Gene set enrichment analysis

GO pathway enrichment analysis and KEGG pathway enrichment analysis [56]of 
DEIGs were performed using the “clusterprofiler [57]”, “org.Hs.eg.db”, and “ggplot2” 
R packages.

Identification and verification of the gene signature

The “edge” and “limma” R packages were used to analyze the DEGs with the threshold 
values of |logFC|> 1 and FDR < 0.05. Differentially expressed genes were intersected 
with immune gene lists to obtain DEIGs. Univariate and multivariate Cox risk regres-
sion analyses and LASSO regression analyses were performed to identify the key 
Immune genes for conducting IRRS. The UALCAN database [58] (http://​ualcan.​path.​
uab.​edu/) and qRT-PCR were used to verify genes.

Construction and prognostic analysis of the IRRS model

The risk score formula was a linear combination of the expression levels weighted 
with the corresponding regression coefficients derived from multivariate Cox regres-
sion analysis as follows: risk score = expression of a gene [1] × corresponding coef-
ficient [1] + expression of a gene [2] × corresponding coefficient [2] + expression of 
the gene [n] × corresponding coefficient [n] of the gene. The mean score was used for 
grouping. Kaplan–Meier(K-M) survival curves were plotted to analyze survival. ROC 
curves and the AUC values were applied to determine prediction efficiency. The data 
derived from the GSE62254 and GSE15459 in the GEO database, the verification sets, 
was substituted into the risk score model to validate.

RNA extraction and quantitative PCR

Total cellular RNA was extracted from human gastric cancer tissue using TRIzol 
reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions. 
cDNA synthesis was performed using the PrimeScript RT reagent kit (Takara, Dalian, 
China). We conducted RT-qPCR assays with SYBR Prime Script RT PCR kit (Takara, 
Dalian, China). The gene expression levels of candidate mRNAs were normalized 
to 18srRNA expression levels. The relative quantification of mRNAs was calculated 
using the 2−ΔΔCT method [59–61]. The sequences of all primers used in this study 
are provided in Additional file 5: Table S4.

https://www.immport.org/
http://ualcan.path.uab.edu/
http://ualcan.path.uab.edu/
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Exploration of tumor‑infiltrating immune cells

The CIBERSORT algorithm was used to analyze the infiltrating immune cells [62]. A 
violin plot was constructed to visualize the distribution of immune cells of patients in 
high- and low-risk groups.

The role of checkpoints expression and IPS in the prediction of immunotherapeutic 

benefits

Immune checkpoint expression levels were evaluated in the TME of patients in high- 
and low-risk groups. The IPS data of every patient in the TCGA cohort were down-
loaded from the TCIA (https://​tcia.​at/​home) [63]. The IPS was calculated using the 
expression of immune checkpoints, including CTLA-4 and PD-1.

Calculation of TMB and correlation with prognosis

TMB data were downloaded by the “TCGAbiolinks [64]” R package from the TCGA 
database. The maf files were read using the “Maftools [65]” R package, and the num-
ber of variants in each sample was counted based on the MutSigCV algorithm [66]. The 
waterfall function within the “Maftools” package was applied to present the mutation 
landscape.

Analysis of genetic alterations

Data on alteration frequency, mutated site information, CNA, and 3D protein structure 
were obtained using the cBioPortal tool [67] (https://​www.​cbiop​ortal.​org/). Survival 
data, including OS and disease-free survival (DFS), were compared for the patients with 
or without genetic alterations.

Development of a nomogram combing risk score and clinical characteristics

We developed a nomogram including the risk level and clinical characteristics. ROC 
curve analyses and AUC values were used to assess the discriminatory capacity of the 
model. The calibration curves and a concordance index (C-index) were created to assess 
the predictive accuracy of the nomogram.

Statistical analysis

All statistical analyses were performed using R software (version 4.2.0) and GraphPad 
Prism 9.3 software. P-values < 0.05 were regarded as statistically significant.
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