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Abstract 

Background:  The spectrum of mutations in a collection of cancer genomes can be 
described by a mixture of a few mutational signatures. The mutational signatures can 
be found using non-negative matrix factorization (NMF). To extract the mutational 
signatures we have to assume a distribution for the observed mutational counts and 
a number of mutational signatures. In most applications, the mutational counts are 
assumed to be Poisson distributed, and the rank is chosen by comparing the fit of 
several models with the same underlying distribution and different values for the rank 
using classical model selection procedures. However, the counts are often overdis-
persed, and thus the Negative Binomial distribution is more appropriate.

Results:  We propose a Negative Binomial NMF with a patient specific dispersion 
parameter to capture the variation across patients and derive the corresponding 
update rules for parameter estimation. We also introduce a novel model selection 
procedure inspired by cross-validation to determine the number of signatures. Using 
simulations, we study the influence of the distributional assumption on our method 
together with other classical model selection procedures. We also present a simulation 
study with a method comparison where we show that state-of-the-art methods are 
highly overestimating the number of signatures when overdispersion is present. We 
apply our proposed analysis on a wide range of simulated data and on two real data 
sets from breast and prostate cancer patients. On the real data we describe a residual 
analysis to investigate and validate the model choice.

Conclusions:  With our results on simulated and real data we show that our model 
selection procedure is more robust at determining the correct number of signatures 
under model misspecification. We also show that our model selection procedure is 
more accurate than the available methods in the literature for finding the true num-
ber of signatures. Lastly, the residual analysis clearly emphasizes the overdispersion in 
the mutational count data. The code for our model selection procedure and Negative 
Binomial NMF is available in the R package SigMoS and can be found at https://​github.​
com/​Marta​Peliz​zola/​SigMoS.
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Introduction
Somatic mutations occur relatively often in the human genome and are mostly neutral. 
However, the accumulation of harmful mutations in a genome can lead to cancer. The sum-
mary of somatic mutations observed in a tumor is called a mutational profile and can often 
be associated with factors such as aging [1], UV light [2] or tobacco smoking [3]. A muta-
tional profile is thus a mixture of mutational processes that are represented by mutational 
signatures. Several signatures have been identified from the mutational profiles and associ-
ated with different cancer types [4, 5]. The importance of mutational signatures thus lies in 
their association with the mutational processes causing cancer. Having more insights into 
the causes of cancer is a prerequisite for better understanding the role that genetics plays in 
the development of the disease and eventually also for discovering potential treatment.

A common strategy to derive the mutational signatures is non-negative matrix factori-
zation [6–8]. Different approaches to estimate the signature and the exposure matrices 
from mutational count data have been extensively described in [9, 10].

Non-negative matrix factorization (NMF) is a factorization of a given matrix 
V ∈ N

N×M
0  into the product of two non-negative matrices W ∈ R

N×K
+  and H ∈ R

K×M
+  

such that

The rank K of the lower-dimensional matrices W and H is much smaller than N and M.
In cancer genomics, the mutational matrix V contains the mutational counts for differ-

ent patients, also referred to as mutational profiles. The number of rows N is the number 
of patients and the number of columns M is the number of different mutation types. In 
this paper we use the single-base-substitution-96 mutational context [11] where M = 96 
(corresponding to the 6 base mutations when assuming strand symmetry times the 4 
flanking nucleotides on each side, i.e. 4 · 6 · 4 = 96 ). The matrix H consists of K muta-
tional signatures defined by probability vectors over the different mutation types. In 
the matrix W, each row contains the weights of the signatures for the corresponding 
patient. In this context, the weights are usually referred to as the exposures of the differ-
ent signatures.

To estimate W and H we need to choose a model and a rank K for the data V. These 
two decisions are highly related as the optimal rank of the data V is often chosen by com-
paring the fit under a certain model for many different values of K. The optimal K is then 
found using a model selection procedure such as Akaike Information Criterion (AIC), 
Bayesian Information Criterion (BIC) or similar approaches described in “Estimating the 
number of signatures” section. Most methods used in the literature [6, 12, 13] for choos-
ing the rank are based on the likelihood value, which depends on the assumed model. 
For mutational counts the usual model assumption is the Poisson distribution [6]

where W and H are estimated using the algorithm from [14] that minimizes the gen-
eralized Kullback–Leibler divergence. The algorithm is equivalent to maximum likeli-
hood estimation, as the negative log-likelihood function for the Poisson model is equal 
to the generalized Kullback–Leibler up to an additive constant. We observe that this 
model assumption is often inadequate. In particular, we observe overdispersion in the 

V ≈ WH .

(1)Vnm ∼ Po((WH)nm),
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mutational counts, i.e. a situation where the variance in the data is greater than what is 
expected under the assumed model. This is a well known issue when modeling count 
data in biology [15].

We therefore suggest using a model where the mutational counts follow a Negative Bino-
mial distribution that has an additional parameter to explain the overdispersion in the data. 
In recent years, this model is becoming more popular to model the dispersion in muta-
tional counts [16, 17]. The Negative Binomial NMF is discussed in [18], where it is applied 
to recommender systems, and it has recently been used in the context of cancer mutations 
in [19–21]. In Lyu  et  al.  [20] a supervised Negative Binomial NMF model is applied to 
mutational counts from different cancers which uses cancer types as metadata. Their aim 
is to obtain signatures with a clear etiology, which could be used to classify different cancer 
types. Vöhringer et al. [21] extends the analysis by including several genomic features and 
uses tensors instead of the mutational count matrix to account for the different features. 
Lastly, [19] applies Bayesian inference to extract mutational signatures and provide differ-
ent probabilistic models for the signatures. Among the models implemented in this method 
also the Negative Binomial model is considered as a natural extension of the Poisson model.

For mutational count data, we extend the Negative Binomial NMF model by including 
patient specific dispersion which has not been included in the aforementioned works 
using the Negative Binomial model. The extended model is referred to as NBN-NMF, 
where N is the number of dispersion parameters (equivalent to the number of patients). 
We investigate when and why NBN-NMF is more suitable for mutational counts than the 
usual Poisson NMF (Po-NMF). In particular we evaluate the goodness of fit for muta-
tional counts using a residual-based approach. Despite the recent efforts, we still believe, 
as it has also been mentioned in [22], that a great amount of research has been focusing 
on improving the performance of NMF algorithms given an underlying model and less 
attention has been directed to the choice of the underlying model given the data and 
application.

Since the number of signatures depends on the chosen distributional assump-
tion, we suggest using NBN-NMF and we also propose a novel model selection 
framework to choose the number of signatures. We show that our model selection 
procedure is more robust toward inappropriate model assumptions compared to clas-
sical methods (AIC and BIC) and other methods currently used in the literature such 
as SigProfilerExtractor [23], SparseSignatures [8], SigneR [13], sigfit 
[19], and SignatureAnalyzer [24]. We use both simulated and real data to validate 
our proposed model selection procedure against other methods. We chose one classical 
data set and analyze it in “Breast cancer data” section and a larger data set from prostate 
cancer (Fig. 5). The latter is a subset of the available data from the Pan-Cancer Analysis 
of Whole Genomes (PCAWG) database [25], thus it corresponds to one of the largest 
available data sets for a single cancer type.

In comparison to the results published in [20] and in [21], our work is not exploiting 
the information coming from different cancer types or from different genomic features. 
However, we provide a patient specific dispersion component to account for the high 
variance between patients and derive the update steps for parameter estimation in the 
NBN-NMF. Furthermore, we propose a model selection procedure which proves to be 
robust to model misspecification.
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We have implemented our methods in the R package SigMoS (Signatures Model Selec-
tion) that includes NBN-NMF and the model selection procedure. The R package is 
available at https://​github.​com/​Marta​Peliz​zola/​SigMoS. The package also contains the 
simulated and real data used in this paper.

Results
In this section we describe the results of our approach on both simulated and real 
data. Details on the method are provided in “Methods” section. In short, we propose a 
Negative Binomial model applied to mutational count data with a patient specific dis-
persion coefficient. The matrices W and H are estimated with a majorization–minimiza-
tion (MM) procedure, and we propose to use Negative Binomial maximum likelihood 
estimation (MLE) for estimating the dispersion parameters. Additionally, we introduce 
a new algorithm based on cross-validation to estimate the number of signatures for a 
given data set.

For simulated data we present a study on Negative Binomial simulated data with dif-
ferent levels of dispersion where results from AIC, BIC, SigProfilerExtractor 
[23], SparseSignatures [8], SigneR [13], sigfit [19] and SignatureAnalyzer 
[24] are compared with our proposed model selection procedure. These results are dis-
cussed in “Simulation study” section, where we show that our method performs well 
and is robust to model misspecification. Our method is applied to the 21 breast can-
cer patients from [6] in “Breast cancer data” section, and to 286 prostate cancer patients 
from [25] in “Prostate cancer data” section. The goodness of fit of the different models 
are evaluated using a residual analysis that shows a clear overdispersion with the Poisson 
model. The use of residual plots to evaluate the goodness of fit is a common strategy in 
statistics; some examples can be found in [26, 27].

Simulation study

We simulated our data following the procedure of [8] using the signatures from [5]. We 
simulated 100 data sets for each scenario and varied the number of patients, the num-
ber of signatures and the model for the noise in the mutational count data. We consid-
ered 20, 100 and 300 patients and either 5 or 10 signatures following [28] which states 
that the number of common signatures in each organ is usually between 5 and 10. For 
each simulation run we use signature 1 and 5 from [5], as they have been shown to be 
shared across all cancer types, and then we sample at random three or eight additional 
signatures from this set. The exposures are simulated from a Negative Binomial model 
with mean 6000 and dispersion parameter 1.5 as in [8]. This choice is based on estimates 
from the real data in [29]. The mutational count data is then generated as the product of 
the exposure and signature matrix. Lastly, Poisson noise, Negative Binomial noise with 
dispersion parameter α ∈ {10, 200} or uniformly sampled in [10, 500] are added to the 
mutational counts. The values of the patient specific dispersion are inspired from the 
data set in “Breast cancer data” section. A lower α is associated with higher dispersion, 
however the actual level of dispersion associated to a given α value depends on the abso-
lute mutational counts as can be seen from the variance in Eq.  (5). Therefore it is not 
possible to directly compare these values with the ones estimated for the real data.

https://github.com/MartaPelizzola/SigMoS


Page 5 of 24Pelizzola et al. BMC Bioinformatics          (2023) 24:187 	

Simulation results

The effect of the model assumption on the estimated number of signatures using AIC, 
BIC (see Eqs.  (14) and  (15)) and SigMoS as model selection procedures is shown in 
Fig. 1. Figure 1a summarizes results for all simulation studies and for each study. This 
figure displays the proportion of scenarios where the true number of signatures is cor-
rectly estimated from the different methods: the darker the green color the higher is this 
proportion. This shows that our proposed approach is estimating the number of signa-
tures accurately and is much more robust to model misspecifications compared to AIC 
and BIC. For example, when the true model has a small dispersion of α = 200 and the 
Poisson model is assumed, the difference between the performance of SigMoS and of 
AIC and BIC is already substantial. Here, AIC and BIC are never estimating the true 
number of signatures correctly, whereas our SigMoS procedure estimates the correct 
number of signatures in most cases ( ≥ 85% ). The table also shows that the higher the 
dispersion in the model, the harder it is to estimate the true number of signatures even 
when the correct model is specified.

Fig. 1  Results from AIC, BIC, and SigMoS based on Po-NMF and NBN-NMF using simulated data. Each 
method is applied on different simulated data sets for four different types of noise: Poisson and Negative 
Binomial with dispersion parameter α = 10, 200 and α ∼ U(10, 500) . a The proportion of simulation runs 
where the number of signatures is correctly estimated. The true number of signatures varies in {5, 10} and the 
number of patients in {20, 100, 300} . The rectangular boxes highlight the results shown in b. The results are 
based on 100 simulation runs for scenarios with 20 and 100 patients and on 20 simulation runs for scenarios 
with 300 patients. b The estimated number of signatures in the range from 2 to 20 for 100 patients, where the 
true number of signatures is five
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Figure  1b depicts the actual estimated number of signatures in the range from 2 to 
20 for the 100 data sets with 5 signatures and 100 patients. This clearly shows that the 
higher the overdispersion in the model, the more is the number of signatures overesti-
mated. Assuming Poisson in the case of α = 200 we see that AIC is already overestimat-
ing the number of signatures. Here, these additional signatures are needed to explain the 
noise that is not accounted for by the Poisson model. Having an even higher overdisper-
sion makes both AIC and BIC highly overestimate the number of signatures to a value 
that is plausibly much higher than 20. Even high overdispersion does not influence our 
SigMoS procedure in the same way and our approach is still estimating the true number 
of signatures for a large proportion of the scenarios. Assuming the Negative Binomial 
model all of the three methods have a really high performance, as the Negative Binomial 
accounts for both low and high dispersion.

In the simulation study from Fig.  1b we also consider the accuracy of the MLE for 
the α value in the two scenarios where each patient has the same α . Our approach esti-
mates the true α with high accuracy when the dispersion is high i.e.   α̂ ∈ [9.21, 11.78] 
for α = 10 , α is slightly overestimated when the dispersion is low: for α = 200 we find 
α̂ ∈ [225.8, 292.7] . However, according to Fig. 1b this small bias does not affect the per-
formance of our model selection procedure.

Method comparison

Several methods have been proposed in the literature for estimating the number of signa-
tures in cancer data. In the following we present the results of a comparison between our 
method and four commonly used methods in the literature: SigProfilerExtractor 
[23], SparseSignatures [8], SignatureAnalyzer [24], sigfit [19], and SigneR 
[13]. SigProfilerExtractor [23] extracts mutational signatures by applying NMF 
to 100 normalized Poisson resampled input matrices for different values for the number 
of signatures. The number of mutational signatures is then estimated by evaluating the 
stability of mutational signatures and choosing the solution with the lowest number of 
signatures among the stable solutions that describe the data well. SparseSignatures 
[8] provides an alternative cross-validation approach where the test set is defined by set-
ting 1% of the entries in the count matrix to 0. Then NMF is iteratively applied to the 
modified count matrix and the entries are updated at each iteration. The resulting signa-
ture and exposure matrices are used to predict the entries of the matrix corresponding 
to the test set. SignatureAnalyzer [24], on the other hand, proposes a procedure 
where a Bayesian model is used and maximum a posteriori estimates are found with a 
majorize-minimization algorithm. sigfit [19] presents an R package providing dif-
ferent options for extracting and refitting signatures and exposures by Bayesian infer-
ence under different models. They propose a framework where a Multinomial, Normal, 
Poisson or Negative Binomial model (with mutation type specific dispersion parameter) 
can be used. The number of signatures is estimated using the elbow method by looking 
at changes in the accuracy of re-estimating the data with the extracted signatures and 
exposures. In our comparison we use the Poisson and Negative Binomial models within 
the sigfit package and refer to them as sigfit- Po and sigfit- NB . Lastly, with 
SigneR [13] an empirical Bayesian approach based on BIC is used to estimate the num-
ber of mutational signatures.
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For our method comparison, we run all methods on the simulated data from Fig. 1b. 
For each method and simulation setup we only allow the number of signatures to vary 
from two to eight due to the long running time of some of these methods.

Figure 2 shows that, when Poisson data are simulated almost all methods have a very 
good performance and can recover the true number of signatures in most of the simula-
tions. The poor performance of SparseSignatures could be affected by not having a 
fixed background signature. Indeed, the improved performance of SparseSignatures 
when a background signature is included has also been shown in [8]. sigfit- Po is 
based on a more heuristic method and tends to underestimate the true number of sig-
natures. When Negative Binomial noise is added to the simulated data with a moder-
ate dispersion ( α = 200 ), sigfit- Po , SignatureAnalyzer and SigneR have low 
power emphasizing the importance of correctly specifying the distribution for these 
methods, whereas our proposed approach (regardless of the distributional assump-
tion), sigfit- NB , SigProfilerExtractor and SparseSignatures maintain 
good power. For patient specific dispersion also the power of SparseSignatures and 
SigProfilerExtractor decreases. Lastly, the power of sigfit- NB decreases for 
high dispersion ( α = 10 ): here the distributional assumptions are correctly specified, 
however this is a heuristic approach to estimate the number of signatures which tends 
to be less precise than SigMoS. Indeed, good performance is achieved with our proposed 
approach even under high dispersion if the correct distribution is assumed. These results 
demonstrate that SigMoS is accurate for detecting the correct number of signatures and 
it performs well also in situations with overdispersion compared to other methods.

For this set of simulations we also checked the quality of the estimated signa-
tures. We sampled 10 runs for each scenario from Fig.  2 and calculated the cosine 
similarity between the estimated signatures and the true ones used for simula-
tions. The results for all methods are shown in Fig.  3 where we display the average 
cosine similarity over 10 runs for each method and each scenario. For this study we 
fixed the number of signatures to five for all methods, which may favour methods 
such as SignatureAnalyzer , sigfit or SigneR that usually overestimate the 
number of signatures. Nonetheless, these results also show that SigMoS combined 
with the Negative Binomial model and sigfit- NB are the methods that are able to 
retain the highest accuracy also with high levels of overdispersion (namely α = 10 ). 
SigProfilerExtractor and SigneR also show good accuracy especially when 
the overdispersion is low and under the Poisson model. These results, combined with 

Fig. 2  Method comparison using simulated data. Each method is applied on the data sets from Fig. 1b and, 
for each data set, the value of the estimated number of signatures is kept. We test values for the number of 
signatures from two to eight for Poisson noise and Negative Binomial noise with α = {10, 200} , and a patient 
specific dispersion parameter α ∼ U(10, 500)
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those in Fig. 2, show that for real data where the variance may be higher than the one 
accounted for under the Poisson model, using a Negative Binomial model is essential. 
Indeed, this distributional assumption leads to high accuracy in the estimated signa-
tures and SigMoS combined with the Negative Binomial model is able to maintain 
high accuracy and also correctly infer the true number of signatures.

We additionally compared our method to an independent set of simulated data 
from [30]. Here, the authors propose an alternative cross-validation procedure 
for estimating the number of signatures and describe a method comparison where 
SigProfilerExtractor , SignatureAnalyzer and SigneR are included. We 
considered their 20 simulated data sets comprising of 200 patients and 9 signatures 
each and we run SigMoS under both the Negative Binomial and the Poisson model. 
The signatures used for this set of simulations have been taken from the PCAWG 

Fig. 3  Quality of estimated signatures using simulated data. Each method is applied on 10 randomly 
sampled data sets from Fig. 1b and, for each data set, the value of the estimated number of signatures is fixed 
to 5. We show the quality of the estimated signatures measured by cosine similarity for all methods with 
Poisson noise and Negative Binomial noise with α = 10, 200 , and a patient specific dispersion parameter 
α ∼ U(10, 500)
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breast cancer study [4] where two pairs of signatures are highly similar, namely sig-
natures SBS1 and SBS5 as well as SBS2 and SBS13, and their exposures have been 
resampled jointly when generating the data. It is not surprising that our method often 
estimates less than 9 signatures (7 or 8 signatures are reconstructed in most of the 
scenarios). We compared these results to the ones in [30] where a method based on 
cross-validation is proposed to estimate the number of signatures. Here, an exten-
sive method comparison is available showing the accuracy in estimating the true sig-
natures. We provide similar results in Additional file  1: Figs.  S1 and  S2 where our 
method is run with Po-NMF and NBN-NMF. Comparing these results to Fig.  S9 in 
[30], we can see that most methods tend to estimate less than 9 signatures and that 
the accuracy of the signatures estimated by SigMoS is always higher or comparable to 
the ones estimated by the other methods.

These results indicate that our proposed approach is robust to different simulation set 
ups, has very good performance on a wide range of scenarios, and provides more accu-
rate estimates of the underlying number of signatures and of the actual mutational sig-
natures when compared to other methods available in the literature, suggesting that it 
will also be robust when applied to real data. Computational cost results for our method 
in terms of memory usage and time until convergence as a function of the number of 
patients are available in Additional file 1: Section S2. SigMoS runs on a standard laptop 
with Intel Core i7 processor in less than a few minutes and uses less than 25 gigabase of 
memory for data sets with up to 500 patients and 5 signatures. Both memory consump-
tion and running time increase linearly with the number of patients, but even large data 
sets can be run fairly quickly on a standard laptop (for 1000 patients SigMoS used up to 
100 GB and the running time went up to 7 min for the slowest scenarios).

Breast cancer data

This data set consists of the mutational counts from the 21 breast cancer patients that 
has previously been described and analyzed in several papers [6, 7, 12]. The data can be 
found through the link ftp://​ftp.​sanger.​ac.​uk/​pub/​cancer/​Alexa​ndrov​EtAl from [11] and 
have been extensively analyzed in [4].

In Fig. 4a, we have applied SigMoS and BIC to choose the number of signatures for 
both Po-NMF and NBN-NMF. We have included the BIC to compare with the SigMoS 
method as it provides similar results to the state-of-the-art methods. SigMoS indicates 
to use three signatures for both methods. This is in line with the results of our simula-
tion study, where we show that our model selection is robust to model misspecification. 
According to BIC, six signatures are needed for Po-NMF whereas only three signatures 
should be used with NBN-NMF which emphasizes the importance of a correct model 
choice when using BIC. In this framework and in “Prostate cancer data” section we com-
pared SigMoS to BIC, as Fig. 1 shows that this is more robust than AIC. BIC is also often 
used as model selection criteria in the analysis of real data sets in the literature. We refer 
to “Method comparison” section for comparisons with other state-of-the-art methods.

For three signatures we show in Fig.  4b the corresponding raw residuals 
Rnm = Vnm − (WH)nm to determine the best fitting model. The residuals are plotted 
against the expected mean (WH)nm , as the variance in both the Poisson and Negative 

ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl
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Binomial model depends on this value. The colored lines in the residual plots corre-
spond to ±2σ for the Poisson and the Negative Binomial distribution, respectively. The 
variance σ 2 can be derived from Eq. (5) for the Negative Binomial model and is equal to 
the mean for the Poisson model.

For Po-NMF we observe a clear overdispersion in the residuals, which suggests to use 
a Negative Binomial model. In the residual plot for the NBN-NMF we see that the resid-
uals have a much better fit to the variance structure, which is indicated by the colored 
lines. The quantile lines in the lower panel with normalized residuals again show that the 
quantiles from the NBN-NMF are much closer to the theoretical ones, suggesting that 
the Negative Binomial model is better suited for this data. The patient specific dispersion 
is very diverse in this data as the α values for the first 20 patients are between 16 (very 
high dispersion) and 550 (moderate dispersion) and the last patient has α21 = 26083.

We compare the signatures found by our method to the available signatures in the 
COSMIC database [5] downloaded from  https://​cancer.​sanger.​ac.​uk/​cosmic. We find 
that our three reconstructed signatures are similar to signatures SBS1, SBS2, SBS3. 

Assumed models
Model selection procedure Po-NMF NBN-NMF

SigMoS 3 3
BIC 6 3

(a) Estimated number of signatures.
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(b) Model fit: residual analysis.
Fig. 4  Results for Po-NMF and NBN-NMF applied to a data set with 21 breast cancer patients. a The optimal 
number of signatures estimated from SigMoS and BIC when using Po-NMF and NBN-NMF. b The residual plots 
for Po-NMF and NBN-NMF when assuming the estimated number of signatures from SigMoS i.e. 3 signatures 
in both cases. The lines in the top plot correspond to two times the expected variance under the chosen 
distributional assumption. As the NBN-NMF holds 21 different expected variances, we have chosen to plot the 
median, minimum and maximum variance among the 21. The second plots show the normalized residuals. 
The vertical blue and red lines depict the theoretical quantiles and the gray lines show the observed 
quantiles

https://cancer.sanger.ac.uk/cosmic
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The corresponding cosine similarities are reported in Table 1 and show high similarity 
between our reconstructed signatures and the ones from the COSMIC database espe-
cially for SBS2 and SBS3. Indeed, a cosine similarity of 0.8 has been used as threshold 
in [31] to group similar signatures, suggesting that SigMoS is able to identify relevant 
signatures in the COSMIC database. According to the results in [4] SBS1 and SBS2 are 
found across most cancer types and a large proportion of breast cancer samples showing 
these two signatures has been found. SBS3 has also been found in a large proportion of 
breast cancer samples and it also has high mutational burden in breast cancer tumors. 
SBS3 has also been associated to the BRCA1/2 mutation [4]. The validation of our sig-
natures with the COSMIC database shows that in this case SigMoS can correctly infer 
signatures that have been proved to be strongly associated with breast cancer.

Prostate cancer data

We also considered a more recent data set from the Pan-Cancer Analysis of Whole 
Genomes (PCAWG) database [25] where 2782 patients from different cancer types are 
available. The mutational counts from the full PCAWG database can be found at https://​
www.​synap​se.​org/#​!Synap​se:​syn11​726620. From this data set, we extracted mutational 
counts for all the 286 prostate cancer patients and used them directly for our analysis.

We chose again both the Poisson and Negative Binomial as underlying distributions 
for the NMF and in both cases we applied SigMoS for determining the number of sig-
natures. We present the results in Fig. 5. Figure 5a shows again that our model selection 
procedure is more stable under model misspecification compared to BIC: the estimated 
number of signatures is changing from 9 to 4 between the two model assumptions for 
BIC, but only from 6 to 5 for SigMoS. As for Fig. 4b, the residuals in Fig. 5b show that 
the NBN-NMF model provides a much better fit to the data than the Po-NMF. The esti-
mated values for the patient specific dispersion are αn ∈ [1.4, 4279] with a median of 140 
(corresponding to a quite large dispersion).

As for the previous section we compare our reconstructed signatures with the ones 
in the COSMIC database. Table 2 shows the cosine similarity between the signatures 
extracted by SigMoS and the most similar ones from the COSMIC repository. Here, 
NBN-NMF provides much better results in terms of signatures estimation showing 
the importance of accounting for overdispersion. Indeed, NBN-NMF finds signatures 
SBS1, SBS5, SBS8, SBS18, SBS37. These signatures are all largely present in prostate 
cancer either for their presence in many prostate tumor samples or for their contribu-
tion in terms of number of mutations per tumor or for both reasons combined. On 
the contrary, signatures SBS6 and SBS36 are not found in prostate cancer, showing 
that NBN-NMF is more accurate.

Table 1  Cosine similarity for the breast cancer data set between the signatures extracted by SigMoS 
and the ones in the COSMIC database

The COSMIC signature with the highest cosine similarity is shown for each signature estimated by SigMoS

SBS1 SBS2 SBS3

Po-NMF 0.65 0.76 0.79

NBN-NMF 0.62 0.76 0.80

https://www.synapse.org/#%21Synapse:syn11726620
https://www.synapse.org/#%21Synapse:syn11726620
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Assumed models
Model selection procedure Po-NMF NBN-NMF

SigMoS 6 5
BIC 9 4

(a) Estimated number of signatures.
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(b) Model fit: residual analysis.
Fig. 5  Results for Po-NMF and NBN-NMF applied to a data set with 286 prostate cancer patients from the 
PCAWG database [25]. a The optimal number of signatures estimated from SigMoS and BIC when using 
Po-NMF and NBN-NMF. b The residual plots for Po-NMF and NBN-NMF when assuming the estimated number 
of signatures from SigMoS i.e. 5 and 6 signatures. The lines in the first plot correspond to two times the 
expected variance under the chosen distributional assumption. For NBN-NMF, the colored lines in the top 
plot show the median, minimum and maximum variance among the patients. The bottom plots show the 
normalized residuals. The vertical blue and red lines depict the theoretical quantiles and the gray lines the 
observed quantiles

Table 2  Cosine similarity for the Prostate cancer data set between the signatures extracted by 
SigMoS and the ones in the COSMIC database

The COSMIC signature with the highest cosine similarity is shown for each signature estimated by SigMoS. Signatures found 
in many prostate samples or having high mutation counts on prostate samples are highlighted in colour in the table

Discussion
Mutational profiles from cancer patients are a widely used source of information and 
NMF is often applied to these data in order to identify signatures associated with cancer 
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types. We propose a new approach to perform the analysis and signature extraction 
from mutational count data where we emphasize the importance of validating the model 
using residual analysis, and we propose a robust model selection procedure.

We use the Negative Binomial model as an alternative to the commonly used Poisson 
model as the Negative Binomial can account for the high dispersion in the data. As a fur-
ther extension of this model, we allow the Negative Binomial to have a patient specific 
variability component to account for heterogeneous variance across patients.

We propose a model selection approach for choosing the number of signatures. As we 
show in “Simulation study” section this method works well with both Negative Binomial 
and Poisson data, and it is a robust procedure for choosing the number of signatures. 
We note that the choice of the divergence measure for the cost function in Algorithm 2 
is not trivial and may favor one or the other model and thus a comparison of the costs 
between different NMF methods is not possible. For example, in our framework, we use 
the Kullback–Leibler divergence which would favor the Poisson model. This means that 
a direct comparison between the cost values for Po-NMF and NBN-NMF is not feasible. 
To check the goodness of fit and choose between the Poisson model and the Negative 
Binomial model we propose to use the residuals instead.

In Additional file 1: Section S4, we investigated the role of the cost function in our model 
selection by including the Frobenius norm and Itakura–Saito (IS) [32] divergence measure 
from [33], where the authors propose a fast implementation of the NMF algorithm with gen-
eral Bregman divergence. In this investigation the cost function did not influence the optimal 
number of signatures. The only difference was how the cost values differed among the NMF 
methods, as each cost function favored the models differently. Therefore we chose to use the 
Kullback–Leibler divergence and compared the methods with the residual analysis.

Less signatures are found when accounting for overdispersion with the Negative Bino-
mial model. Indeed, there is no need to have additional signatures explaining noise, which 
we assume is the case for the Poisson model. We show that the Negative Binomial model is 
more suitable and therefore believe the corresponding signatures are more accurate. This 
can be helpful when working with mutational profiles for being able to better associate sig-
natures with cancer types and for a clearer interpretation of the signatures when analyz-
ing mutational count data. For example, the recent results in [28] use a large data set with 
several different cancer types and show that there exists a set of common signatures that 
is shared across organs and a set of rare signatures that are only found with a sufficiently 
large sample size. To recover the common signatures the patients with unusual mutational 
profiles were excluded as they are introducing additional variance in the signature estima-
tion procedure. We speculate that changing the Poisson assumption in this approach with 
the Negative Binomial distribution could provide a simpler and more robust way to extract 
common signatures. Indeed, the Negative Binomial model allows for more variability in the 
data and our simulation results and residual plots in “Results” section show that the Nega-
tive Binomial distribution is beneficial for stable signature estimation. In this work we have 
focused on single base substitutions, but the Negative Binomial NMF can be highly ben-
eficial also for analyzing indels or other variant types. In [4] they discuss that mutational 
matrices corresponding to indels harbor more variation which means that more flexible 
models than the Poisson are needed in this situation.
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The workflow for analyzing the data, and the procedures in Algorithms 1 and 2 are avail-
able in the R package SigMoS at https://​github.​com/​Marta​Peliz​zola/​SigMoS.

Methods
This section is structured as follows: in “Negative Binomial model for mutational counts” 
section we describe the Negative Binomial model applied to mutational count data. Then 
we propose an extension where a patient specific dispersion coefficient is used. The majori-
zation–minimization (MM) procedure for patient specific dispersion {α1, . . . ,αN } can be 
found in “Patient specific NBN-NMF” section. In our application, we propose to use Nega-
tive Binomial maximum likelihood estimation (MLE) for α and {αn : 1 ≤ n ≤ N } instead of 
the grid search adopted in [18]. The pseudocode shown in the initial steps of Algorithm 1 
describes this approach for patient specific dispersion. For shared dispersion among all 
patients and mutation types we simply set α = α1 = · · · = αN in Algorithm 1. Lastly, in 
“Estimating the number of signatures” section we describe our proposed algorithm to esti-
mate the number of signatures.

Negative Binomial model for mutational counts

In this section we argue why the Negative Binomial model in [18] is a natural model for the 
number of somatic mutations in a cancer patient. We start by illustrating the equivalence 
of the Negative Binomial to the more natural Beta-Binomial model as a motivation for our 
model choice.

Assume a certain mutation type can occur in τ triplets along the genome with a probabil-
ity p. Then it is natural to model the mutational counts with a binomial distribution [34, 35]

However, [36] observed that the probability of a mutation varies along the genome and is 
correlated with both expression levels and DNA replication timing. We therefore intro-
duce the Beta-Binomial model

where the beta prior on the probability p models the heterogeneity of the probability of 
a mutation for the different mutation types due to the high variance along the genome. 
As p follows a Beta distribution, its expected value is E[p] = α/(α + β) . For mutational 
counts, the number of triplets τ is extremely large and the probability of mutation p 
is very small. In the data described in [36] there are typically between 1 and 10 muta-
tions per megabase with an average of 4 mutations per megabase ( τ ≈ 106 ). This means 
E[p] = α/(α + β) ≈ 4 · 10−6 and thus, for mutational counts in cancer genomes we have 
that β >> α . As τ is large and p is small, the Binomial model is very well approximated 
by the Poisson model Bin(τ , p) ⋍ Pois(τp) . This distributional equivalence of Poisson 
and Binomial when τ is large and p is small is well known. This also means that the mod-
els (1) and (2) are approximately equivalent with τp = (WH)nm.

The Beta and Gamma distributions are also approximately equivalent in our setting. 
Indeed, as β >> α , the Beta density can be approximated by the Gamma density in the 
following way

(2)Vnm ∼ Bin(τ , p).

(3)
Vnm|p ∼ Bin(τ , p)

p ∼ Beta(α,β),

https://github.com/MartaPelizzola/SigMoS
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Therefore, for mutational counts, the model in (3) is equivalent to

Since the Negative Binomial model is a Gamma–Poisson model we can also write the 
model as

where the last parametrization is equivalent to the one in [18]. In the first distributional 
equivalence we use E[p] ≈ α

β
 and in the second we use τE[p] = (WH)nm . Compared to 

the Beta-Binomial model, the Negative Binomial model has one fewer parameter and is 
analytically more tractable. The mean and variance of this model are given by

When α → ∞ above, the Negative Binomial model converges to the more commonly 
used Poisson model as Var(Vnm) ↓ (WH)nm . As shown in this section, the Negative 
Binomial model can be seen both as an extension of the Poisson model and as equivalent 
to the Beta-Binomial model. Thus, we opted to implement a Negative Binomial NMF 
model for mutational count data. More details on the approximation of the Negative 
Binomial to the Beta-Binomial distribution can also be found in [37].

Patient specific NBN‑NMF

In this section we describe our patient specific Negative Binomial non-negative matrix 
factorization NBN-NMF model and the corresponding estimation procedure.

Gouvert et al. [18], Lyu et al. [20] and Vöhringer et al. [21] present a Negative Binomial 
model where α is shared across all observations. However, the probability of a muta-
tion in (3) is highly variable across patients (see e.g. mutational burden in [28] and our 
discussion in “Breast cancer data” section), thus we extend the Negative Binomial NMF 
model from [18] by allowing patient specific dispersion. We noticed that the variability 
among different patients is usually much higher than the one among different mutation 
types, thus we decided to focus on patient specific dispersion.

The entries in V are modeled as

where αn is the dispersion coefficient of each patient, and the corresponding Gamma–
Poisson hierarchical model can be rewritten as:

pα−1(1− p)β−1

B(α,β)
=

pα−1

Ŵ(α)
(β − 1+ α)(β − 1+ (α − 1)) · · · (β − 1)(1− p)β−1

≈
pα−1

Ŵ(α)
βα(e−p)β .

(4)
Vnm|p ∼ Po(τp)

p ∼ Gamma(α,β).

Vnm ∼ NB α,
τ

β + τ
⋍ NB α,

τE[p]

α + τE[p]
⋍ NB α,

(WH)nm

α + (WH)nm
,

(5)E[Vnm] = (WH)nm and Var(Vnm) = (WH)nm

(

1+
(WH)nm

α

)

.

Vnm ∼ NB

(

αn,
(WHT )nm

αn + (WHT )nm

)

,
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Here anm is the parameter responsible for the variability in the Negative Binomial model. 
Note that E[anm] = 1 and Var(anm) = 1/αn.

Now we can write the Negative Binomial log-likelihood function with patent specific 
αn

and recognize the negative of the log-likelihood function as proportional to the follow-
ing divergence:

assuming fixed α1, . . . ,αN . This is a divergence measure as dN (V ||WH) = 0 when 
V = WH and dN (V ||WH) > 0 for V  = WH . We can show this by defining 
g(t) = (Vnm + t) log ((Vnm + t)/((WH)nm + t)) and realize dN (V ||WH) = g(0)− g(α) ≥ 0 

because g ′(t) ≤ 0 with equality only when V = WH . The term log
(

αn + Vnm − 1
αn

)

 in 

the likelihood is a constant we can remove and then we have added the constants 
Vnm log(Vnm) , αn log(αn) and (Vnm + αn) log(Vnm + αn).

Following the steps in [18], we will update W and H one at a time, while the other is 
assumed fixed. We will show the procedure for updating H using a fixed W and its cur-
rent value Ht . First we construct a majorizing function G(H ,Ht) for dN (V ||WH) with 
the constraint that G(H ,H) = dN (V ||WH) . The first term in Eq.  (8) can be majorized 
using Jensen’s inequality leading to

where βk = WnkH
t
km/

∑K
k=1WnkH

t
km . The second term can be majorized with the tan-

gent line using the concavity property of the logarithm:

(6)
Vnm|anm ∼ Po(anm(WH)nm)

anm ∼ Gamma(αn,αn).

(7)
ℓ(W ,H;V ) =

N
∑

n=1

M
∑

m=1

{

log

(

αn + Vnm − 1
αn

)

+ Vnm log

(

(WH)nm

αn + (WH)nm

)

+ αn log

(

1−
(WH)nm

αn + (WH)nm

)}

,

(8)

dN (V ||WH) =

N
∑

n=1

{

M
∑

m=1

Vnm log

(

Vnm

(WH)nm

)

− (αn + Vnm) log

(

αn + Vnm

αn + (WH)nm

)

}

(9)

dN (V ||WH) =

N
∑

n=1

M
∑

m=1

{

{Vnm log

(

Vnm
∑K

k=1WnkHkm

)

− (αn + Vnm) log

(

αn + Vnm

αn +
∑K

k=1WnkHkm

)

}

≤

N
∑

n=1

M
∑

m=1

{

Vnm logVnm − Vnm

K
∑

k=1

βk log
WnkHkm

βk

+ (αn + Vnm) log

(

αn +
∑K

k=1WnkHkm

αn + Vnm

)

}
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Lastly, we need to show that G(H ,H) = dN (V ||WH) . This follows from

Having defined the majorizing function G(H ,Ht) in Eq. (10), we can derive the following 
multiplicative update for H:

Similar calculations can be carried out for W to obtain the following update:

(10)

dN (V ||WH) =

N
∑

n=1

M
∑

m=1

{

Vnm logVnm − Vnm

K
∑

k=1

βk log
WnkHkm

βk

+ (αn + Vnm) log

(

αn +
∑K

k=1WnkHkm

αn + Vnm

)

}

≤

N
∑

n=1

M
∑

m=1

{

Vnm logVnm − Vnm

K
∑

k=1

βk log
WnkHkm

βk

+ (αn + Vnm) log

(

αn + (WHt)nm

αn + Vnm

)

+
Wnm

αn + (WHt)nm
(Hnm −Ht

nm)

}

= G(H ,Ht).

(11)

G(H ,H) =

N
∑

n=1

M
∑

m=1

{

Vnm logVnm − Vnm

K
∑

k=1

βk log
WnkHkm

βk

+ (αn + Vnm) log

(

αn + (WH)nm

αn + Vnm

)

+
Wnm

αn + (WH)nm
(Hnm −Hnm)

}

=

N
∑

n=1

M
∑

m=1

{

Vnm logVnm − Vnm

K
∑

k=1

WnkHkm
∑K

k=1WnkHkm

log
WnkHkm

WnkHkm
∑K

k=1 WnkHkm

− (αn + Vnm) log

(

αn + Vnm

αn +
∑K

k=1WnkHkm

)

}

=

N
∑

n=1

M
∑

m=1

{

Vnm logVnm − Vnm · 1 · log

(

K
∑

k=1

WnkHkm

)

− (αn + Vnm) log

(

αn + Vnm

αn +
∑K

k=1WnkHkm

)

}

=

N
∑

n=1

M
∑

m=1

{

Vnm log

(

Vnm
∑K

k=1WnkHkm

)

− (αn + Vnm) log

(

αn + Vnm

αn +
∑K

k=1WnkHkm

)

}

= dN (V ||WH).

(12)Ht+1
km = Ht

km

∑N
n=1

Vnm

(WHt )nm
Wnk

∑N
n=1

Vnm+αn
(WHt )nm+αn

Wnk

.
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It is straightforward to see that when αn = α for all n = 1, . . . ,N  then the updates for W 
and H equal those in [18]. Additionally, as shown in [18] when α → ∞ the updates of 
the Po-NMF [14] are recovered.

In our application, we find maximum likelihood estimates (MLEs) of α1, . . . ,αN based 
on the Negative Binomial likelihood using Newton–Raphson together with the esti-
mate of WH from Po-NMF. We opted for this more precise estimation procedure for 
α1, . . . ,αN instead of the grid search approach used in [18]. Final estimates of W and H 
are then found by minimizing the divergence in Eq. (8) by the iterative majorize-mini-
mization procedure. The NBN-NMF procedure is described in Algorithm 1 below. The 
model in [18, 20] is similar except α1 = · · · = αN = α.

It is well known that NMF can result in non-unique solutions [38]. Following these 
findings on the non-uniqueness and the effect of different initializations, all our results 
are based on five random initializations for each NMF solution.

Estimating the number of signatures

Estimating the number of signatures is a difficult problem when using NMF. More gen-
erally, estimating the number of components for mixture models or the number of clus-
ters is a well known challenge in applied statistics.

Examples of the complexity of this problem can be found in the K-means clustering 
algorithm and in Gaussian mixture models where the number of clusters K has to be 
provided for the methods. A detailed description of these challenges can be found in 
[39]. Estimating the number of components is also a critical issue for mixed membership 
models. Some examples can be found in [40, 41].

Classical procedures to perform model selection are the AIC

(13)Wt+1
nk = Wt

nk

∑M
m=1

Vnm

(WtH)nm
Hkm

∑M
m=1

Vnm+αn
(WtH)nm+αn

Hkm

.

(14)AIC = −2 ln L+ 2nprm
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and the Bayesian Information Criterion (BIC)

where ln L is the estimated log-likelihood value, nobs is the number of observations and 
nprm the number of parameters to be estimated. The two criteria attempt to balance the 
fit to the data (measured by −2 ln L ) and the complexity of the model (measured by the 
scaled number of free parameters). We have nobs = N where N is the number of patients, 
so ln(nobs) > 2 if N ≥ 8 , which means that in our context the number of parameters has 
a higher influence for BIC compared to AIC because real data sets always have at least 
tens of patients. Additionally, the structure of the mutational matrix V can lead to two 
different strategies for choosing nobs when BIC is used. Indeed, the number of observa-
tions in this context can be set as the total number of counts (i.e.  N ·M ) or as the num-
ber of patients N, leading to an ambiguity in the definition of this criterion. Verity and 
Nichols [41] also presents results on the performance of AIC and BIC, where the power 
is especially low for BIC. AIC provides higher stability in the scenario from [41], how-
ever it does not seem suitable in our situation due to a small penalty term.

A very popular model selection procedure is cross-validation. In Gelman  et  al.  [42] 
they compare various model selection methods including AIC and cross-validation. 
Here, the authors recommend to use cross-validation as they demonstrate that the other 
methods fail in some circumstances. In Luo et al. [43] they also show that cross-valida-
tion has better performance than the other considered methods, including AIC and BIC. 
Both papers evaluate the predictive fit to compare different methods.

Model selection for NMF

For NMF we propose an approach for estimating the rank which is highly inspired by 
cross-validation. As for classical cross-validation we split the patients in V in a training 
and a test set multiple times.

Since all the parameters in the model i.e. W and H are free parameters it means that 
the exposures for the patients in the test set are unknown from the estimation of the 
training set. The patients in the training set give an estimation of the signatures and the 
exposures of the patients in the training set. One could argue to fix the signatures from 
the training set and re-estimate exposures for the test set, but we observed that this lead 
to an overestimation of the test set.

Instead we have chosen to fix the exposures to the ones estimated from the full data. 
This means our evaluation on the test set is a combination of estimated signatures from 
the training set and exposures from the full data. The idea is to exploit the fact that 
the signature matrix should be robust to changes in the patients included in the train-
ing set. If the estimated signatures are truly explaining the main patterns in the data, 
then we expect the signatures obtained from the training set to be similar to the ones 
from the full data. Therefore the product of the exposures from the full data and the 
signatures from the training set should give a good approximation of the test set, if the 
number of signatures is appropriate. We tested this assumption on a real data set with 
hypermutated patients which may lead to patient specific signatures in Additional file 1: 

(15)BIC = −2 ln L+ ln(nobs)nprm
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Section S3 and we find that our method is robust to the removal of the hypermutated 
patient.

Inputs for the procedure are the data V, an NMF method, the number of signatures 
K, the number of splits into training and test J and the cost function. We evaluate the 
model for a range of values of K and then select the model with the lowest cost. The 
NMF methods we are using here are either Po-NMF from [14] or NBN-NMF in Algo-
rithm 1, but any NMF method could be applied.

A visualization of our model selection algorithm can be found in Fig. 6. First, we con-
sider the full mutational matrix V and we apply the chosen NMF algorithm to obtain an 
estimate for both W and H. Afterwards, for each iteration, we sample 90% of the patients 
randomly to create the training set and determine the remaining 10% as our test set. We 
then apply the chosen NMF method to the mutational counts of the training set obtain-
ing an estimate Wtrain and Htrain.

Now, as for classical cross-validation, we want to evaluate our model on the test 
set. To evaluate the model here, we use the full data: indeed, we multiply the expo-
sures relative to the patients in the test set estimated on the full data Wj

test times the 
corresponding signatures estimated from the training set Hj

train . As the order of the 
estimated signatures from the full data can be different to the one in the training 
set we reorder the exposures in Wj

test with respect to the signatures in Hj
train . We 

determine the order by calculating the cosine similarity between the signatures in 
H

j
train and those in H. We use the prediction of the test data to evaluate the model 

computing the distance between the true data V j
test and their prediction V j

predictwith 
a suitable cost function. This procedure is iterated J times leading to J cost values cj , 
j = 1, . . . , J  . The median of these values is calculated for each number of signatures 
K. We call this procedure SigMoS and summarize it in Algorithm 2. The optimal K 
is the one with the lowest cost. We use the generalized Kullback–Leibler divergence 
as a cost function and discuss the choice of cost function in “Discussion” section. We 
compare the influence of the model choice for our procedure to AIC and BIC. We 
also compare to SigProfilerExtractor , SignatureAnalyzer , SigneR and 
SparseSignatures as these are recently introduced methods in the literature and 
examine the results from this comparison in “Simulation study” section.
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Code for method comparison

For SigProfilerExtractor we used the SigProfilerExtractor Python 
package with minimum_signatures equal to two, maximum_signatures equal 
to eight and opportunity_genome equal to “GRCh37”. For SparseSignatures 
we use the function nmfLassoCV with normalize_counts being set to FALSE and 
lambda_values_alpha and lambda_values_beta to zero. All the other parameters are 
set to their default values. When applying SignatureAnalyzer we used the following com-
mand python SignatureAnalyzer- GPU.py - - data f - - prior_on_W L1 
- - prior_on_H L2- - output_dir d - - max_iter 1000000 - - tolerance 1e− 7 
- - K0 8 . For SigneR we used the default options.
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